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Domain Decomposition Methods
for Non-Symmetric Problems

Y. Achdou', C. Japhet?, P. Le Tallec?, F. Nataf!, F. Rogier®
& M. Vidrascu®

Introduction

The two algorithms presented below are especially fitted for non-symmetric elliptic
problems. The model equation is the convection-diffusion equation:
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This equation is important in itself in engineering or environnemental sciences for
instance. It models the transport and diffusion of species (pollutant in air or water,
electrons in semiconductor devices, .. .) in a given flow (with velocity field @) . It is also
a key ingredient in Navier-Stokes equations. An implicit scheme in time will demand
at each time step the solving of
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The first algorithm is a preconditioner for the Schur formulation of domain
decomposition problems. It is an extension of the well-known Neumann-Neumann
preconditioner [BGLTV89] to non-symmetric problems. The second algorithm is an
optimized Schwarz method. The Dirichlet boundary conditions on the interfaces are
replaced by more general boundary conditions. The algorithm can then be used on
non-overlapping (and/or overlapping) subdomains and has a fast convergence.

In this presentation, we emphasize the use of the Fourier transform on the continuous
problem as a tool of analysis and design. Hence, we consider the simple geometry of
the plane R? divided into two or more vertical strips. This might seem inappropriate
since Fourier analysis is essentially limited to constant coefficients operators and
since computations are made on discretized problems and not on continuous models.
Moreover, real life geometries are more complex. Variational settings or matrix
analysis, for instance, do not have these limitations. Nevertheless, some ideas come up
much more easily in the Fourier space and are then independent of the discretization
scheme. Moreover, as we shall see, the methods that we propose are not limited to
constant coefficient operators and can be used with various numerical schemes.

More precisely, in § 1 we study the Neumann-Neumann preconditioner when applied
to a non-symmetric operator. We explain why it is not adapted. In the next section,
we extend 1t to non-symmetric operators by modifying the Neumann boundary
conditions. We shall also see how to write it by using a variational formulation for
variable coefficients. Numerical results are shown to illustrate the efficiency of the
preconditioner. We mention also the fact that it can be used in a FETT framework,
see [FMRY4].

In § 1, we turn to the classical Schwarz algorithm. We show that by changing the
interface conditions, much better convergence rates can be reached. In § 1, we present
an optimization procedure for choosing efficient and easy to implement interface
conditions. A frozen coefficient approximation enables its use in a variable coefficient
context. Numerical results are shown to illustrate the efficiency of the preconditioner.

The Neumann-Neumann preconditioner

We consider the case of a decomposition of the plane R? into two subdomains
Q) = (—00,0] x R and €5 = [0,00) X R. The interface {0} x R is denoted T'. The
Schur formulation is defined as follows:

Find ug such that the solution of the following two Dirichlet problems (i = 1, 2):

L(u;)=finQ, u=ugonT (3)

have matching normal derivatives on the interface T'. Let us denote S(ug,f) =

y(gZi + g%z) the jump of the normal derivatives. The Schur formulation is thus:

Find ug such that

S(uo,0) = =8(0, f). (4)

The problem (4) once discretized is solved by a Krylov type method. Preconditioning
(4) amounts to finding an approximate inverse for the operator §(.,0). The Neumann-
Neumann preconditioner Ty 1s defined as follows: let g be a function on I'; a Neumann
boundary value problem is solved in each subdomain (i = 1, 2)
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Find v; such that

b 2% _yont (5)

,C(vi) =01in €;, T,

The preconditioner Tyy maps g to %(U] + v3). By performing a Fourier transform
along the interface T, it is possible to find the symbol of these operators (see [AN97]
or [ATNV]):

S(uo,0) = (\/— + a2 + 4layév + 4202 uo(f)) (6)

and ,
a2

S(uo, 0)) = F¢ 1 7

Tn(S(u0,0) = 75" (014 7o) 9) )

where ¢ is the Fourier variable, 1> = —1 and F:! denotes the inverse Fourier

transform. The condition number of; the discrete version of 78 can therefore be
estimated by % . For a small time step or a very diffusive
problem, the Neumann-Neumann precondltloner should perform well. For a large time

step or a convection dominated flow, the condition number of 78 can be very large.

