Notes de cours d'Analyse Numérique Avancée 2 Méthodes de décomposition de domaine

Caroline Japhet

Version du 7 avril 2021

Cette édition du cours est en construction, et peut comporter des erreurs/fautes de frappe. Par conséquent, lisez ce cours avec attention et un esprit critique. Afin d'améliorer ce document, merci de me communiquer les erreurs que vous pourriez découvrir, par un message à japhet@math.univ-paris13.fr

En calcul scientifique, les phénomènes physiques complexes sont modélisés par des systèmes d'équations aux dérivées partielles (EDP). Pour résoudre ces équations sur un ordinateur, on fait une *discrétisation* de ces équations, qui nous amène à résoudre de grands système linéaires.

Les méthodes de décomposition de domaine sont couramment utilisées lors de la résolution de ces problèmes de grande taille. Elles ont pour principe de transformer le problème (l'EDP ou le système linéaire) en une suite de sous-problèmes découplés, de taille plus petite, qui peuvent être résolus en parallèle sur plusieurs processeurs. Le gain de temps est alors considérable. Ces méthodes sont également très utilisées pour coupler différents modèles (e.g. modèles d'océan et d'atmosphère pour prédire les cyclones).

Dans ce cours, les points marqués d'un * sont à retravailler en détail à la maison. Lorsque l'on définira une variable, on utilisera la notation ":=".

Exemple d'EDP 1 (Problème de l'élastique). On considère un élastique au repos, de tension τ , fixé en x = 0et x = 1 sur lequel on exerce une force f. On souhaite calculer le déplacement vertical u(x) en un point x donné de [0,1]. On peut montrer (c.f. ouvrages d'élasticité) que la fonction $u : [0,1] \mapsto \mathbb{R}$ est solution du problème

$$-\frac{d^2u}{dx^2}(x) = \tau f(x), \quad \forall x \in]0, 1[, u(0) = 0, u(1) = 0.$$

Ici τ et f sont les données, et la fonction u l'inconnue du problème. La deuxème ligne signifie que le déplacement vertical est nul en x = 0 et x = 1 du fait que l'élastique est fixé en ces points, voir la Figure 1.

FIGURE 1 – Problème de l'élastique : représentation du déplacement vertical u (en rouge), pour $\tau = 1, f(x) = 1$

Exemple d'EDP 2 (Problème de la chaleur). On souhaite calculer les variations de la température w(x,t), en fonction de l'espace x et du temps t (jusqu'à un temps T), dans une barre soumise à une source de chaleur gdonnée, la barre ayant une température initiale u_0 (à t = 0) connue. On suppose que la température vaut u_g en x = 0 et u_d en x = 1, pour tout instant t, avec u_g et u_d donnés. On assimile la barre à l'intervalle [0, 1]. On peut montrer (c.f. ouvrages de physique) que la fonction $w : [0, 1] \times \mathbb{R}^+ \to \mathbb{R}$ est solution du problème

$$\frac{\partial w}{\partial t}(x,t) - \frac{\partial^2 w}{\partial x^2}(x,t) = g(x,t), \quad \forall x \in]0,1[\times]0,T[, \tag{0.1}$$

$$w(0,t) = u_g, \ w(1,t) = u_d, \qquad \forall t \in [0,T],$$
(0.2)

$$w(x,0) = u_0(x), \quad \forall x \in [0,1].$$
(0.3)

Ici (0.2) correspond aux "conditions aux limites" (en x = 0 et x = 1) et (0.3) à la "condition initiale" (à t = 0). On peut discrétiser en temps ce problème : on introduit une partition de l'intervalle [0,T] en N sous-intervalles $[t_n, t_{n+1}]$ de longueur $\Delta t = \frac{T}{N}$, avec $t_n = n\Delta t$, $n \in [0, N]$, puis on utilise par exemple un schéma d'Euler implicite : en notant $v_n(x)$ l'approximation de w à l'instant t_n , elle vérifie $v_0(x) = u_0(x)$, $\forall x \in [0, 1]$, et pour $n = 1, 2, \ldots, N$:

$$\frac{v_n(x) - v_{n-1}(x)}{\Delta t} - \frac{d^2 v_n}{dx^2}(x) = g(x, t_n), \quad \forall x \in]0, 1[, v_n(0) = u_q, v_n(1) = u_d.$$

Fixons une étape de temps $n \in [\![1, N]\!]$, et notons $u = v_n$, $\eta = \frac{1}{\Delta t}$, et $f(x) = \frac{v_{n-1}(x)}{\Delta t} + g(x, t_n)$; alors la fonction u est solution du problème stationnaire

$$\eta u(x) - \frac{d^2 u}{dx^2}(x) = f(x), \quad \forall x \in]0, 1[, \tag{0.4}$$

$$u(0) = u_g, \ u(1) = u_d. \tag{0.5}$$

Dans la suite on considérera la résolution d'un problème de la forme (0.4)–(0.5) avec $\eta > 0$ (problème de la chaleur à une itération de temps fixée) ou $\eta = 0$ (problème de l'élastique).

1 Méthodes de Schwarz alternée et parallèle

On suppose que f est continue sur [0,1]. Alors on peut montrer que le problème (0.4)–(0.5) a une unique solution u dans $C^2([0,1])$.

1.1 Méthode de Schwarz alternée

Cette méthode a été introduite par H.A. Schwarz en 1870 [5] pour montrer l'existence de fonctions harmoniques (i.e. vérifiant $-\Delta u = 0$) dans un domaine composite (composé de deux sous-domaines : un disque et un rectangle).

Nous allons voir cette méthode en dimension 1 pour résoudre le problème (0.4)–(0.5). On considère une décomposition du domaine $\Omega = [0, 1]$ en deux sous-domaines $\Omega_1 = [0, \gamma]$ et $\Omega_2 = [\delta, 1]$, avec $\gamma > \delta > 0$, c'est-à-dire que les sous-domaines se recouvrent, voir la Figure 2.

