A posteriori error estimates for space-time domain decomposition method for two-phase flow problem

Sarah Ali Hassan, Elyes Ahmed, Caroline Japhet, Michel Kern, Martin Vohralík

INRIA Paris & ENPC (project-team SERENA), University Paris 13 (LAGA), UPMC

Work supported by ANDRA, ANR DEDALES and ERC GATIPOR

PINT, 7th Workshop on Parallel-in-Time methods, Roscoff Marine Station, May 02–05, 2018
OUTLINE

- Motivations and problem setting
 1. Robin domain decomposition for a two-phase flow problem
 2. Estimates and stopping criteria in a two-phase flow problem
 3. Numerical experiments
OUTLINE

- Motivations and problem setting
 1. Robin domain decomposition for a two-phase flow problem
 2. Estimates and stopping criteria in a two-phase flow problem
 3. Numerical experiments
Geological disposal of nuclear waste

Deep underground repository
(High-level radioactive waste)

Challenges:
- Different materials → strong heterogeneity, different time scales.
- Large differences in spatial scales.
- Long-term computations.
Geological disposal of nuclear waste

Deep underground repository
(High-level radioactive waste)

Challenges:
- Different materials → strong heterogeneity, different time scales.
- Large differences in spatial scales.
- Long-term computations.

Use space-time DD methods
Geological disposal of nuclear waste

Deep underground repository
(High-level radioactive waste)

Challenges:
- Different materials → strong heterogeneity, different time scales.
- Large differences in spatial scales.
- Long-term computations.

Use space-time DD methods

Estimate the error at each iteration of the DD method
Motivations and problem setting

Geological disposal of nuclear waste

Deep underground repository
(High-level radioactive waste)

Challenges:
- Different materials → strong heterogeneity, different time scales.
- Large differences in spatial scales.
- Long-term computations.
- Use space-time DD methods

Estimate the error at each iteration of the DD method

Develop stopping criteria to stop the DD iterations as soon as the discretization error has been reached
OUTLINE

1. Motivations and problem setting
2. Robin domain decomposition for a two-phase flow problem
3. Estimates and stopping criteria in a two-phase flow problem
4. Numerical experiments
Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:
Domain decomposition in space

Discretize in time and apply the DD algorithm at each time step:

- Solve *stationary* problems in the subdomains, in parallel,
- Exchange information through the interface

Following [Halpern-Nataf-Gander (03), Martin (05)]

Different time steps can be used in each subdomain according to its physical properties.

Following [Halpern-C.J.-Szeftel (12), Hoang-C.J.-Jaffré-Kern-Roberts (13)]
Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:
 - Solve *stationary* problems in the subdomains, in parallel,
 - Exchange information through the interface
Discretize in time and apply the DD algorithm at each time step:

- Solve **stationary** problems in the subdomains, in parallel,
- Exchange information through the interface
Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:
 - Solve *stationary* problems in the subdomains, in parallel,
 - Exchange information through the interface
Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:
 - Solve \textit{stationary} problems in the subdomains, in parallel,
 - Exchange information through the interface

- \textcolor{red}{\textbf{Same time step}} on the whole domain.
Robin domain decomposition for a two-phase flow problem

Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains, in parallel,
 - Exchange information through the interface

- Same time step on the whole domain.

Space-time domain decomposition

- Solve time-dependent problems in the subdomains, in parallel,
- Exchange information through the space-time interface

Following [Halpern-Nataf-Gander (03), Martin (05)]

Different time steps can be used in each subdomain according to its physical properties.

Following [Halpern-C.J.-Szeftel (12), Hoang-C.J.-Jaffré-Kern-Roberts (13)]
Robin domain decomposition for a two-phase flow problem

Two phase flow equation and DD in time

Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains, in parallel,
 - Exchange information through the interface

- Same time step on the whole domain.

Space-time domain decomposition

- Solve time-dependent problems in the subdomains, in parallel,
Robin domain decomposition for a two-phase flow problem

Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains, in parallel,
 - Exchange information through the interface
- Same time step on the whole domain.

Space-time domain decomposition

- Solve time-dependent problems in the subdomains, in parallel,
Robin domain decomposition for a two-phase flow problem

Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains, in parallel,
 - Exchange information through the interface
- Same time step on the whole domain.

Space-time domain decomposition

- Solve time-dependent problems in the subdomains, in parallel,
Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains, in parallel,
 - Exchange information through the interface
- Same time step on the whole domain.

Space-time domain decomposition

- Solve time-dependent problems in the subdomains, in parallel,
Robin domain decomposition for a two-phase flow problem

Two phase flow equation and DD in time

Domain decomposition in space

Discretize in time and apply the DD algorithm at each time step:
- Solve stationary problems in the subdomains, in parallel,
- Exchange information through the interface

Same time step on the whole domain.

Space-time domain decomposition

Solve time-dependent problems in the subdomains, in parallel,
Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains, in parallel,
 - Exchange information through the interface
- Same time step on the whole domain.

Space-time domain decomposition

- Solve time-dependent problems in the subdomains, in parallel,
- Exchange information through the space-time interface

Following [Halpern-Nataf-Gander (03), Martin (05)]
 Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains, in parallel,
 - Exchange information through the interface

- Same time step on the whole domain.