A Robin-Robin Preconditioner

By modifying the Neumann boundary condition in (5), it is possible to have an optimal
result for two semi-infinite subdomains. Indeed, let g be a function on I', a Robin
boundary value problem is solved in each subdomain (i = 1, 2)

Find v; such that

L(vi) =0in Q;, 1/2—:;— a;sz—gonF (8)
The preconditioner 7Trr maps g to 3(vi + v2). It can be seen that (8) is well posed.
By performing a Fourier transform, one sees that Trgr is an exact preconditioner,
TrrS(.,0) = Id.

It is interesting to note that the Robin boundary condition in (8) may arise from
a variational formulation, see [ATNV]. Indeed let us consider a skew-symmetric
variational formulation of (2) for some domain Q (forgetting on purpose boundary
terms):

Find u such that

uw

E——V auw+1(&Vuw—anu)+l/Vqu—/fw Yw (9)

Integrating by parts (9), (and this time keeping boundary terms), we get as a boundary
term the Robin boundary condition in (8) :

/(E-l—aVu—yAu)w-l—/ (ua—u—a_ﬁ)w: fw, Yw (10)
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This remark is very useful when implementing this method in a finite element
framework.
It is worth noticing that the above Robin boundary condition may also be used in a
FETTI context. The dual Schur formulation would consist of:
Find X such that the solution of the following two Robin boundary value problems
(i=1,2):
Ou;  d.i;

Llu;) = fin Q;, v—>i —

e 5 up=(=1)'AonT (11)

match on the interface T'. Let us denote DR(A, f) = %(UQ — uq) half the jump on the
interface. The modified Schur formulation is thus,

Find X such that
DR(X, 0) = —DR(0, f). (12)

The problem (12), once discretized, is solved by a Krylov type method. The optimal
preconditioner is then the usual Dirichlet-Dirichlet preconditioner.

More precisely, let v be a function on I', a Dirichlet boundary value problem is
solved in each subdomain (i = 1, 2)

Find v; such that

L(v;)=0inQ;, vy =vonT (13)
The preconditioner 7pp maps v to 1/(2211 g:’zz) By performing a Fourier transform,
one sees that 7pp is an exact preconditioner, TppDR(.,0) = Id.
Let us also mention the fact that the algorithm can be used with non matching grids
on the interface and the mortar formulation see [BMP94], [Ach95], see [AN97].

An interesting feature of the Robin-Robin preconditioner is its nilpotency property
for a domain decomposed into N vertical strips. Indeed, the preconditioner is then no
more exact but TrrS(.,0) — Id is close to a nilpotent operator. We assume that the

component of the velocity normal to the interface is positive a, > 0. Let H denote
the minimum of the widths of the subdomains. For e~ (?e+Va*+27) H/¥ gma]] enough,
the preconditioned system is close to an idempotent operator of order [%] where [z]
denotes the integer part of z. This has an important effect on the convergence of
GMRES applied to the preconditioned system since it means that a decrease of the

residual should occur only after [%] iterations, see Figure 1.

Theorem 1 Assume that the velocity field @ is uniform. Let Q = (0, Hq) x R be
decomposed into N nonoverlapping vertical strips Qi = (Ik, lk41) xR, 0< k< N -1
and Fk,k+1 = {lk+1} x R.

Let HYy, = ivz_ll H*(T k41), s € R be the space of H® functions on the N — 1
interfaces. Let U € H3; be denoted by U = (“k)lSkSN—l‘ The space Hi s endowed
with the norm HU”H?\;,K, = SUpPj <y No1 ||Uk-||Hs(1"k’k+1)‘

Let H be the size of the smallest subdomain, H = ming(lg41 — lp). Assume ¢ =

e~ tVa"t XD AV < 1 and that p=3Ne/(1— o)Vt < 1.
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Then, for n > [%], we have

N 1 él_l

167 SC,0) = )Ny < sy == #

(14)

where [z] denotes the integer part of x.

