Parallel-in-Time Optimization with the General-Purpose XBraid Package

Stefanie Günther, Jacob Schroder, Robert Falgout, Nicolas Gauger

7th Workshop on Parallel-in-Time methods
Wednesday, May 3rd, 2018
Outline

- Motivation: parallelizing optimization problems
- Parallel-in-time overview: Multigrid reduction in time (MGRIT)
- XBraid-adjoint code interface: Open source implementation
 - Non-intrusively uses existing user code
 - Example: user-interface for simple scalar ODE problem
Motivation: PDE constrained optimization

Example¹
- Objective: Lift maximization
- Design: Amplitudes of actuation

Runtimes
- Simulation: 2.5h
- Optimization: 1,152h

1. Ötzkaya, Nemili et al., 2015
Problem description: Optimization with unsteady PDEs

- Optimize object function J, with a design variable u

$$\min \frac{1}{T} \int_0^T J(y(t), u) \, dt$$

- While satisfying constraint of the forward in time process, with state variable y and initial condition g

$$\frac{\delta y(t)}{\delta t} + c(y(t), u) = 0, \quad \forall t \in (0, T)$$

$$y(0) = g$$
Problem description: Optimization with unsteady PDEs

- Optimize object function J, with a design variable u (discrete)

$$\min \frac{1}{N} \sum_{i=1}^{N} J(y^i, u)$$

$$J^n := J(y^n, u)$$

- While satisfying constraint of the forward in time process, (discrete)
 with state variable y and initial condition g

$$y^n = \Phi(y^{n-1}, u), \quad n = 1, \ldots, N$$

$$y^0 = g$$
First Order Optimality Conditions

Form Lagrangian \(L = \sum_{i}^{N} (J^n + (\bar{y}^n)^T (\Phi^{n-1} - y^n)) \)

1. State equations:
\[y^n = \Phi(y^{n-1}, u), \quad n = 1, \ldots, N \]
\[y^0 = g \]

2. Adjoint equations:
\[\bar{y}^n = \nabla y^n J^n + (\delta y \Phi^n)^T \bar{y}^n, \quad n = N, \ldots, 1 \]
\[\bar{y}^{N+1} = 0 \]

3. Design equation:
\[\sum_{n=1}^{N} (\nabla u J^n + (\delta u \Phi^{n-1})^T \bar{y}^{n-1}) = 0 \]
Nested Optimization Approach

Initial design u_i

For $i = 1, 2, ...$

1. State equations solve:

$$y^n = \Phi(y^{n-1}, u_i), \quad n = 1, \ldots, N$$

$$y^0 = g$$

2. Adjoint equations solve:

$$\bar{y}^n = \nabla_{y^n} J^n + (\delta_y \Phi^n) T \bar{y}^n, \quad n = N, \ldots, 1$$

$$\bar{y}^{N+1} = 0$$

3. Design update:

$$u_{i+1} = u_i - B_i^{-1} \left(\sum_{n=1}^{N} (\nabla_u J^n + (\delta_u \Phi^{n-1})^T \bar{y}^n) \right)$$
Outline

- Motivation: parallelizing optimization problems

- Parallel-in-time overview: Multigrid reduction in time (MGRIT)

- XBraid-adjoint code interface: Open source implementation
 - Non-intrusively uses existing user code
 - Example: user-interface for simple scalar ODE problem
Parallel-in-time overview: Approach leverages spatial multigrid research

- **Motivation:** Clock speeds are stagnate but speedup still possible through more concurrency
 → Parallel-in-time is needed

The Multigrid V-cycle

- **Smoothing** (relaxation)
- **Restriction**
- **Prolongation** (interpolation)

- **Error on the fine grid**
- **Error approximated on a smaller coarse grid**
Multigrid reduction in time (MGRIT)

- General one-step method for a \textbf{forward} evolution process
 \[y^n = \Phi(y^{n-1}, u_i), \quad n = 1, \ldots, N \]