 Space-time domain decomposition

- Solve time-dependent problems in the subdomains, in parallel,
- Exchange information through the space-time interface
- Following [Halpern-Nataf-Gander (03), Martin (05)]

- Different time steps can be used in each subdomain according to its physical properties.
- Following [Halpern-C.J.-Szeftel (12), Hoang-C.J.-Jaffré-Kern-Roberts (13)]
Two–phase immiscible flow with discontinuous capillary pressure curves

Following [Enchery-Eymard-Michel 06]

Nonlinear (degenerate) diffusion equation in each subdomain

For $f \in L^2(\Omega \times (0, T))$ and a final time $T > 0$, find $u_i : \Omega_i \times [0, T] \rightarrow [0, 1]$, $i = 1, 2$, such that:

$$
\partial_t u_i - \Delta \varphi_i(u_i) = f, \quad \text{in } \Omega_i \times (0, T),
$$

$$
u_i(\cdot, 0) = u_0, \quad \text{in } \Omega_i,
$$

$$
u_i = g_i, \quad \text{on } \Gamma_i^D \times (0, T).
$$

Kirchhoff transform φ_i

$$
\varphi_i(u_i) = \int_0^{u_i} \lambda_i(a)\pi_i'(a)da
$$

Capillary pressure

$\pi_i(u_i) : [0, 1] \rightarrow \mathbb{R}$

Global mobility of the gas

$\lambda_i(u_i) : [0, 1] \rightarrow \mathbb{R}$

- $\Omega \subset \mathbb{R}^d$, $d = 2, 3$
- u scalar unknown gas saturation
- $1 - u$ is the water saturation
- u_0 initial gas saturation
- g boundary gas saturation
with the nonlinear interface conditions (physical transmission conditions)

\[
\nabla \varphi_1(u_1) \cdot n_1 = -\nabla \varphi_2(u_2) \cdot n_2, \quad \text{on } \Gamma \times (0, T),
\]
\[
\pi_1(u_1) = \pi_2(u_2), \quad \text{on } \Gamma \times (0, T),
\]
with the nonlinear interface conditions (physical transmission conditions)

\[
\nabla \varphi_1 (u_1) \cdot n_1 = - \nabla \varphi_2 (u_2) \cdot n_2, \quad \text{on } \Gamma \times (0, T),
\]
\[
\pi_1 (u_1) = \pi_2 (u_2), \quad \text{on } \Gamma \times (0, T),
\]

\[
\Pi_i (u) := \int_{\pi_i \pi_2 (0)} \min_{j \in \{1, 2\}} (\lambda_j \circ \pi_j - 1_j (u)) \, du.
\]

\[\cdots\] Following [Chavent - Jaffré (86), Enchéry et al. (06), Cances (08), Ern et al (10), Brenner et al. (13)]
with the nonlinear interface conditions (physical transmission conditions)

\[
\nabla \varphi_1(u_1) \cdot n_1 = -\nabla \varphi_2(u_2) \cdot n_2, \quad \text{on } \Gamma \times (0, T),
\]

\[
\bar{\pi}_1(u_1) = \bar{\pi}_2(u_2), \quad \text{on } \Gamma \times (0, T),
\]

\[
\pi_{1(0)} \leq u_1 \leq \pi_{1(1)}, \quad \pi_{2(0)} \leq u_2 \leq \pi_{2(1)}.
\]

\[
\Pi_i(u) := \int_\pi_i \pi_2(0) \min_{j \in \{1, 2\}} (\lambda_j \circ \pi - \pi_{1j}(u)) \, du.
\]

... Following [Chavent - Jaffré (86), Enchéry et al. (06), Cances (08), Ern et al (10), Brenner et al. (13)]

where \(\bar{\pi}_1 : u \mapsto \max(\pi_1(u), \pi_2(0)) \) and \(\bar{\pi}_2 : u \mapsto \min(\pi_2(u), \pi_1(1)) \)
with the nonlinear interface conditions (physical transmission conditions)

\[\nabla \varphi_1(u_1) \cdot n_1 = - \nabla \varphi_2(u_2) \cdot n_2, \quad \text{on } \Gamma \times (0, T), \]
\[\bar{\pi}_1(u_1) = \bar{\pi}_2(u_2), \quad \text{on } \Gamma \times (0, T), \]

\[\ldots \quad \text{Following [Chavent - Jaffré (86), Enchéry et al. (06), Cances (08), Ern et al (10), Brenner et al. (13)]} \]

- \text{where } \bar{\pi}_1 : u \mapsto \max(\pi_1(u), \pi_2(0)) \text{ and } \bar{\pi}_2 : u \mapsto \min(\pi_2(u), \pi_1(1))
Robin domain decomposition for a two-phase flow problem

Multidomain problem: Physical form

with the nonlinear interface conditions (physical transmission conditions)

\[
\nabla \varphi_1(u_1) \cdot n_1 = -\nabla \varphi_2(u_2) \cdot n_2, \quad \text{on } \Gamma \times (0, T),
\]
\[
\overline{\pi}_1(u_1) = \overline{\pi}_2(u_2), \quad \text{on } \Gamma \times (0, T), \quad \Leftrightarrow \quad \Pi_1(u_1) = \Pi_2(u_2)
\]

⋯ Following [Chavent - Jaffré (86), Enchéry et al. (06), Cances (08), Ern et al (10), Brenner et al. (13)]

- \(\overline{\pi}_1 : u \mapsto \max(\pi_1(u), \pi_2(0)) \) and \(\overline{\pi}_2 : u \mapsto \min(\pi_2(u), \pi_1(1)) \)

- \(\Pi_i(u) := \int_{\pi_2(0)}^{\overline{\pi}_i} \min_j (\lambda_j \circ \pi_j^{-1}(u)) \, du \quad \cdots \quad \text{smoother than } \overline{\pi}_i \)
Robin domain decomposition for a two-phase flow problem

Multidomain problem: Physical form

with the nonlinear interface conditions (Robin transmission conditions)

\[
\nabla \varphi_1(u_1) \cdot n_1 + \alpha_{1,2} \Pi_1(u_1) = -\nabla \varphi_2(u_2) \cdot n_2 + \alpha_{1,2} \Pi_2(u_2),
\]

\[
\nabla \varphi_2(u_2) \cdot n_2 + \alpha_{2,1} \Pi_2(u_2)) = -\nabla \varphi_1(u_1) \cdot n_1 + \alpha_{2,1} \Pi_1(u_1),
\]

where \(\alpha_{i,j}\) are free parameters which optimized convergence rates.