Remark 1 In fact, as soon as el@e=Var+ 30 Hlv 1, T o8 is already very close to
tdentity and a better estimate can easily be obtained:

6€(az—\/az2+%)H/u

(1—¢)3 (15)

(T o 8(.,0) = Td)||nas,) <

The above theorem s thus interesting when elae=Vae*+ XD AV s close to 1. This
corresponds for instance to the case of a very large time step with a strongly laminar
flow.

On the other hand, the above results cannot be applied when the operator is symmetric
and 1s very close to a Laplace operator (ﬁ & 1). Indeed, in order to have good
convergence rates, it is then necessary to modify the Robin-Robin (which amounts to
the Neumann-Neumann preconditioner) by adding a coarse space and a pseudo inverse
for the Neumann problem, see [ATNV].

Numerical Results in two dimensions for the Robin-Robin
preconditioner

The advection-diffusion is discretized on a Cartesian grid by a Q1-streamline-diffusion
method. The system for the nodal values at the interface is solved by a preconditioned
GMRES algorithm and the stopping criterion is to reduce the initial residual by a
factor 107'%. The preconditioners are either of the type Robin-Robin (R-R), Neumann-
Neumann (N-N) or the identity (-).

A first comparison between the preconditioners

The first series of tests will be to compare the performances of the Robin-Robin (R-
R), Neumann-Neumann (N-N) preconditioners, and the non-preconditioned method,
in some very simple typical situations. Here, the domain is the rectangle [0, 1] x [0, 0.2]
partitioned into five square vertical strips of sizes 0.2 x 0.2. In each subdomain, there
is a uniform grid of 60 x 60 quadrangular elements. We choose At = 1 and v = 0.001
or v = 1, and four velocities:

1. @ = €1. In this case, the velocity is perpendicular to the interfaces
between the subdomains.

2. d = €5. In this case, the velocity is parallel to the interfaces.

3. d= %(e’i + é3). We refer to this convecting field as oblique.

4. d = 27 ((#1 — 0.5)€3 — (z2 — 0.1)€7) . Here, the convecting field can be

seen as a vortex.
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viscosity Precond.\ velocity. | normal | parallel | oblique | rotating
R-R 3 2 5 36
v = 0.001 N-N 52 2 42 > 100
- 14 34 13 71
R-R 9 9 10 10
vr=1 N-N 9 9 10 11
- 30 38 41 41

Table 1: Different velocity fields and five subdomains

Based on these results, several remarks can be done:

The Robin-Robin preconditioner performs much better than the Neumann-Neumann
preconditioner when the viscosity is small while the performances are equivalent for
large viscosity.

For small viscosities, when the velocity is not parallel to the interface, the Neumann-
Neumann preconditioner gives very poor results (poorer than when no preconditioner
is used). On the contrary, when the velocity is parallel to the interfaces, both
the Neumann-Neumann and the Robin-Robin preconditioners work very well (2
iterations), (note that they are equivalent in this case). These results are in complete
agreement with the Fourier analysis above.

Thus, the Robin-Robin adapts smoothly to the different situations presented in the
table.

In our implementation, one iteration of the Robin-Robin or Neumann-Neumann
method costs twice as much as when no preconditioner is used. Even though, the
Robin-Robin preconditioner remains always faster.

Influence of the number of subdomains: case of strips

The purpose of these tests is to assess the nilpotency properties of the algorithm. To
illustrate the theory above, the domain is partitioned into vertical strips, the velocity
is uniform and normal to the interfaces. The dependence of the number of iterations
with respect to the number of strips will be investigated.

Here, the domain is Q@ = (0, Nid) x (0,1) . Tt is partitioned into N,q square
subdomains, which are rectangles of sizes 0.25 x 1. In each subdomain, there is a

uniform grid of size 20 x 40.

Partition 4x1 8 x1 12 x 1 24 x 1 36 x 1

Grid 20 x40 | 20 x40 | 20 x 40 | 20 x 40 | 20 x 40

At =1, R-R 5 8 12 23 30

da = 3é1, - 13 18 22 33 44

v = 0.001 | N-N 43 > 100 > 100 > 100 > 100
Table 2: Influence of the number of subdomains

On Figure 1(left), the convergence of the GMRES algorithms with and without the
Robin-Robin preconditioner are plotted. It is very clear on Figure 1(left), that for the
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{Nilpotency

residual (log)
residual(log)

L L L L L L L L | L L I L L I L L
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terations terations

Figure 1 The convergence with and without preconditioner: 36 subdomains.
Left:uniform grid. Right:anisotropic grid.