- In the linear setting (for simplicity), sequential marching \(\equiv\) forward solve
 \[
 Ay = \begin{pmatrix}
 I & I \\
 -\Phi & I \\
 \vdots & \vdots \\
 -\Phi & I
 \end{pmatrix}
 \begin{pmatrix}
 y^0 \\
 y^1 \\
 \vdots \\
 y^N
 \end{pmatrix}
 = \begin{pmatrix}
 g^0 \\
 g^1 \\
 \vdots \\
 g^N
 \end{pmatrix}
 \equiv g
 \]

- We solve this system \textit{iteratively} with multigrid reduction \textit{(MGR 1979)}
 \begin{itemize}
 \item Replace sequential \(O(N)\) method with \(O(N)\) parallel alternative
 \item Coarsens only in \textit{time} \(\rightarrow\) non-intrusive, i.e. \(\Phi\) is "arbitrary"
 \end{itemize}
Multigrid reduction in time (MGRIT)

- General one-step method for a **backward** evolution process
 \[
 \bar{y}^n = \nabla y^n J^n + (\delta_y \Phi^n)^T \bar{y}^n, \quad n = N, \ldots, 1
 \]

- In the linear setting (**for simplicity**), sequential marching ≡ forward solve
 \[
 \tilde{A} \tilde{y} \equiv \begin{pmatrix}
 I & -\Phi^T \\
 I & -\Phi^T \\
 \vdots & \vdots \\
 I & -\Phi^T
 \end{pmatrix} \begin{pmatrix}
 \bar{y}^0 \\
 \bar{y}^1 \\
 \vdots \\
 \bar{y}^N
 \end{pmatrix} = \begin{pmatrix}
 \nabla y^0 J^0 \\
 \nabla y^1 J^1 \\
 \vdots \\
 \nabla y^N J^N
 \end{pmatrix}
 \]

- We solve this system **iteratively** with multigrid reduction (**MGR 1979**)
 - Replace sequential \(O(N)\) method with \(O(N)\) parallel alternative
 - Coarsens only in \textit{time} \(\rightarrow\) non-intrusive, i.e. \(\Phi\) is "arbitrary"
MGRIT for forward solve

- Relaxation is highly parallel
 - Alternates between F-points and C-points
 - F-relaxation = block Jacobi on each coarse time interval

- Coarse system approximates fine system
 - Approximate impractical Φ^m with Φ_Δ (e.g., time rediscretization with ΔT)

$$A_\Delta = \begin{pmatrix} I & I & \cdots & I \\ -\Phi^m & I & \cdots & I \\ \vdots & \vdots & \ddots & \vdots \\ -\Phi^m & -\Phi^m & \cdots & I \end{pmatrix} \quad \Rightarrow \quad B_\Delta = \begin{pmatrix} I & I & \cdots & I \\ -\Phi_\Delta & I & \cdots & I \\ \vdots & \vdots & \ddots & \vdots \\ -\Phi_\Delta & -\Phi_\Delta & \cdots & I \end{pmatrix}$$

- Apply recursively for multilevel hierarchy
A broader summary of MGRIT

- Expose **concurrency** in the evolution dimension with multigrid
- **Non-intrusive**, with unchanged fine-grid problem
- Converges to **same solution** as sequential marching

- Only store **C-points** to minimize storage
- Optimal for variety of parabolic problems
 - Converges in ~10 iterations for any coarsening factor

- Extends to **nonlinear** problems with FAS formulation
- In specialized two-level setting, MGRIT ≡ Parareal

- Large speedups available, but in a new way
 - Time stepping is already O(N)
 - Useful only beyond a crossover
 - More time steps → more speedup potential
 - Example strong scaling of the 2D heat eqn

- Much future work to do...
Outline

- Motivation: parallelizing optimization problems

- Parallel-in-time overview: Multigrid reduction in time (MGRIT)

- XBraid-adjoint code interface: Open source implementation
 - Non-intrusively uses existing user code
 - Example: user-interface for simple scalar ODE problem
XBraid-adjoint: open source & non-intrusive