\[
\pi_i : u \mapsto \max(\pi_1(u), \pi_2(0)) \quad \text{and} \quad \pi_2 : u \mapsto \min(\pi_2(u), \pi_1(1))
\]

\[
\Pi_i(u) := \int_{\pi_2(0)}^{\pi_i} \min_j (\lambda_j \circ \pi_j^{-1}(u)) \, du \quad \text{smoother than} \ \pi_i
\]
with the nonlinear interface conditions (**Robin transmission conditions**)

\[
\nabla \varphi_1(u_1) \cdot n_1 + \alpha_{1,2} \Pi_1(u_1) = -\nabla \varphi_2(u_2) \cdot n_2 + \alpha_{1,2} \Pi_2(u_2),
\]

\[
\nabla \varphi_2(u_2) \cdot n_2 + \alpha_{2,1} \Pi_2(u_2)) = -\nabla \varphi_1(u_1) \cdot n_1 + \alpha_{2,1} \Pi_1(u_1),
\]

where \(\alpha_{i,j}\) are free parameters which optimized convergence rates.

\[\pi_1 : u \mapsto \max(\pi_1(u), \pi_2(0)) \text{ and } \pi_2 : u \mapsto \min(\pi_2(u), \pi_1(1))\]

\[\Pi_i(u) := \int_{\pi_2(0)}^{\pi_i} \min(\lambda_j \circ \pi_j^{-1}(u)) \, du \quad \cdots \quad \text{smoother than } \pi_i\]

\[\cdots \text{Following [Chavent - Jaffré (86), Enchéry et al. (06), Cances (08), Ern et al (10), Brenner et al. (13)]}\]

\[\cdots \text{Extended to the Ventcell DD method in [Ahmed-S-A.H.-Japhet-Kern-Vohralík (18)]}\]
We now define a **weak solution** to this problem which satisfies:

1. \(u \in H^1(0, T; H^{-1}(\Omega)) \);
2. \(u(\cdot, 0) = u_0 \);
3. \(\varphi_i(u_i) \in L^2(0, T; H^1_{\varphi_i(g_i)}(\Omega_i)) \), where \(u_i := u|_{\Omega_i}, i = 1, 2 \);

 \[\cdots \text{ where } H^1_{\varphi_i(g_i)}(\Omega_i) := \{ v \in H^1(\Omega_i), v = \varphi_i(g_i) \text{ on } \Gamma_i^D \} \]
4. \(\Pi(u, \cdot) \in L^2(0, T; H^1_{\Pi(g, \cdot)}(\Omega)) \);

 \[\cdots \text{ where } H^1_{\Pi(g, \cdot)}(\Omega) := \{ v \in H^1(\Omega), v = \Pi(g, \cdot) \text{ on } \partial \Omega \} \]
5. For all \(\psi \in L^2(0, T; H^1_0(\Omega)) \), the following integral equality holds:

\[
\int_0^T \left\{ \langle \partial_t u, \psi \rangle_{H^{-1}(\Omega), H^1_0(\Omega)} + \sum_{i=1}^2 (\nabla \varphi_i(u_i), \nabla \psi)_{\Omega_i} - (f, \psi) \right\} dt = 0.
\]
OSWR algorithm

For $k \geq 0$, at step k, solve in parallel the space-time Robin subdomain problems $(i = 1, 2)$:

$$\partial_t u_i^k - \Delta \varphi_i(u_i^k) = f_i, \quad \text{in } \Omega_i \times (0, T),$$
$$u_i^k(\cdot, 0) = u_0, \quad \text{in } \Omega_i,$$
$$\varphi_i(u_i^k) = \varphi_i(g_i), \quad \text{on } \Gamma_i^D \times (0, T),$$
$$\nabla \varphi_i(u_i^k) \cdot n_i + \alpha_{i,j} \Pi_i(u_i^k) = \Psi_i^{k-1}, \quad \text{on } \Gamma \times (0, T),$$

with

- $\Psi_i^{k-1} := -\nabla \varphi_j(u_j^{k-1}) \cdot n_j + \alpha_{i,j} \Pi_j(u_j^{k-1}), \quad j = (3 - i), \ k \geq 2,$
- Ψ_i^0 is an initial Robin guess on $\Gamma \times (0, T)$.

\cdots \text{well-posedness of Robin problem following [Ahmed-Japhet-Kern, in preparation]}
The discrete solution is found using the cell centered finite volume scheme in space and the backward Euler scheme in time for the subdomain problem. Following [Enchéry-Eymard-Michel (2006)]

\[u_{h,i}^{k,n} \in P_0(\mathcal{T}_h,i) \times P_0(\mathcal{E}_h^\Gamma) \]: unknown discrete saturation at each time step \(0 \leq n \leq N \).
The discrete solution is found using the cell centered finite volume scheme in space and the backward Euler scheme in time for the subdomain problem. Following [Enchéry-Eymard-Michel (2006)]

\[u_{h,i}^{k,n} \in \mathbb{P}_0(T_{h,i}) \times \mathbb{P}_0(E_{h}^\Gamma) : \text{unknown discrete saturation at each time step } 0 \leq n \leq N \]

At each OSWR DD step \(k \geq 1 \) and each time step \(n \geq 1 \), Newton–Raphson iterative linearization procedure is used to linearize the local Robin problem. At each linearization step \(m \geq 1 \), find \(u_{h,i}^{k,n,m} \in \mathbb{P}_0(T_{h,i}) \times \mathbb{P}_0(E_{h}^\Gamma) \)

Define \(u_{h,i}^{k,m}|_{I_n} := u_{h,i}^{k,n,m} \) where \(I_n \) is a subinterval in time.