Robin-Robin preconditioner, the residual does not vary significantly for % = 18

iterations, then drops quickly. This confirms very well the theory above on the
idempotency of the preconditioned Schur complement matrix. For GMRES without
preconditioner, the same kind of phenomenon is observed, but the decay of the
residual is obtained only after Ny;q = 36 iterations, see [ATNV] for details. Note
that, since the number of grid nodes is not large enough, the rates of convergence
after the idempotency threshold are of the same order. This would not be the case
for a finer grid, as we can see Figure 1(right) and in § 1. On Figure 1(right), the
convergence plots correspond to the same experiment except that the grid has been
refined with a geometrical progression of ratio 0.9 in the x5 direction. Therefore, the
grid is very fine near the boundary x5 = 0. We see that the idempotency properties of
the preconditioned operator are conserved, although they appear less clearly. On the
contrary, the non preconditioned operator yields a very poor convergence.

Influence of the grid anisotropy and boundary layers
Consider a velocity with a boundary layer near a wall

(300 * (Zg — 01)2)E1 if g < 0.1

& if 25 > 0.1 (16)

To capture the boundary layer, the mesh is refined in the zs-direction, near the wall
x5 = 0 with a geometric progression of ratio 0.9.

Partition 4x1 8x1 12 x1 24 x 1 36 x 1

Grid 20 x40 | 20 x40 | 20 x 40 | 20 x 40 | 20 x 40

At=1 R-R 11 18 25 39 51

v = 0.001 - 51 75 91 > 100 > 100
N-N 49 > 100 > 100 > 100 > 100

Table 3 : Anisotropic grids

In comparison with the tests of § 1, we see that the performances deteriorate due
to the change of velocity and grid, but is is very clear that the Robin-Robin method
is the less severely affected.
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Rotating velocity: influence of the number of unknowns

The domain is the unit square, which is partitioned into 4 x 4 subdomains. In each
subdomain, the grid varies from 20 x 20 up to 60 x 60. The velocity is @ = €3 x (£ — 2p),
(zo is the center of Q) and v = 0.001, At = 107 (almost a steady state computation).
A coarse space solver of BPS type is used here, but will not be discussed.

Partition 4 x4 4 x4 4 x4 4 x4
Grid 20 x 20 | 30 x 30 | 40 x 40 | 60 x 60
At =107, v = 0.001 R-R 34 34 34 34
d=2¢€s x (¥ — 7o) - 80 82 &9 > 100

Table 4: Influence of the number of grid points

The convergence is not affected by the grid size.

Results in three dimensions

In Table 5, we give results for a simple geometry with different partitions and velocity
fields. In Table 6, the domain [0, 1] x [0, 1] x [0, .01] is decomposed into 100 subdomains.
The number of elements i1s 60,000 and the number of nodes is 121,203. We compare
the Robin-Robin with and without coarse grid preconditioner.

9) [0,1]% x [0,0.5] | [0,1]* x [0,0.33] [0,1°
Partition 2x2x1 3x3x1 3x3x3
i=(y/.5—.5—x/.5+5.00),r=10"° c=10"
R-R 12 21 35
N-N 24 51 165
@ = 300 * min(z3,0.01) &, v =10"% c=10""*

R-R 9 13 19
N-N 23 65 92
@ =3 —300 % (min(2,0.1) = 0.1)? &, v =10"%, ¢ = 10"
R-R 9 16 25
N-N 37 88 > 200
Table 5 : Iteration Count for different parameters
velocity v c R-R | R-R + coarse grid
rotating | 1072 | 1077 | 51 54
null 1072 | 1077 | 78 28
Table 6: Influence of the coarse grid

Figure 2. shows the unit cube containing 24576 tetrahedric second order finite
elements split into 45 subdomains by an automatic mesh partitioner. This is why the
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boundaries between subdomains are less regular than for the 2D computations. For this
decomposition the algorithm converges in 48 iterations with the R-R preconditioner.
The last numerical example aims to be a more realistic computation : the diffusion of
a pollutant in a fluid contained in a T-shape reservoir. The fluid is incompressible. For
such a model if the viscosity is small, the advection is dominant, on the opposite if the
viscosity increases the convection phenomena is more important than the diffusion.
If, for the flow, the given initial velocity has a parabolic profile and, in the advection
diffusion step, the pollutant concentration given on a boundary is linear the convection
and diffusion phenomena are coupled in the hole domain, a boundary layer is expected
in the large part ot the T-shape domain and a vortex region in the bottom of the
domain.