FIGURE 2 – Décomposition de Ω en deux sous-domaines, avec un recouvrement

La méthode consiste ensuite à se donner une valeur initiale g en γ et à résoudre le problème dans Ω_1 avec cette donnée en γ . On obtient ainsi une solution dans Ω_1 notée u_1^1 . Biensûr il n'y a aucune raison pour que l'on ait $u_1^1 = u|_{\Omega_1}$ (il faudrait pour cela que l'on ait $g = u(\gamma)$, or on ne connait a priori pas $u(\gamma)$). Puis on résout le problème dans Ω_2 avec la valeur $u_1^1(\delta)$ en δ . On obtient alors une solution dans Ω_2 notée u_2^1 . On a fini la première itération de l'algorithme. On recommence ensuite le processus : on résout le problème dans Ω_1 avec la valeur $u_2^1(\gamma)$ en γ , et ainsi de suite. L'algorithme s'écrit ainsi :

Pour k = 1, 2, 3, ..., calculer u_1^k et u_2^k solution de :

$$\begin{cases} \eta u_1^k(x) - \frac{d^2 u_1^k}{dx^2}(x) = f(x), \quad \forall x \in]0, \gamma[, \\ u_1^k(0) = u_g, \\ u_1^k(\gamma) = u_2^{k-1}(\gamma), \end{cases} \begin{cases} \eta u_2^k(x) - \frac{d^2 u_2^k}{dx^2}(x) = f(x), \quad \forall x \in]\delta, 1[, \\ u_2^k(1) = u_d, \\ u_2^k(\delta) = u_1^k(\delta), \end{cases}$$
(1.1)

l'algorithme étant intialisé par une donnée $g \in \mathbb{R}$ avec la convention $u_2^0 := g$. Ainsi à la première itération, la condition en γ pour le calcul de u_1^1 est $u_1^1(\gamma) = g$.

En général on ne connait pas la solution u du problème (0.4)-(0.5). Ici on va se donner un exemple simple, où l'on connait u, de façon à observer la convergence de l'algorithme. On prend $\eta = 1$, $f(x) = 10\sin(3x)$, $\forall x \in [0, 1]$, $u_g = 0$, et $u_d = \sin(3)$, de sorte que $u(x) = \sin(3x)$, $\forall x \in [0, 1]$. On choisit $\delta = 0.48$, $\gamma = 0.58$, et g = 0 comme valeur initiale de l'algorithme. Sur la Figure 3 on observe la solution u (en noir) et la solution multidomaine, en bleue dans Ω_1 et en rouge dans Ω_2 , à différentes itérations : itération 1 (en haut à gauche), itétations 1 et 2 (en haut à droite), itétations 1 à 3 (en bas à gauche), toutes les itérations jusqu'à convergence vers u (en bas à droite). Ainsi sur cet exemple on observe que la suite $(u^k)_{k\geq 1}$ avec $u^k|_{\Omega_i} = u_i^k$, i = 1, 2 converge vers u.

FIGURE 3 – Convergence de la méthode de Schwarz alternée

On peut montrer le résultat général suivant [5] :

Théorème 1.1: Convergence de la méthode de Schwarz alternée

Soit $\eta \ge 0$. L'algorithme de Schwarz alterné (1.1) converge vers la solution u du problème (0.4)–(0.5) :

$$\sup_{x \in [0,\gamma]} |u_1^k(x) - u(x)| \underset{k \to \infty}{\longrightarrow} 0, \qquad \sup_{x \in [\delta,1]} |u_2^k(x) - u(x)| \underset{k \to \infty}{\longrightarrow} 0,$$

et la convergence est linéaire.

Dans [5] la preuve est basée sur le principe du maximum (i.e. une fonction harmonique dans un domaine atteint son maximum sur le bord du domaine). Ici nous allons plutôt faire la preuve comme dans [2], afin de faire apparaître la notion de "taux de convergence", qui est très importante.

Preuve du Théorème 1.1. Soit $k \ge 1$. On définit l'erreur e_i^k à l'itération k par $e_i^k := u_i^k - u$, i = 1, 2, et on souhaite étudier la convergence de e_i^k , pour i = 1, 2. Regardons quel problème verifie e_1^k :

$$\begin{split} \eta e_1^k(x) - \frac{d^2 e_1^k}{dx^2}(x) &= \eta \left((u_1^k - u)(x) \right) - \frac{d^2}{dx^2} (u_1^k - u)(x), \quad x \in]0, \gamma[, \\ &= \eta u_1^k(x) - \eta u(x) - \frac{d^2 u_1^k}{dx^2}(x) + \frac{d^2 u}{dx^2}(x) \quad (\text{car les opérateurs } \eta \mathcal{I} \text{ et } \frac{d^2}{dx^2} \text{ sont linéaires}) \\ &= \eta u_1^k(x) - \frac{d^2 u_1^k}{dx^2}(x) - \left(\eta u(x) - \frac{d^2 u}{dx^2} \right) \quad (\text{en réordonnant les termes}) \end{split}$$

= f(x) - f(x) = 0 (en utilisant les équations (1.1) (1ère ligne gauche) et (0.4)),

où ${\mathcal I}$ désigne l'opérateur identité.

Pour la condition en x = 0, on a

 $e_1^k(0) = (u_1^k - u)(0) = u_1^k(0) - u(0) = u_g - u_g = 0 \quad (\text{en utilisant les équations (1.1) (2ème ligne gauche) et (0.5)}).$ Enfin, pour la condition en γ , on utilise la condition de transmission dans (1.1) (3ème ligne gauche) :

$$e_1^k(\gamma) = (u_1^k - u)(\gamma) = u_1^k(\gamma) - u(\gamma) = u_2^{k-1}(\gamma) - u(\gamma) = (u_2^{k-1} - u)(\gamma) = e_2^{k-1}(\gamma), \qquad k \ge 1.$$

En procédant de la même façon^{*} pour e_2^k , on obtient ainsi que e_1^k et e_2^k sont solution des problèmes suivants, pour $k \ge 1$:

$$\begin{cases} \eta e_1^k(x) - \frac{d^2 e_1^k}{dx^2}(x) = 0, \quad \forall x \in]0, \gamma[, \\ e_1^k(0) = 0, \\ e_1^k(\gamma) = e_2^{k-1}(\gamma), \end{cases} \begin{cases} \eta e_2^k(x) - \frac{d^2 e_2^k}{dx^2}(x) = 0, \quad \forall x \in]\delta, 1[, \\ e_2^k(1) = 0, \\ e_2^k(\delta) = e_1^k(\delta), \end{cases}$$
(1.2)

avec

$$e_2^0(\gamma) = u_2^0(\gamma) - u(\gamma) = g - u(\gamma).$$
(1.3)

Résolvons maintenant ces deux problèmes. Commençons par le problème sur e_1^k .