For a posteriori estimates: \(P_1^\tau \) continuous, piecewise affine in time functions.
OUTLINE

1. Motivations and problem setting
2. Robin domain decomposition for a two-phase flow problem
3. Estimates and stopping criteria in a two-phase flow problem
4. Numerical experiments
Estimates and stopping criteria in a two-phase flow problem

Strategy

\[\| u - \tilde{u}_{h_T}^{k,m} \|_\# \leq \eta_{k,m}^{sp} + \eta_{k,m}^{DD} + \eta_{k,m}^{tm} + \eta_{k,m}^{lin} \]

more recent results on coupling DD and a posteriori error estimates

[Becker-Johnson-Rannacher (95), Arioli (04), Arioli-Loghin (07), Patera & Rønquist (01), Meidner-Rannacher-Vihharev (09), Jiránek-Strakoš-Vohralík (10), Ern-Vohralík (13)]

more recent results on Dirichlet & Neumann subdomain problems

\[H(\text{div}, \Omega) \] flux at each DD iteration

following [Prager-Synge (47), Ladevèze-Pelle (05), Repin (08), Ern-Vohralík (15)]

not applicable to more general (e.g., Robin, Ventcell) transmission conditions

in our contribution: develop a posteriori estimates for DD algorithms where on the interfaces, neither the conformity of the flux nor that of the saturation are preserved for unsteady degenerated non-linear problem

following [Nochetto-Schmidt-Verdi (00), Cancès-Pop-Vohralík (14), Di Pietro-Vohralík-Yousef (15)]

unknown
\[\| u - u_{h,T}^{k,m} \|_{\#} \leq \text{Fully computable estimators} \]
\[\| u - \tilde{u}_{h^T}^{k,m} \| \leq \text{Fully computable estimators} \]

\[\text{Goal: } \| u - \tilde{u}_{h^T}^{k,m} \| \leq \eta_{sp}^{k,m} + \eta_{DD}^{k,m} + \eta_{tm}^{k,m} + \eta_{lin}^{k,m} \]
 Estimates and stopping criteria in a two-phase flow problem

Strategy

- $\| u - \tilde{u}_{h^T}^{k,m} \|_{\#} \leq \text{Fully computable estimators}$

- **Goal:** $\| u - \tilde{u}_{h^T}^{k,m} \|_{\#} \leq \eta_{sp}^{k,m} + \eta_{DD}^{k,m} + \eta_{tm}^{k,m} + \eta_{lin}^{k,m}$

- Results on a posteriori error estimates valid during the iteration of an algebraic solver
 [Becker-Johnson-Rannacher (95), Arioli (04), Arioli-Loghin (07), Patera & Rønquist (01), Meidner-Rannacher-Vihharev (09), Jiránek-Strakoš-Vohralík (10), Ern-Vohralík (13)]
Estimates and stopping criteria in a two-phase flow problem

Strategy

\[\| u - \tilde{u}_{h_T}^{k,m} \| \leq \text{Fully computable estimators} \]

\[\text{Goal: } \| u - \tilde{u}_{h_T}^{k,m} \| \leq \eta_{sp}^{k,m} + \eta_{DD}^{k,m} + \eta_{tm}^{k,m} + \eta_{lin}^{k,m} \]

Results on a posteriori error estimates valid during the iteration of an algebraic solver
[Becker-Johnson-Rannacher (95), Arioli (04), Arioli-Loghin(07), Patera & Rønquist (01), Meidner-Rannacher-Vihharev (09), Jiránek-Strakoš-Vohralík (10), Ern-Vohralík (13)]

More recent results on coupling DD and a posteriori error estimates [V.Rey-C.Rey-Gosselet (14)]
Dirichlet & Neumann subdomain problems \(\Rightarrow H(\text{div}, \Omega) \) flux at each DD iteration
Following [Prager-Synge (47), Ladevèze-Pelle (05), Repin (08), Ern-Vohralík (15)]

\[\text{not applicable to more general (e.g. Robin, Ventcell) transmission conditions} \]
Estimates and stopping criteria in a two-phase flow problem

Strategy

\[\| u - \tilde{u}_{h,T}^{k,m} \|_{\text{unknown}} \leq \text{Fully computable estimators} \]

Goal:

\[\| u - \tilde{u}_{h,T}^{k,m} \|_{\text{unknown}} \leq \eta_{\text{isp}}^{k,m} + \eta_{\text{DD}}^{k,m} + \eta_{\text{tm}}^{k,m} + \eta_{\text{lin}}^{k,m} \]

Results on a posteriori error estimates valid during the iteration of an algebraic solver

[Becker-Johnson-Rannacher (95), Arioli (04), Arioli-Loghin(07), Patera & Rønquist (01), Meidner-Rannacher-Vihharev (09), Jiránek-Strakoš-Vohralík (10), Ern-Vohralík (13)]

More recent results on coupling DD and a posteriori error estimates [V.Rey-C.Rey-Gosselet (14)]

Dirichlet & Neumann subdomain problems \(\Rightarrow \mathbf{H}(\text{div}, \Omega) \) flux at each DD iteration

Following [Prager-Synge (47), Ladevèze-Pelle (05), Repin (08), Ern-Vohralík (15)]

\(\times \) not applicable to more general (e.g. Robin, Ventcell) transmission conditions

In our contribution: develop a posteriori estimates for DD algorithms where on the interfaces, neither the conformity of the flux nor that of the saturation are preserved for unsteady degenerated non linear problem