- Solve for \(\bar{y}, \; \bar{y}, \; \bar{u} := (\delta J/\delta u)^T \) (reduced gradient of \(J \) w.r.t. design \(u \))
- Wrap existing user code to obtain time parallelism

Standard XBraid: forward in time solve

1. **Step:** \(y^n = \Phi(y^{n-1}, u) \)
2. Clone
3. Sum: \(y^m = \alpha y^n + \beta y^m \)
4. **SpatialNorm:** \(||y^n|| \)
5. Buf[Un]Pack
6. Init
7. Free
8. Access

Iteration \(k \) of XBraid:

\[
\begin{align*}
 y_{k+1} & \leftarrow \text{XBraid}(y_k, u_k) \\
 J & \leftarrow J(y_k, u_k)
\end{align*}
\]
XBraid-adjoint: open source & non-intrusive

- Solve for y, \bar{y}, $\bar{u} := (\delta J/\delta u)^T$ (reduced gradient of J w.r.t. design u)
- Wrap existing user code to obtain time parallelism

XBraid-Adjoint

1. **Objective**

 $J(y^n, u)$

2. **Step_diff**: $\bar{y}^n = (\delta_y \Phi^n)^T \bar{y}^{n+1}$

 $\bar{u} + = (\delta_u \Phi^n)^T \bar{y}^{n+1}$

3. **Objective_diff**: $\bar{y}^n + = \nabla_y J^n$

 $\bar{u} + = \nabla_u J^n$

Functions 2 and 3 allow XBraid to compute

$\bar{y}^n = \nabla_y J^n + (\delta_y \Phi^n)^T \bar{y}^{n+1}$

$u_{i+1} = u_i - B_i^{-1} \left(\sum_{n=1}^{N} (\nabla_u J^n + (\delta_u \Phi^{n-1})^T \bar{y}^n) \right)$

Iteration k of XBraid-adjoint:

$\bar{y}_{k+1} \leftarrow \text{XBraid adjoint}(y_k, \bar{y}_k, u_k)$

$\bar{u} \leftarrow \frac{\delta J(y_k, u_k)}{\delta u}$

Reduced gradient: \bar{u}
XBraid example: ex-01-adjoint.c

- Solve for the reduced gradient $\bar{u} := (\delta J / \delta u)^T$ \((later \ use \ in \ optimization)\)

- Begin with simple problem: $J(y, \lambda) = 1/T \int_0^T \|y\| \, dt$

$$s.t. \quad y_t = \lambda y \quad y(0) = 1$$

- First, user must define objects: `App` and `Vector`

```c
61 typedef struct _braid_App_struct
62 {
63     int rank;
64     double design;
65     double gradient;
66 }
67 my_App;
68
69 typedef struct _braid_Vector_struct
70 {
71     double value;
72 } my_Vector;
```
XBraid example: ex-01-adjoint.c

- **Step()**: $y^n = \Phi(y^{n-1}, u)$

```c
int my_Step(braid_App app,
            braid_Vector ystop,
            braid_Vector fstop,
            braid_Vector y,
            braid_StepStatus status)
{
  ...

  /* Get the design variable from the app */
  double lambda = app->design;

  /* Use backward Euler to propagate solution */
  (y->value) = 1./(1. - lambda * (tstop-tstart))*(y->value);

  return 0;
}
```
XBraid example: ex-01-adjoint.c

- **Step_diff()**:
 \[\bar{y}^n = (\delta_y \Phi^n)^T \bar{y}^{n+1} \]
 \[\bar{u} += (\delta_u \Phi^n)^T \bar{y}^{n+1} \]

```c
270 int
271 my_Step_diff(braid_App app,
272        braid_Vector y,
273        braid_Vector y_bar,
274        braid_StepStatus status)
275 {
...
285     /* Get the design from the app */
286     double lambda = app->design;
287
288     /* Transposed derivative of step wrt y times y_bar */
289     ddy = 1./(1. - lambda * deltat) * (y_bar->value);
290
291     /* Transposed derivative of step wrt design times y_bar */
292     ddesign = (deltat*(y->value)) / pow(1 - deltat*lambda,2) * (y_bar->value);
293
294     /* Update y_bar and gradient */
295     y_bar->value     = ddy;
296     app->gradient  += ddesign;
```
XBraid example: ex-01-adjoint.c