• Cas $\eta = 0$. Les solutions de l'équation

$$-\frac{d^2e_1^k}{dx^2}(x) = 0, \quad \forall x \in]0, \gamma[$$

sont de la forme $e_1^k(x) = a_1^k x + b_1^k$, avec a_1^k et b_1^k deux réels. Comme $e_1^k(0) = 0$, on a $b_1^k = 0$, donc $e_1^k(x) = a_1^k x + b_1^k$, avec $a_1^k = 0$, donc $e_1^k(x) = a_1^k x + b_1^k$, avec $a_1^k = 0$, donc $e_1^k(x) = a_1^k x + b_1^k$, avec $a_1^k = 0$, donc $e_1^k(x) = a_1^k x + b_1^k$, avec $a_1^k = 0$, donc $e_1^k(x) = a_1^k x + b_1^k$, avec $a_1^k = 0$, donc $e_1^k(x) = a_1^k x + b_1^k$, avec $a_1^k = 0$, donc $e_1^k(x) = a_1^k x + b_1^k$, avec $a_1^k = 0$, donc $e_1^k(x) = a_1^k x + b_1^k$, avec $a_1^k = 0$, donc $e_1^k(x) = a_1^k x + b_1^k$, avec $a_1^k = 0$, donc $e_1^k(x) = a_1^k x + b_1^k$, avec $a_1^k = 0$, donc $e_1^k(x) = a_1^k x + b_1^k$, avec $a_1^k = 0$, donc $e_1^k(x) = a_1^k x + b_1^k$. avec $a_1^k \in \mathbb{R}$.

• Cas $\eta > 0$. L'équation

$$\eta e_1^k(x) - \frac{d^2 e_1^k}{dx^2}(x) = 0, \quad \forall x \in]0, \gamma[$$

est une équation différentielle ordinaire du second ordre, dont l'équation caractéristique s'écrit

$$\eta - r^2 = 0$$

et qui a pour racines $r^- = -\sqrt{\eta}$ et $r^+ = \sqrt{\eta}$. Les solutions sont alors les fonctions définies sur \mathbb{R} de la forme $e_1^k(x) = A_1^k e^{r^- x} + B_1^k e^{r^+ x}$, où A_1^k et B_1^k sont deux réels. La condition $e_1^k(0) = 0$ entraîne que $A_1^k = -B_1^k$. Ainsi on a $e_1^k(x) = B_1^k(e^{\sqrt{\eta}x} - e^{-\sqrt{\eta}x})$. En posant $a_1^k = 2B_1^k$, on a donc

$$e_1^k(x) = a_1^k \operatorname{sh}\left(\sqrt{\eta}x\right),\,$$

avec $a_1^k \in \mathbb{R}$ et sh la fonction sinus hyperbolique (i.e. $\operatorname{sh} x = \frac{e^x - e^{-x}}{2}$).

On procède de la même façon^{*} pour le problème sur e_2^k . On obtient ainsi, pour $k \ge 1$:

$$pour \ \eta = 0, \qquad e_1^k(x) = a_1^k x, \ \forall x \in [0, \gamma], \qquad e_2^k(x) = a_2^k(1 - x), \ \forall x \in [\delta, 1],$$
(1.4a)
$$pour \ \eta > 0, \qquad e_1^k(x) = a_1^k \text{sh}(\sqrt{\eta}x), \ \forall x \in [0, \gamma], \qquad e_2^k(x) = a_2^k \text{sh}(\sqrt{\eta}(1 - x)), \ \forall x \in [\delta, 1],$$
(1.4b)

avec $a_1^k, a_2^k \in \mathbb{R}$. On détermine ensuite a_1^k et a_2^k en utilisant les conditions en γ et en δ (3ème ligne de (1.2)).

Regardons pour $a_1^k, k \ge 1$:

• Itération k = 1. Posons $a_2^0 := \frac{e_2^0(\gamma)}{1-\gamma}$ si $\eta = 0$, et $a_2^0 := \frac{e_2^0(\gamma)}{\operatorname{sh}(\sqrt{\eta}(1-\gamma))}$ si $\eta > 0$. De (1.3) on a donc $a_2^0 = \frac{g-u(\gamma)}{1-\gamma}$ si $\eta=0,$ et $a_2^0=\frac{g-u(\gamma)}{\operatorname{sh}\left(\sqrt{\eta}(1-\gamma)\right)}$ si $\eta>0.$

On détermine a_1^1 avec la condition venant de la 3 ème ligne gauche de (1.2)) (pour k = 1), c'est-à-dire :

$$e_1^1(\gamma) = e_2^0(\gamma). \tag{1.5}$$

En prenant $x = \gamma$ dans (1.4a)–(1.4b) et avec (1.5) on obtient :

pour
$$\eta = 0$$
, $a_1^1 = a_2^0 \left(\frac{1-\gamma}{\gamma}\right) = \frac{g-u(\gamma)}{\gamma}$, (1.6a)

pour
$$\eta > 0$$
, $a_1^1 = a_2^0 \left(\frac{\operatorname{sh}\left(\sqrt{\eta}(1-\gamma)\right)}{\operatorname{sh}\left(\sqrt{\eta}(\gamma)\right)} \right) = \frac{g - u(\gamma)}{\operatorname{sh}(\sqrt{\eta}\gamma)}.$ (1.6b)

• Itération $k \ge 2$. Les coefficients a_1^k , $k \ge 2$, sont ensuite déterminés à l'aide d'une formule de récurrence, obtenue à partie des conditions de transmission $e_1^k(\gamma) = e_2^{k-1}(\gamma)$ et $e_2^k(\delta) = e_1^k(\delta)$ (3ème ligne de (1.2)). Ecrivons ces conditions en utilisant l'expression de e_1^k et e_2^k (formules (1.4a)–(1.4b)), pour $k \ge 1$:

pour
$$\eta = 0$$
, $a_1^k \gamma = a_2^{k-1}(1-\gamma)$, $a_2^k(1-\delta) = a_1^k \delta$
pour $\eta > 0$, $a_1^k \operatorname{sh}(\sqrt{\eta}\gamma) = a_2^{k-1} \operatorname{sh}(\sqrt{\eta}(1-\gamma))$, $a_2^k \operatorname{sh}(\sqrt{\eta}(1-\delta)) = a_1^k \operatorname{sh}(\sqrt{\eta}\delta)$,

qui s'écrivent encore sous la forme, pour $k \ge 1$:

pour
$$\eta = 0$$
, $a_1^k = a_2^{k-1} \left(\frac{1-\gamma}{\gamma}\right)$, $a_2^k = a_1^k \left(\frac{\delta}{1-\delta}\right)$, (1.7)

pour
$$\eta > 0$$
, $a_1^k = a_2^{k-1} \left(\frac{\operatorname{sh}(\sqrt{\eta}(1-\gamma))}{\operatorname{sh}(\sqrt{\eta}\gamma)} \right)$, $a_2^k = a_1^k \left(\frac{\operatorname{sh}(\sqrt{\eta}\delta)}{\operatorname{sh}(\sqrt{\eta}(1-\delta))} \right)$. (1.8)