Following [Nochetto-Schmidt-Verdi (00), Cancès-Pop-Vohralík (14), Di Pietro-Vohralík-Yousef (15)]
Unsteady diffusion equation

\[u = -S \nabla p, \quad \text{in} \quad \Omega \times (0, T) \]

\[\phi \frac{\partial p}{\partial t} + \nabla \cdot u = f, \quad \text{in} \quad \Omega \times (0, T) \]

\[p = g_D \quad \text{on} \quad \Gamma_D \cap \partial \Omega \times (0, T) \]

\[-u \cdot n = g_N \quad \text{on} \quad \Gamma_N \cap \partial \Omega \times (0, T) \]

\[p(\cdot, 0) = p_0 \quad \text{in} \quad \Omega \]

In this contribution: we take up the path initiated in the two papers above
Estimates and stopping criteria in a two-phase flow problem

Strategy

\[\| u - \tilde{u}^{k,m}_{h,T} \| \leq \]

Fully computable estimators

depend on \(H(\text{div}, \Omega) \) flux and a saturation which have good properties
Estimates and stopping criteria in a two-phase flow problem

\[\| u - \tilde{u}_{h,\tau}^k,m \|_{\#} \leq \text{unknown} \]

Fully computable estimators depend on \(H(\text{div}, \Omega) \) flux and a saturation which have good properties

\[\text{FV method gives } u_{h,i}^{k,n,m} \notin H^1(\Omega_i), \ i = 1, 2 \implies \left\{ \begin{array}{l} \varphi_i(u_{h,i}^{k,n,m}) \notin H^1(\Omega_i) \\ \Pi_i(u_{h,i}^{k,n,m}) \notin H^1(\Omega_i) \implies \Pi(u_{h}^{k,n,m}) \notin H^1(\Omega) \end{array} \right. \]
Strategy

\[\| u - \tilde{u}_{h}^{k,m} \|_{\#} \leq \text{unknown} \]

Fully computable estimators

depend on \(H(\text{div}, \Omega) \) flux and a saturation which have good properties

- FV method gives \(u_{h,i}^{k,n,m} \notin H^1(\Omega_i), i = 1, 2 \) \[\begin{cases}
\varphi_i(u_{h,i}^{k,n,m}) \notin H^1(\Omega_i) \\
\Pi_i(u_{h,i}^{k,n,m}) \notin H^1(\Omega_i) \end{cases} \] \[\Rightarrow \] \(\Pi(u_{h}^{k,n,m}) \notin H^1(\Omega) \)

- Robin DD method gives \(u_{h}^{k,n,m} \notin H(\text{div}, \Omega) \) and \(\Pi(u_{h}^{k,n,m}) \) jumps across \(\Gamma \)
Estimates and stopping criteria in a two-phase flow problem

Strategy

\[\| u - \tilde{u}_{h,\tau}^k \|_{\#} \leq \] unknown

- Fully computable estimators depend on \(\mathcal{H}(\text{div}, \Omega) \) flux and a saturation which have good properties

- FV method gives \(u_h^k, n, m \notin H^1(\Omega_i), i = 1, 2 \implies \begin{cases} \varphi_i(u_h^k, n, m) \notin H^1(\Omega_i) \\ \Pi_i(u_h^k, n, m) \notin H^1(\Omega_i) \implies \Pi(u_h^k, n, m) \notin H^1(\Omega) \end{cases} \)

- Robin DD method gives \(u_h^k, n, m \notin H(\text{div}, \Omega) \) and \(\Pi(u_h^k, n, m) \) jumps across \(\Gamma \)

Strategy:

- Follow [Nochetto-Schmidt-Verdi (00), Cancès-Pop-Vohralík (14), Di Pietro-Vohralík-Yousef (15), S-A.H., C. Japhet, M. Kern, and M. Vohralík (18)]
- Extension to Robin DD for nonlinear problem in this work
Estimates and stopping criteria in a two-phase flow problem

\[\| u - \tilde{u}_{h,T}^{k,m} \|_{\#} \leq \text{unknown} \]

Fully computable estimators

depend on \(H(\text{div}, \Omega) \) flux and a saturation which have good properties

- FV method gives \(u_{h,i}^{k,n,m} \notin H^1(\Omega_i), \ i = 1, 2 \Rightarrow \begin{cases} \varphi_i(u_{h,i}^{k,n,m}) \notin H^1(\Omega_i) \\ \Pi_i(u_{h,i}^{k,n,m}) \notin H^1(\Omega_i) \Rightarrow \Pi(u_{h}^{k,n,m}) \notin H^1(\Omega) \end{cases} \)

- Robin DD method gives \(u_h^{k,n,m} \notin H(\text{div}, \Omega) \) and \(\Pi(u_h^{k,n,m}) \) jumps across \(\Gamma \)

Strategy:

- Follow [Nochetto-Schmidt-Verdi (00), Cancès-Pop-Vohralík (14), Di Pietro-Vohralík-Yousef (15), S-A.H., C. Japhet, M. Kern, and M. Vohralík (18)]
- Extension to Robin DD for nonlinear problem in this work

Postprocessing: \(\tilde{u}_{h,T}^{k,m} \) (\(u_{h,T}^{k,m} \) is piecewise constant and not suitable for the energy norm)

where \(\tilde{u}_{h,T}^{k,m} := \varphi_i^{-1}(\tilde{\varphi}_{h,T,i}^{k,m}) \) with \(\tilde{\varphi}_{h,T,i}^{k,m} \in P_1(\mathcal{P}_2(T_h,i)) \)

\(\tilde{u}_{h,T}^{k,m} \) used for theoretical analysis and \(\tilde{\varphi}_{h,T,i}^{k,m} \) used in practice for the estimators
Estimates and stopping criteria in a two-phase flow problem

\[\| u - \tilde{u}_{h,\tau}^{k,m} \| \leq \]