- **ObjectiveT()** and **ObjectiveT_diff()** are similar
- Initialize and run XBraid-adjoint:

```c
/* Initialize XBraid */
braid_Init( <insert function pointers> );

/* Initialize adjoint-based gradient computation */
braid_InitAdjoint( <insert function pointers> );

braid_SetAbsTol(core, 1e-6);       /* Tolerance on state residual norm */
braid_SetAbsTolAdjoint(core, 1e-6); /* Tolerance on adjoint residual norm */

/* Run simulation and adjoint-based gradient computation */
braid_Drive(core);

/* Get the objective function value from XBraid */
braid_GetObjective(core, &objective);

/* Collect sensitivities from all processors */
double mygradient = app->gradient;
MPI_Allreduce(&mygradient, &(app->gradient), 1, MPI_DOUBLE, MPI_SUM, comm);
```

\[
\vec{u} \leftarrow (\frac{\delta J}{\delta u})^T
\]
XBraid example: ex-01-adjoint.c

- Run it!

```
schroder2@kullat:~ $ ./ex-01-adjoint
Braid: Begin simulation, 50 time steps

Braid:  || r ||  || r_adj ||  Objective
Braid:  
Braid:  0  5.399995e-01  2.521756e-02  6.270806e-02
Braid:  1  2.446737e-02  2.604047e-02  3.604351e-02
Braid:  2  1.098316e-03  2.278004e-03  3.600016e-02
Braid:  3  4.838178e-05  1.498949e-04  3.600000e-02
Braid:  4  2.065806e-06  8.581917e-06  3.600000e-02
Braid:  5  8.359592e-08  4.482596e-07  3.600000e-02

Objective = 3.59999999999874e-02
Gradient = 1.92000799963229e-02
```
XBraid example: ex-01-optimization.c

- XBraid-adjoint solver
 - Generically solves adjoint equations, backwards in time
 - Generically computes reduced gradients \bar{u}
 → Designed to work with many optimization methods!

- Example: ex-01-optimization.c
 - Implements simple reduced space optimization loop
 (This is a template for implementing your favorite optimization method)
 - Requires:
 - Global objective evaluation function (and derivative)
 - Design update function
 - Halting metric (e.g., gradient norm)
 - Again, the goal is to wrap existing user code!
Model Problem: 1D advection-diffusion

- Advection dominated, with Van Der Pol oscillator on left boundary
 \[y_t + y_x - \epsilon y_{xx} = 0, \quad \epsilon = 10^{-5} \]

- Tracking objective:
 Minimize difference of space-time averaged solution to preset value

- When used with one-shot strategies, the max speedup is 25x

Figure 6.6: Scaling of primal (solid lines) and adjoint (dashed lines) XBraid solvers.

Figure 6.7: Speedup of primal and adjoint XBraid solver over time-serial forward and backward time-marching.
Summary and Conclusions

- **Parallel time integration is needed** on future architectures, especially for adjoint-based optimization techniques

- **New XBraid-adjoint** non-intrusively couples with existing codes
 - Available in May, 2018 release
 - http://llnl.gov/casc/xbraid

- **References**
Thank You! Any Questions?

Open Source XBraid Code
- http://llnl.gov/casc/xbraid

Our Team

Collaborators
CU Boulder (Manteuffel, McCormick, O'Neill), Red Deer (Howse), U Stuttgart (Roehrle, Hessenthaler), Kaiserslautern (Günther, Gauger), LLNL (Woodward, Top)
Done