Regardons le cas $\eta = 0$. D'après ci-dessus on a $a_2^k = a_1^k \left(\frac{\delta}{1-\delta}\right)$, $\forall k \ge 1$, soit encore $a_2^{k-1} = a_1^{k-1} \left(\frac{\delta}{1-\delta}\right)$, $\forall k \ge 2$. On a aussi $a_1^k = a_2^{k-1} \left(\frac{1-\gamma}{\gamma}\right)$, $\forall k \ge 2$. En remplaçant a_2^{k-1} dans l'expression précédente, on obtient alors : $a_1^k = a_1^{k-1} \left(\frac{\gamma}{1-\gamma}\right) \left(\frac{\delta}{1-\delta}\right)$, $\forall k \ge 2$. En procédant de la même façon* dans le cas $\eta > 0$, et pour calculer a_2^k , on obtient, pour $k \ge 2$:

$$a_1^k = \rho \, a_1^{k-1}, \quad a_2^k = \rho \, a_2^{k-1}, \quad \text{avec} \begin{cases} \text{pour } \eta = 0, \quad \rho := \left(\frac{1-\gamma}{\gamma}\right) \left(\frac{\delta}{1-\delta}\right), \\ \text{pour } \eta > 0, \quad \rho := \rho(\eta) = \left(\frac{\operatorname{sh}(\sqrt{\eta}(1-\gamma))}{\operatorname{sh}(\sqrt{\eta}\gamma)}\right) \left(\frac{\operatorname{sh}(\sqrt{\eta}\delta)}{\operatorname{sh}(\sqrt{\eta}(1-\delta))}\right). \end{cases}$$
(1.9)

Le facteur ρ est appelé *taux de convergence* ou *facteur de convergence* de la méthode de Schwarz alternée. Notons que l'on a gardé la même notation ρ dans les cas $\eta = 0$ et $\eta > 0$ car $\lim_{\eta \to 0} \rho(\eta) = \left(\frac{1-\gamma}{\gamma}\right) \left(\frac{\delta}{1-\delta}\right)$.

Des relations (1.9), par récurrence sur k, on obtient, pour $k \geqslant 1$:

$$a_1^k = \rho^{k-1} a_1^1, \qquad a_2^k = \rho^{k-1} a_2^1,$$

ce qui s'écrit encore, en utilisant que $a_2^1 = \left(\frac{\delta}{1-\delta}\right)a_1^1$ si $\eta = 0$, et $a_2^1 = \left(\frac{\operatorname{sh}(\sqrt{\eta}\delta)}{\operatorname{sh}(\sqrt{\eta}(1-\delta))}\right)a_1^1$ si $\eta > 0$ (d'après (1.7)–(1.8) à droite), puis en utilisant (1.6a)–(1.6b) et en posant $\rho_1 := \frac{1-\gamma}{\gamma}$ si $\eta = 0$, et $\rho_1 := \frac{\operatorname{sh}(\sqrt{\eta}(1-\gamma))}{\operatorname{sh}(\sqrt{\eta}\gamma)}$ si $\eta > 0$:

$$a_1^k = \rho^{k-1} \rho_1 a_2^0, \qquad a_2^k = \rho^k a_2^0, \quad \forall k \ge 1.$$

Lorsque $\eta = 0$, comme $0 < \delta < \gamma$, alors $0 < \frac{\delta}{\gamma} < 1$ et $0 < \frac{1-\gamma}{1-\delta} < 1$, ce qui entraîne que $0 \le \rho < 1$. Si $\eta > 0$ comme la fonction sinus hyperbolique est positive sur \mathbb{R}_+ et croissante, et que $\delta < \gamma$, on a $0 \le \frac{\operatorname{sh}(\sqrt{\eta}(1-\gamma))}{\operatorname{sh}(\sqrt{\eta}(1-\delta))} < 1$ et $0 \le \frac{\operatorname{sh}(\sqrt{\eta}\delta)}{\operatorname{sh}(\sqrt{\eta}\gamma)} < 1$ et donc $0 \le \rho < 1$.

Par conséquent, les suites $(a_1^k)_{k \ge 1}$ et $(a_2^k)_{k \ge 1}$, qui sont des suites géométriques de raison ρ , convergent vers 0 lorque k tend vers l'infini. Or de (1.4a)-(1.4b) nous avons :

$$\begin{aligned} \text{pour } \eta &= 0, \qquad \sup_{x \in [0,\gamma]} |e_1^k(x)| &= |a_1^k|\gamma, \quad \sup_{x \in [\delta,1]} |e_2^k(x)| = |a_2^k|(1-\delta), \\ \text{pour } \eta &> 0, \qquad \sup_{x \in [0,\gamma]} |e_1^k(x)| = |a_1^k| \text{sh}(\sqrt{\eta}\gamma), \quad \sup_{x \in [\delta,1]} |e_2^k(x)| = |a_2^k| \text{sh}(\sqrt{\eta}(1-\delta)), \end{aligned}$$

donc $\sup_{x \in [0,\gamma]} |e_1^k(x)| \xrightarrow[k \to \infty]{} 0$, et $\sup_{x \in [\delta,1]} |e_2^k(x)| \xrightarrow[k \to \infty]{} 0$. De plus on a $|e_i^k(x)| = \rho |e_i^{k-1}(x)|$, $\forall x \in \Omega_i$, i = 1, 2, donc la convergence est linéaire, ce qui finit la preuve du Théorème 1.1.

1.2 Méthode de Schwarz parallèle

Cette méthode a été introduite par P.L. Lions en 1990 [4], de façon a pouvoir utiliser efficacement l'algorithme de Schwarz sur une machine parallèle.