\textbf{Fully computable estimators}

depend on \(H(\text{div}, \Omega) \) flux and a saturation which have good properties

\[\times \]

\textbf{FV method gives} \(u_{h,i}^{k,n,m} \notin H^1(\Omega_i), \ i = 1, 2 \implies \begin{cases} \varphi_i(u_{h,i}^{k,n,m}) \notin H^1(\Omega_i) \\ \Pi_i(u_{h,i}^{k,n,m}) \notin H^1(\Omega_i) \implies \Pi(u_{h}^{k,n,m}) \notin H^1(\Omega) \end{cases} \]

\[\times \]

\textbf{Robin DD method gives} \(u_{h}^{k,n,m} \notin H(\text{div}, \Omega) \) and \(\Pi(u_{h}^{k,n,m}) \) jumps accross \(\Gamma \)

\textbf{Strategy:}

\{ Follow [Nochetto-Schmidt-Verdi (00), Cancès-Pop-Vohralík (14), Di Pietro-Vohralík-Yousef (15), S-A.H., C. Japhet, M. Kern, and M. Vohralík (18)]
Extension to Robin DD for nonlinear problem in this work \}

\[\bullet \]

\textbf{Postprocessing:} \(\tilde{u}_{h,\tau}^{k,m} (u_{h,\tau}^{k,m} \text{ is piecewise constant and not suitable for the energy norm}) \)
where \(\tilde{u}_{h,\tau}^{k,m} := \varphi_i^{-1} (\varphi_{h,\tau,i}^{k,m}) \) with \(\varphi_{h,\tau,i}^{k,m} \in P_1(T_h,i) \)
\(\tilde{u}_{h,\tau}^{k,m} \) used for theoretical analysis and \(\varphi_{h,\tau,i}^{k,m} \) used in practice for the estimators

\[\bullet \]

\textbf{Saturation and flux reconstructions:}

- Reconstruction saturation \(s_{h,i}^{k,n,m} := \varphi_i^{-1} (\varphi_{h,i}^{k,n,m}) \)

where \(\varphi_{h,\tau,i}^{k,m} \in P_1(T_h,i) \cap H^1(\Omega_i) \)-conforming in each subdoamin
modified to ensure the continuity across the interface: \(\Pi_1(s_{h,1}^{k,n,m}) = \Pi_2(s_{h,2}^{k,n,m}) \)

\(\sigma_{h,\tau}^{k,m} : H(\text{div}, \Omega) \)-conforming and local conservative in each element, piecewise constant in time
Strategy

Potential reconstructions (2 subdomains)

\(u_h^{k,n,m} \) (from DD solver)

\(\varphi_h^{k,n,m} \): postprocessing

\[\tilde{u}_{h,T}^{k,m} := \varphi_i^{-1}(\varphi_{h,T,i}^{k,m}) \]

\(\varphi_h^{k,n,m} \in H^1(\Omega_i) \)

\[s_{h,i}^{k,n,m} := \varphi_i^{-1}(\varphi_h^{k,n,m}) \]
Following [Di Pietro-Vohralík-Yousef (14), Cancès-Pop-Vohralík (14)]

Extension to Robin DD

\[
Q_{t,i} := L^2(0, t; L^2(\Omega_i)), \quad X_t := L^2(0, t; H^1_0(\Omega)), \quad X'_t := L^2(0, t; H^{-1}(\Omega)).
\]

\[
\| u - \tilde{u}^{k,m}_h \|_\#^2 := \sum_{i=1}^2 \| \varphi_i(u_i) - \varphi_i(\tilde{u}^{k,m}_h) \|^2_{Q_{t,i}} + \frac{L\varphi}{2} \| u - \tilde{u}^{k,m}_h \|_X^2 + \frac{L\varphi}{2} \| (u - \tilde{u}^{k,m}_h)(\cdot, t) \|^2_{H^{-1}(\Omega)}.
\]

\[
\| u - \tilde{u}^{k,m}_h \|_\#^2 := \| u - \tilde{u}^{k,m}_h \|_\#^2 + 2 \sum_{i=1}^2 \int_0^T \left(\| \varphi_i(u_i) - \varphi_i(\tilde{u}^{k,m}_h) \|^2_{Q_{t,i}} + \int_0^t \| \varphi_i(u_i) - \varphi_i(\tilde{u}^{k,m}_h) \|^2_{Q_{s,i}} e^{t-s} ds \right) dt.
\]

where \(L\varphi \) is the maximal Lipschitz constant of the functions \(\varphi_i \)

Theorem

If \(\bar{\varphi} \in L^2(0, T; H^1_0(\Omega)) \), where \(\bar{\varphi}|_{\Omega_i} := \varphi_i(u_i) - \varphi_i(s^{k,m}_{h\tau,i}), \quad i = 1, 2 \), then

\[
\| u - \tilde{u}^{k,m}_h \|_\# \leq \sqrt{\frac{L\varphi}{2} \sqrt{2e^T - 1}} \eta_{IC}^{k,m} + \eta_{sp}^{k,m} + \eta_{tm}^{k,m} + \eta_{dd}^{k,m} + \eta_{lin}^{k,m}
\]

which depend on \(\sigma^{k,m}_{h\tau}, \tilde{\varphi}^{k,m}_{h\tau,i}, \tilde{\varphi}^{k,m}_{h\tau,i} \)
0 - Postprocessing function $\tilde{\varphi}_{h,i}^{k,n,m}$ of $\varphi_i(u_{h,\tau,i}^{k,m})$