On considère une décomposition du domaine [0, 1] comme dans la section précédente, en deux sous-domaines $\Omega_1 = [0, \gamma]$ et $\Omega_2 = [\delta, 1]$, avec $\gamma > \delta > 0$, c'est-à-dire que les sous-domaines se recouvrent (voir la Figure 2).

L'algorithme de Schwarz parallèle s'écrit ainsi :

Pour
$$k = 1, 2, 3, ...$$

$$\begin{cases} \eta u_1^k(x) - \frac{d^2 u_1^k}{dx^2}(x) = f(x), \quad \forall x \in]0, \gamma[, \\ u_1^k(0) = u_g, \\ u_1^k(\gamma) = u_2^{k-1}(\gamma), \end{cases} \begin{cases} \eta u_2^k(x) - \frac{d^2 u_2^k}{dx^2}(x) = f(x), \quad \forall x \in]\delta, 1[, \\ u_2^k(1) = u_d, \\ u_2^k(\delta) = u_1^{k-1}(\delta). \end{cases} \end{cases}$$
(1.11)

Ici, le changement par rapport à l'algorithme de Schwarz alterné est le terme en rouge, qui est à l'itération k-1 au lieu d'être à l'itération k.

L'algorithme est intialisé par deux données $g_1, g_2 \in \mathbb{R}$ avec la convention $u_2^0 := g_1$ et $u_1^0 := g_2$. Ainsi à la première itération, les conditions en γ et δ pour le calcul de u_1^1 et u_2^1 sont respectivement $u_1^1(\gamma) = g_1$ et $u_2^1(\delta) = g_2$.

A chaque itération $k \ge 1$, on résout ainsi de façon indépendante, en parallèle sur deux processeurs différents (i.e. en même temps), les problèmes (1.11) à gauche et (1.11) à droite. Les échanges d'informations entre les sous-domaines sont ensuite faits à l'aide des conditions de transmission en γ et en δ (troisième ligne de (1.11)), et traduits par des échanges entre les processeurs.

Reprenons l'exemple de la section précédente. Sur la Figure 4 on observe la solution u (en noir) ainsi que la solution multidomaine de l'algorithme de Schwarz parallèle, en bleue dans Ω_1 et en rouge dans Ω_2 , à différentes itérations. On observe que la suite $(u^k)_{k\geq 1}$ avec $u^k|_{\Omega_i} = u_i^k$, i = 1, 2 converge vers u.

FIGURE 4 – Convergence de la méthode de Schwarz parallèle

Théorème 1.2: Convergence de la méthode de Schwarz parallèle

Soit $\eta \ge 0$. L'algorithme de Schwarz parallèle (1.11) converge vers la solution u du problème (0.4)–(0.5). Plus précisément, les itérés pairs et impairs de u_i^k convergent linéairement avec un facteur de convergence égal à ρ (défini en (1.9)).

Preuve du Théorème 1.2. On procède comme pour la preuve du Théorème 1.1, dont on donne ici les grandes lignes^{*}. Soit $k \ge 1$. Par linéarité l'erreur e_i^k à l'itération k, pour i = 1, 2, vérifie

$$\begin{cases} \eta e_1^k(x) - \frac{d^2 e_1^k}{dx^2}(x) = 0, \quad \forall x \in]0, \gamma[, \\ e_1^k(0) = 0, \\ e_1^k(\gamma) = e_2^{k-1}(\gamma), \end{cases} \begin{cases} \eta e_2^k(x) - \frac{d^2 e_2^k}{dx^2}(x) = 0, \quad \forall x \in]\delta, 1[, \\ e_2^k(1) = 0, \\ e_2^k(\delta) = e_1^{k-1}(\delta), \end{cases}$$
(1.12)

avec

$$e_2^0(\gamma) := u_2^0(\gamma) - u(\gamma) = g_1 - u(\gamma), \qquad e_1^0(\delta) := u_1^0(\delta) - u(\delta) = g_2 - u(\delta).$$

Les solutions sont à nouveau de la forme (1.4a)–(1.4b), avec $a_1^k, a_2^k \in \mathbb{R}$ que l'on détermine en utilisant les conditions en γ et en δ (3ème ligne de (1.12)). Obtient, pour $k \ge 2$:

$$a_i^k = \rho \, a_i^{k-2}, \quad i = 1, 2,$$
(1.13)

où ρ est défini en (1.9), $a_1^0 := \frac{g_2 - u(\delta)}{\delta}$, $a_2^0 := \frac{g_1 - u(\gamma)}{1 - \gamma}$ si $\eta = 0$, et $a_1^0 := \frac{g_2 - u(\delta)}{\operatorname{sh}(\sqrt{\eta}(\delta))}$, $a_2^0 := \frac{g_1 - u(\gamma)}{\operatorname{sh}(\sqrt{\eta}(1 - \gamma))}$ si $\eta > 0$. De (1.13) et (1.4a)-(1.4b), on obtient

$$|e_1^k(\gamma)| = \rho |e_1^{k-2}(\gamma)|, \qquad |e_2^k(\delta)| = \rho |e_2^{k-2}(\delta)|, \quad \forall k \ge 2.$$

Ceci est vrai aussi en tout point de Ω_i , i = 1, 2:

$$|e_i^k(x)| = \rho |e_i^{k-2}(x)|, \quad \forall x \in \Omega_i, \quad \forall k \ge 2, \qquad i = 1, 2,$$

ou encore

$$|e_i^{2k}(x)| = \rho^k |e_i^0(x)|, \qquad |e_i^{2k+1}(x)| = \rho^k |e_i^1(x)|, \qquad \forall k \ge 0.$$

Comme $0 \leq \rho < 1$ (c.f. la section précédente) alors, $\sup_{x \in \Omega_i} |e_i^{2k}(x)| \xrightarrow[k \to \infty]{} 0$, et $\sup_{x \in \Omega_i} |e_i^{2k+1}(x)| \xrightarrow[k \to \infty]{} 0$, i = 1, 2, et la convergence est linéaire, ce qui finit la preuve du Théorème 1.2.

Remarque 1.1. Posons $g := g_1$. Notons (v_1^k, v_2^k) la suite définie dans l'algorithme de Schwarz alterné et (u_1^k, u_2^k) celle définie dans l'algorithme de Schwarz parallèle. Alors

$$u_1^{2k-1} = v_1^k, \qquad puis \qquad u_2^{2k} = v_2^k, \quad k \ge 1$$

C'est-à-dire que deux itérations de la méthode de Schwarz parallèle, dans un sous-domaine donné, sont équivalentes à une itération de la méthode de Schwarz alternée, comme le montre les Figures 3 et 4

Remarque 1.2. La convergence des méthodes de Schwarz alternée et parallèle est d'autant plus rapide que le facteur de convergence ρ est petit. Plus précisément, notons $L = \gamma - \delta$ le recouvrement entre les deux sousdomaines. Plus η sera grand, plus ρ sera petit, et l'on a^{*}

$$\rho(\eta) \underset{\eta \to +\infty}{\sim} e^{-2\sqrt{\eta}L}.$$

Ceci montre que, à η fixé, les algorithmes de Schwarz sont d'autant plus rapides que le recouvrement L est grand.

2 Méthodes de Schwarz discrétisées

2.1 Discrétisation du problème global

Dans cette section on considère une discrétisation par différences finies du problème (0.4)–(0.5), avec $\eta \ge 0$. On introduit une partition uniforme de l'intervalle [0,1] en sous-intervalles $[x_j, x_{j+1}]$ avec $x_j = jh$, $0 \le j \le n+1$, où $h = \frac{1}{n+1}$. Le problème (0.4)–(0.5) en $x = x_j$ s'écrit :

$$\eta u(x_j) - u''(x_j) = f(x_j), \quad \forall j \in [\![1, n]\!],$$
(2.1)

$$u(x_0) = u_g, \ u(x_{n+1}) = u_d.$$
 (2.2)

Il faut maintenant approcher les n équations de (2.1) en remplaçant la dérivée seconde $u''(x_j)$ par une formule dite de "différences finies", de façon à pouvoir résoudre ce problème sur un ordinateur.

En supposant que $u \in \mathcal{C}^5([0,1])$ et utilisant des développements de Taylor Lagrange, on peut montrer que*

$$u''(x_j) = \frac{u(x_j - h) - 2f(x_j) + f(x_j + h)}{2h} - \frac{h^2}{12}f^{(4)}(x_j) + \mathcal{O}(h^3).$$

Comme $x_{j-1} = x_j - h$, $x_{j+1} = x_j + h$, ainsi on fait l'approximation (qui est d'ordre 2 d'après l'égalité ci-dessus) :

$$u''(x_j) \approx \frac{u(x_{j-1}) - 2u(x_j) + u(x_{j+1})}{h^2}.$$
(2.3)

Notons $U_0 = u(x_0), U_{n+1} = u(x_{n+1})$, et pour $j \in [1, n]$, notons U_j une approximation de u en x_j :

$$U_j \approx u(x_j), \qquad j \in \llbracket 1, n \rrbracket.$$

Au lieu de résoudre (2.1)-(2.2), on va résoudre le problème approché, appelé problème discret, suivant :

$$\eta U_j - \frac{U_{j-1} - 2U_j + U_{j+1}}{h^2} = f(x_j), \quad \forall j \in [\![1, n]\!],$$
(2.4)

$$U_0 = u_q, \ U_{n+1} = u_d. \tag{2.5}$$

Le système d'équations (2.4)–(2.5) est équivalent au système linéaire $\mathbb{A}_h U = \mathbf{b}_h$ où $\mathbf{U} = (U_1, U_2, \dots, U_n)^t$ est l'inconnue du système, et où $\mathbb{A}_h = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ et $\mathbf{b}_h = (b_j)_{1 \leq j \leq n} \in \mathbb{R}^n$ sont définis par :

$$\begin{aligned} a_{i,i} &= \eta + \frac{2}{h^2}, \quad a_{i,i+1} = a_{i,i-1} = -\frac{1}{h^2}, \quad \text{et } a_{i,j} = 0, \ \forall i, j \text{ avec } |i-j| > 2, \\ b_j &= f(x_j), \ \forall j \in [\![2, n-1]\!], \ b_1 = f(x_1) + \frac{u_g}{h^2}, \ b_n = f(x_n) + \frac{u_d}{h^2}, \end{aligned}$$

c'est-à-dire

$$\mathbb{A}_{h} = \begin{pmatrix} \eta + \frac{2}{h^{2}} & -\frac{1}{h^{2}} & & \\ -\frac{1}{h^{2}} & \eta + \frac{2}{h^{2}} & \ddots & \\ & \ddots & \ddots & -\frac{1}{h^{2}} \\ & & & -\frac{1}{h^{2}} & \eta + \frac{2}{h^{2}} \end{pmatrix}, \qquad \mathbf{b}_{h} = \begin{pmatrix} f(x_{1}) + \frac{u_{g}}{h^{2}} \\ f(x_{2}) \\ \vdots \\ f(x_{n-1}) \\ f(x_{n}) + \frac{u_{d}}{h^{2}} \end{pmatrix}.$$

La matrice \mathbb{A}_h est symétrique définie positive, donc inversible. On peut résoudre ce système avec la méthode de Gauss-Jordan (voir [1]) ou l'algorithme du gradient conjugué (voir [3]) qui est très efficace pour n grand, pour ce type de problème où les matrices sont creuses.

On obtient alors (U_1, \ldots, U_n) représentées (en ajoutant u_g en x = 0 et u_d en x = 1) sur la Figure 5 (gauche). Pour définir une approximation de u en tout point de [0, 1], on peut prendre le polynôme d'interpolation de Lagrange \mathbb{P}_1 par morceaux passant par $(u_g, U_1, \ldots, U_n, u_d)$ (voir [1]). Il est tracé en bleu sur la Figure 5 (milieu). Ici nous avons pris $\eta = 0$, f(x) = 1, et $u_g = u_d = 0$ (comme pour la Figure 1). Lorsqu'on diminue h, la solution approchée U (représentée sur la Figure 5 à droite) tend vers la solution continue u du problème (2.4)–(2.5) (représentée sur la Figure 1).

FIGURE 5 – Représentation de la solution approchée U avec $h = \frac{1}{6}$ (gauche et milieu) et $h = \frac{1}{51}$ (droite), avec $\eta = 0, f(x) = 1$, et $u_g = u_d = 0$

Dans la section suivante on considère l'algorithme de Schwarz parallèle discrétisé pour résoudre ce problème.

2.2 Méthode de Schwarz parallèle discrétisée

On va utiliser le même schéma aux différences finies que celui de la section 2.1, pour discrétiser les sousproblèmes de l'algorithme (1.11).