$\tilde{\varphi}_{h,i}^{k,n,m} \in P_2(T_h,i)$ at each iteration k, at each time step n, $n = 0, \ldots, N$, and at each linearization step m, is constructed as:

$$
-\nabla \tilde{\varphi}_{h,i}^{k,n,m} |_K = u_{h,i}^{k,n,m} |_K, \quad \forall K \in T_h,i,
$$

$$
\frac{(\varphi^{-1}(\tilde{\varphi}_{h,i}^{k,n,m}), 1)_K}{|K|} = u_K^{k,n,m} |_K, \quad \forall K \in T_h,i.
$$

$\tilde{\varphi}_{h,i}^{k,n,m} \notin H^1(\Omega_i)$
0 - Postprocessing function $\tilde{\varphi}_{h,i}^{k,n,m}$ of $\varphi_i(u_{hT,i}^{k,m})$

$\tilde{\varphi}_{h,i}^{k,n,m} \in P_2(T_{h,i})$ at each iteration k, at each time step n, $n = 0, \ldots, N$, and at each linearization step m, is constructed as:

$$-\nabla \tilde{\varphi}_{h,i}^{k,n,m} |_K = u_{h,i}^{k,n,m} |_K, \quad \forall K \in T_{h,i},$$

$$\frac{(\varphi^{-1}(\tilde{\varphi}_{h,i}^{k,n,m}), 1)_K}{|K|} = u_{h,i}^{k,n,m} |_K, \quad \forall K \in T_{h,i}.$$

- $\tilde{\varphi}_{h,i}^{k,n,m} \notin H^1(\Omega_i)$

1 - Piecewise continuous polynomial $\hat{\varphi}_{h,i}^{k,n,m}$ in each subdomain

$$\hat{\varphi}_{h,i}^{k,n,m}(\mathbf{x}) := \mathcal{I}_{av}(\tilde{\varphi}_{h,i}^{k,n,m})(\mathbf{x}) = \frac{1}{|T_{\mathbf{x}}|} \sum_{K \in T_{\mathbf{x}}} \tilde{\varphi}_{h,i}^{k,n,m} |_K(\mathbf{x}) \in P_2(T_{h,i}) \cap H^1(\Omega_i)$$

$$\hat{\varphi}_{h,i}^{k,n,m}(\mathbf{x}) := \varphi_i(g_i(\mathbf{x}))$$ on Γ^D_i.
2 - Reconstruction saturation

Reconstruction saturation in each subdomain: \(s_h^{k,n,m}|_{\Omega_i} := \varphi_i^{-1}(\hat{\varphi}_h^{k,n,m}) \)

According to the weak solution \(u \), we require that

- \(s_h^{k,n,m}|_{\Omega_i} \in H^1(0, T; H^{-1}(\Omega)) \)
- \(\varphi_i(s_h^{k,n,m}) \in L^2(0, T; H^1_{\varphi_i(g_i)}(\Omega_i)) \)

\[... \varphi_i(s_h^{k,n,m}|_{\Omega_i}) := \varphi_i(\varphi_i^{-1}(\hat{\varphi}_h^{k,n,m})) = \hat{\varphi}_h^{k,n,m} \in H^1_{\varphi_i(g_i)}(\Omega_i) \]

- \(\Pi_1(s_h^{k,n,m}|_{\Omega_1}) = \Pi_2(s_h^{k,n,m}|_{\Omega_2}) \) on \(\Gamma \)

\[... \text{where } \Pi_i, 1 \leq i \leq 2, \text{ is chosen as follows:} \]

\[\Pi_i(s_h^{k,n,m}|_{\Omega_i}(x_\Gamma)) = \frac{\Pi_i(\varphi_i^{-1}(\hat{\varphi}_h^{k,n,m}(x_\Gamma)))) + \Pi_j(\varphi_j^{-1}(\hat{\varphi}_h^{k,n,m}(x_\Gamma))))}{2}. \]

- \(\frac{1}{|K|}(s_h^{k,n,m}, 1)_K = u_K^{k,n,m}, \quad \forall K \in \mathcal{T}_h \)

\[... \text{using suitable constants } \alpha_K^{k,n,m} \text{ and the } b_K \text{ the bubble function on } K. \]
3 - Equilibrated flux reconstruction $\sigma_{h,T}^{k,m}$

$$
\sigma_{h,T}^{k,m} \in P_0^0(\mathbf{H}(\text{div}, \Omega)),
$$

$$
\left(f^n - \frac{u_{K}^{k,n,m} - u_{K}^{k,n-1}}{\tau^n} - \nabla \cdot \sigma_{h}^{k,n,m}, 1 \right)_K = 0, \quad \forall K \in T_h.
$$

- Average of the fluxes on the interface

where B_1 and B_2 are the two bands surrounding the interface Γ in 3D
Estimates and stopping criteria in a two-phase flow problem
Reconsuction techniques

3 - Equilibrated flux reconstruction $\sigma_{h_T}^{k,m}$

$$\sigma_{h_T}^{k,m} \in P_0^0(\mathbf{H}(\text{div}, \Omega)),$$

$$\left(f^n - \frac{u_K^{k,n,m} - u_K^{k,n-1}}{\tau^n} - \nabla \cdot \sigma_h^{k,n,m}, 1 \right)_K = 0, \quad \forall K \in T_h.$$

- Average of the fluxes on the interface
- Misfit of mass balance in each subdomain

where B_1 and B_2 are the two bands surrounding the interface Γ in 3D
Estimates and stopping criteria in a two-phase flow problem

Reconstruction techniques

3 - Equilibrated flux reconstruction $\sigma_{h_\tau}^{k,m}$

$$\sigma_{h_\tau}^{k,m} \in P^0_{\tau}(H(\text{div}, \Omega)),$$

$$\left(f^n - \frac{u_K^{k,n,m} - u_K^{k,n-1}}{\tau^n} - \nabla \cdot \sigma_{h_\tau}^{k,n,m}, 1 \right)_K = 0, \quad \forall K \in T_h.$$