On considère le maillage $(x_j)_{0 \le j \le n+1}$ de la section 2.1 et on repère le point γ par son indice $(a_1 - 1)$ dans ce maillage $(1 < a_1 < n+2)$, et le point δ par son indice $(a_2 - 1)$ $(1 < a_2 < a_1)$ (i.e. $a_1 - a_2$ est le nombre d'intervalles dans le recouvrement). On suppose que l'on a $n_1 + 1$ (resp. $n_2 + 1$) intervalles dans $\Omega_1 = [0, \gamma]$ (resp. dans $\Omega_2 = [\delta, 1]$), c'est-à-dire que $a_1 = n_1 + 2$ et $a_2 = n - n_2 + 1$.

Pour i = 1, 2, les sous-intervalles de Ω_i sont notés $[x_i^i, x_{i+1}^i]$, avec

$$x_j^1 = x_j = jh, \ 0 \le j \le n_1 + 1, \qquad x_j^2 = x_{a_2 - 1 + j} = \delta + jh, \ 0 \le j \le n_2 + 1.$$

Pour un vecteur défini sur le maillage de Ω_1 , l'indice local (entre 0 et $n_1 + 1$) de δ est donc $(a_2 - 1)$, et pour un vecteur défini sur le maillage de Ω_2 , l'indice local de γ (entre 0 et $n_2 + 1$) est $a_1 - a_2$ (ce qui revient bien à dire que l'indice global de γ (entre $a_2 - 1$ et n + 1 est $a_1 - 1$). Ainsi pour $k \ge 1$,

$$(\boldsymbol{U}_1^{k-1})_{a_2-1} \approx u_1^{k-1}(\delta) \quad \text{et} \quad (\boldsymbol{U}_2^{k-1})_{a_1-a_2} \approx u_2^{k-1}(\gamma).$$

L'algorithme de Schwarz parallèle discret s'écrit alors :

Pour k = 1, 2, 3, ...

$$\mathbb{A}_{h,1}\boldsymbol{U}_1^k = \boldsymbol{b}_{h,1}^{k-1}, \qquad \mathbb{A}_{h,2}\boldsymbol{U}_2^k = \boldsymbol{b}_{h,2}^{k-1}, \tag{2.6}$$

où $\boldsymbol{U}_{i}^{k} = \left((\boldsymbol{U}_{i}^{k})_{1}, (\boldsymbol{U}_{i}^{k})_{2}, \ldots, (\boldsymbol{U}_{i}^{k})_{n_{i}}\right)^{t}, i = 1, 2$, sont les inconnues des systèmes ci-dessus, avec $(\boldsymbol{U}_{i}^{k})_{j}$ une approximation de u_{i}^{k} en x_{j}^{i} :

$$(\boldsymbol{U}_{i}^{k})_{j} \approx u_{i}^{k}(x_{j}^{i}), \qquad j \in [\![1, n_{i}]\!], \qquad i = 1, 2,$$

$$(\boldsymbol{U}_{1}^{k})_{n_{1}+1} \approx u_{1}^{k}(x_{n_{1}+1}^{1}), \qquad (\boldsymbol{U}_{2}^{k})_{0} \approx u_{2}^{k}(x_{0}^{2}),$$

et $(\boldsymbol{U}_1^k)_0 = u_g, \, (\boldsymbol{U}_2^k)_{n_2+1} = u_d.$

Pour i = 1, 2, les matrices et second membres $\mathbb{A}_{h,i} \in \mathcal{M}_{n_i}(\mathbb{R})$ et $\mathbf{b}_{h,i}^{k-1} \in \mathbb{R}^{n_i}, k \ge 2$, sont définis par :

$$\mathbb{A}_{h,i} = \begin{pmatrix} \eta + \frac{2}{h^2} & -\frac{1}{h^2} & & \\ -\frac{1}{h^2} & \eta + \frac{2}{h^2} & \ddots & \\ & \ddots & \ddots & -\frac{1}{h^2} \\ & & & -\frac{1}{h^2} & \eta + \frac{2}{h^2} \end{pmatrix}, \qquad \boldsymbol{b}_{h,1}^{k-1} = \begin{pmatrix} f(x_1^1) + \frac{u_g}{h^2} \\ f(x_2^1) \\ \vdots \\ f(x_{n_1-1}^1) \\ f(x_{n_1}^1) + \frac{(U_2^{k-1})_{a_1-a_2}}{h^2} \end{pmatrix}, \qquad \boldsymbol{b}_{h,2}^{k-1} = \begin{pmatrix} f(x_1^2) + \frac{(U_1^{k-1})_{a_2-1}}{h^2} \\ f(x_2^2) \\ \vdots \\ f(x_{n_2-1}^2) \\ f(x_{n_2}^2) + \frac{u_d}{h^2} \end{pmatrix}$$

 et

$$\boldsymbol{b}_{h,1}^{0} = \left(f(x_{1}^{1}) + \frac{u_{g}}{h^{2}}, f(x_{2}^{1}), \cdots, f(x_{n_{1}-1}^{1}), f(x_{n_{1}}^{1}) + \frac{g_{1}}{h^{2}}\right)^{t}, \qquad \boldsymbol{b}_{h,2}^{0} = \left(f(x_{1}^{2}) + \frac{g_{2}}{h^{2}}, f(x_{2}^{2}), \cdots, f(x_{n_{2}-1}^{2}), f(x_{n_{2}}^{2}) + \frac{u_{d}}{h^{2}}\right)^{t}$$

Les matrices $\mathbb{A}_{h,i}$, i = 1, 2, sont symétriques définies positives, donc inversibles, et à nouveau on peut résoudre les systèmes de (2.6) avec la méthode de Gauss-Jordan ou l'algorithme du gradient conjugué.

3 Préconditionnement par sous-structuration

On peut accélérer la méthode de Schwarz parallèle (ou alternée), en se ramenant à la résolution d'un problème où les inconnues sont sur uniquement les interfaces (en γ et en δ), puis en résolvant ce problème d'interface par une méthode de Krylov.

Pour cela, on introduit, pour i = 1, 2, les opérateurs de trace discrets :

$$G_1: \mathbb{R}^{n_1} \to \mathbb{R} \qquad \qquad G_2: \mathbb{R}^{n_2} \to \mathbb{R}$$
$$(V_1, \cdots, V_{a_2-1}, \cdots, V_{n_1}) \mapsto V_{a_2-1} \qquad \qquad \text{et} \qquad (V_1, \cdots, V_{a_1-a_2}, \cdots, V_{n_2}) \mapsto V_{a_1-a_2}$$

et ceux de relèvement :

$$E_1: \mathbb{R} \to \mathbb{R}^{n_1} \qquad E_2: \mathbb{R} \to \mathbb{R}^{n_2} V_{a_1-a_2} \mapsto (0, \cdots, 0, V_{a_1-a_2}) \qquad \text{et} \qquad V_{a_2-1} \mapsto (V_{a_2-1}, 0, \cdots, 0)$$

On pose aussi $\mathbf{f}_1 = \left(f(x_1^1) + \frac{u_g}{h^2}, f(x_2^1), \cdots, f(x_{n_1}^1)\right)^t$, et $\mathbf{f}_2 = \left(f(x_1^2), f(x_2^2), \cdots, f(x_{n_2}^2) + \frac{u_d}{h^2}\right)^t$. En utilisant ces notations, les second membres de l'algorithme discret (2.6) se réécrivent sous la forme :

$$\boldsymbol{b}_{h,1}^{k-1} = \boldsymbol{f}_1 + \frac{1}{h^2} E_1\left((\boldsymbol{U}_2^{k-1})_{a_1-a_2}\right) \qquad \boldsymbol{b}_{h,2}^{k-1} = \boldsymbol{f}_2 + \frac{1}{h^2} E_2\left((\boldsymbol{U}_1^{k-1})_{a_2-1}\right). \tag{3.1}$$

De (2.6) on a également

$$\boldsymbol{U}_{1}^{k} = \mathbb{A}_{h,1}^{-1} \boldsymbol{b}_{h,1}^{k-1}, \qquad \boldsymbol{U}_{2}^{k} = \mathbb{A}_{h,2}^{-1} \boldsymbol{b}_{h,2}^{k-1}.$$
(3.2)

De (3.2) et de la définition de G_1 et G_2 , on a alors

$$(\boldsymbol{U}_{1}^{k})_{a_{2}-1} = G_{1}\left(\mathbb{A}_{h,1}^{-1}\boldsymbol{b}_{h,1}^{k-1}\right), \qquad (\boldsymbol{U}_{2}^{k})_{a_{1}-a_{2}} = G_{2}\left(\mathbb{A}_{h,2}^{-1}\boldsymbol{b}_{h,2}^{k-1}\right).$$
(3.3)

Puis en remplaçant (3.1) dans (3.3) on obtient

$$(\boldsymbol{U}_{1}^{k})_{a_{2}-1} = G_{1} \mathbb{A}_{h,1}^{-1} \boldsymbol{f}_{1} + \frac{1}{h^{2}} G_{1} \mathbb{A}_{h,1}^{-1} E_{1} \left((\boldsymbol{U}_{2}^{k-1})_{a_{1}-a_{2}} \right), \qquad (3.4)$$

$$(\boldsymbol{U}_{2}^{k})_{a_{1}-a_{2}} = G_{2}\mathbb{A}_{h,2}^{-1}\boldsymbol{f}_{2} + \frac{1}{h^{2}}G_{2}\mathbb{A}_{h,2}^{-1}E_{2}\left((\boldsymbol{U}_{1}^{k-1})_{a_{2}-1}\right).$$
(3.5)

Notons $g_1^k := (\boldsymbol{U}_1^k)_{a_2-1}$, et $g_2^k := (\boldsymbol{U}_2^k)_{a_1-a_2}$, $k \ge 0$, les inconnues aux interfaces $x = \gamma$ et $x = \delta$.

De (3.4)–(3.5), on obtient ainsi une réécriture de l'algorithme de Schwarz parallèle discret sous la forme d'un algorithme portant uniquement sur les inconnues d'interface (g_1^k, g_2^k) :

Pour k = 1, 2, 3, ...

$$\begin{pmatrix} g_1^k \\ g_2^k \end{pmatrix} = \frac{1}{h^2} \begin{pmatrix} 0 & G_1 \mathbb{A}_{h,1}^{-1} E_1 \\ G_2 \mathbb{A}_{h,2}^{-1} E_2 & 0 \end{pmatrix} \begin{pmatrix} g_1^{k-1} \\ g_2^{k-1} \end{pmatrix} + \begin{pmatrix} G_1 \mathbb{A}_{h,1}^{-1} \mathbf{f}_1 \\ G_2 \mathbb{A}_{h,2}^{-1} \mathbf{f}_2 \end{pmatrix},$$
(3.6)

avec $g_1^0 := g_1$ et $g_2^0 := g_2$.

Cet algorithme correspond à un algorithme de Jacobi par blocs (voir [1]) pour le problème, appelé *problème d'interface*, suivant :

$$\begin{pmatrix} 1 & -\frac{1}{h^2}G_1 \mathbb{A}_{h,1}^{-1}E_1 \\ -\frac{1}{h^2}G_2 \mathbb{A}_{h,2}^{-1}E_2 & 1 \end{pmatrix} \begin{pmatrix} g_1 \\ g_2 \end{pmatrix} = \begin{pmatrix} G_1 \mathbb{A}_{h,1}^{-1}\boldsymbol{f}_1 \\ G_2 \mathbb{A}_{h,2}^{-1}\boldsymbol{f}_2 \end{pmatrix}.$$
(3.7)

Pour résoudre ce problème d'interface, plutôt que d'utiliser un algorithme de Jacobi par blocs, on pourrait utiliser un algorithme de Krylov (voir [3]), qui convergera beaucoup plus rapidement (voir par exemple [2]).

Références

- [1] F. Cuvelier. Cours d'Analyse Numérique Elémentaire, MACS 1, 2018.
- [2] M.J. Gander and L. Halpern. Méthodes de décomposition de domaines Notions de base. In Encyclopédie des techniques de l'ingénieur, méthodes numériques. AF137, 2012.
- [3] M. Kern. Cours d'Analyse Numérique Avancée 1, MACS 2, 2019-2020.
- [4] P.-L. Lions. On the Schwarz alternating method. I. In R. Glowinski, G. H. Golub, G. A. Meurant, and J. Périaux, editors, *First International Symposium on Domain Decomposition Methods for Partial Differential Equations*, pages 1–42. Philadelphia, PA, SIAM, 1988.
- [5] H. A. Schwarz. Über einen Grenzübergang durch alternierendes Verfahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 15:272–286, May 1870.