- Average of the fluxes on the interface
- Misfit of mass balance in each subdomain
- Distribute the misfit by coarse grid problem

where B_1 and B_2 are the two bands surrounding the interface Γ in 3D
3 - Equilibrated flux reconstruction $\sigma_{h,T}^{k,m}$

$$\sigma_{h,T}^{k,m} \in P_0^0(H(\text{div}, \Omega)),$$

$$\left(f^n - \frac{u_k^{k,n,m} - u_k^{k,n-1}}{\tau^n} - \nabla \cdot \sigma_{h,T}^{k,n,m}, 1 \right)_K = 0, \quad \forall K \in \mathcal{T}_h.$$

- Average of the fluxes on the interface
- Misfit of mass balance in each subdomain
- Distribute the misfit by coarse grid problem
- Add the corrections to the averages

where B_1 and B_2 are the two bands surrounding the interface Γ in 3D.
3 - Equilibrated flux reconstruction $\sigma^{k,m}_{h\tau}$

$$\sigma^{k,m}_{h\tau} \in P^{0}_\tau(H(\text{div}, \Omega)),$$

$$\left(f^n - \frac{u_{k,n,m}^k - u_{k,n-1}^k}{\tau^n} - \nabla \cdot \sigma^{k,n,m}_{h}, 1 \right)_{K} = 0, \quad \forall K \in T_h.$$

- Average of the fluxes on the interface
- Misfit of mass balance in each subdomain
- Distribute the misfit by coarse grid problem
- Add the corrections to the averages
- Solve local Neumann problem in the bands

where B_1 and B_2 are the two bands surrounding the interface Γ in 3D
OUTLINE

1. Motivations and problem setting
2. Robin domain decomposition for a two-phase flow problem
3. Estimates and stopping criteria in a two-phase flow problem
4. Numerical experiments
Numerical experiment with two rock types

Let $\Omega = [0, 1]^3$, $\Omega = \Omega_1 \cap \Omega_2$, where $\Gamma = \{x = 1/2\}$. We consider the capillary pressure functions and the global mobilities given respectively by

$$
\pi_1(u) = 5u^2, \quad \pi_2(u) = 5u^2 + 1, \quad \lambda_i(u) = u(1 - u), \ i \in \{1, 2\}.
$$

- Homogeneous Neumann boundary conditions are fixed on the remaining part of $\partial \Omega$
- $f = 0$ in Ω and $u_0 = 0$

Here, the gas cannot enter the subdomain Ω_2 if $\pi_1(u_1)$ is lower than the entry pressure $\pi_1(u_1^*)$, with $u_1^* = \frac{1}{\sqrt{5}} \approx 0.44$.

- Robin transmission conditions $\alpha = \alpha_{1,2} = \alpha_{2,1}$.
- The implementation is based on the Matlab Reservoir Simulation Toolbox (MRST)
Stopping criterion

DD:
- Classical stopping criterion: Residual $\leq 10^{-6}$
- Adaptive stopping criterion:
 \[
 \eta_{dd}^{k,m} \leq 0.1 \max \left\{ \eta_{sp}^{k,m}, \eta_{tm}^{k,m} \right\}.
 \]
Numerical experiments

Stopping criterion

DD:
- Classical stopping criterion: Residual $\leq 10^{-6}$
- Adaptive stopping criterion:
 $$\eta_{dd}^{k,m} \leq 0.1 \max \left\{ \eta_{sp}^{k,m}, \eta_{tm}^{k,m} \right\}.$$

Newton at final iteration of OSWR, $t = 6.6$:
- Classical stopping criterion: Residual $\leq 10^{-8}$
- $\eta_{lin,i}^{k,n,m} \leq 0.1 \max \left\{ \eta_{sp,i}^{k,n,m}, \eta_{tm,i}^{k,n,m}, \eta_{dd,i}^{k,n,m} \right\}$, $i = 1, 2$
Saturation $u(t)$ for $t = 2.9$

Estimated error for $t = 2.9$
Saturation $u(t)$ for $t = 6.6$

Estimated error for $t = 6.6$
Saturation $u(t)$ for $t = 13$

Estimated error for $t = 13$
Saturation $u(t)$ for $t = 15$

Estimated error for $t = 15$
Numerical experiments

Saturation $u(t)$ for $t = 15$

Estimated error for $t = 15$

Capillary pressure $\pi(u(t), \cdot)$ for $t = 6.6$

Estimated DD error for $t = 6.6$
Numerical experiments

Saturation $u(t)$ for $t = 15$

Estimated error for $t = 15$

Capillary pressure $\pi(u(t), \cdot)$ for $t = 15$

Estimated DD error for $t = 15$
Conclusions

- The quality of the result is ensured by controlling the error between the approximate solution and the exact solution at each iteration of the DD algorithm.
- Different components of the error have been distinguished.
- An efficient stopping criterion for the DD iterations has been established.
- Many of the DD and linearization iterations usually performed can be saved.

Future work

- Assess how much computing time can be saved
- Develop an a posteriori coarse-grid corrector
- Extend to advection-diffusion
Conclusions

- The quality of the result is ensured by controlling the error between the approximate solution and the exact solution at each iteration of the DD algorithm.
- Different components of the error have been distinguished.
- An efficient stopping criterion for the DD iterations has been established.
- Many of the DD and linearization iterations usually performed can be saved.

Future work

- Assess how much computing time can be saved
- Develop an a posteriori coarse-grid corrector
- Extend to advection-diffusion

S-A.H.-Japhet-Kern-Vohralík, accepted, 2018 (steady case)
S-A.H.-Japhet-Vohralík, accepted, 2018 (unsteady case - heterogenous)

Thank you for your attention!