The mesh considered here is too coarse to expect realistic results, it contains 29,448
elements and 43,937 nodes. The initial domain was split in 50 subdomains and the
velocity field was obtained by a Stokes computation. This initial computation is in fact
more expensive than the advection-diffusion one and this was the limiting point. It
was performed on the same grid and same decomposition using a Neumann-Neumann
domain decomposition algorithm. In this case the number of degrees of freedom is
131,811.

On this advection-diffusion problem, the Robin-Robin preconditioner converged in
81 iterations (compared to 78 iterations for an elasticity problem on the same grid).
Looking at the level lines of the concentration on a transversal section (figure 3) one
can see that the advection diffusion phenomena corresponds to the given boundary
conditions and the vortex region appears. In addition the values are small were
the boundary layer is expected. The results obtained are thus concordant with the
prediction.

Optimized Schwarz algorithm

We consider in the sequel a very different type of algorithm, namely, the classical
Schwarz algorithm in a simple case: the plane R? is divided into two subdomains
Q) = (—00,0) x R and Q3 = (0,00) x R. Numerical results will be given for general
decompositions. The size of the overlap is § > 0. In order to solve (2), the classical
additive Schwarz method is based on the use of Dirichlet boundary conditions
[,(uf+1) =fin Qi,u%{+1 =uf_.. (17)

—1

A Fourier analysis shows that

i, §) — i (@, §) = T VEEEEALEIET i ) i@ ) (18)
and overlap is necessary for convergence. For a small overlap (§ < 1), the convergence

will be very slow. In order to remedy to this situation, it has been proposed to use
more general interface conditions. The algorithm reads

L(ufT) = fin @, Bi(uft!) = Bi(u_)). (19)
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Figure 3 Three dimensional triangulation and automatic decomposition into

50 subdomains

13
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where B;(u) = v 2% — ‘7:6_1()‘ (&)a(z,€)). A Fourier analysis shows that (see [NR94])

g

iz &) — aF (e ) = AT(E) = Ai(&) A5(E) — Aa(€) .
( )5) i ( aE) )‘3(5)+/\1(E) )\T( )—}-)\2(5) (20)
« e~ %+ai+41ay§l/+4§2y26/u(ﬂ(m’5) _ uf ](1,5)) (21)

where

az—{—\/ + a2 + 4lay v + 46202
= 5 , (22)

ax+\/ +a +4Iay£1/+4£21/2

AE

(23)

If A; = Af, we have convergence in two steps (see [HTJ88] or [FNdS94]). These
optimal interface conditions are also exact absorbing boundary conditions which are
used for truncating infinite domains. The fact that these interface conditions are
optimal for domain decomposition methods is quite general since it applies to variable
coefficient operators and more general decompositions as well, see [FNdS94]. In the
case of the Laplace operator, their use had also been suggested in [Li090]. Because
of the square root in formulas (22) and (23), these boundary operators are not not
differential operators. They are of integro-differential (or pseudo-differential) type and
thus difficult to implement numerically. As it is the case when they are used for
truncating infinite domains, they are approximated by partial differential operators.
In [DJRY2], and then in [Des93], [BD97], [GGQYI6] [dLBFM198], [MSRKA98] and
[CCEW98], the lowest order approximations used for the truncation of domains are
used as interface conditions for domain decomposition domains. It amounts to taking
Ai = X(0) (Taylor approximation at order 0). In [NR94] higher order approximations
are used for the convection-diffusion equation, namely Taylor approximation at order

2 of AZ(€) in the vicinity of £ = 0.

Optimized of Order 2 (0O0O2) Interface Conditions

A more suited and efficient possibility is to optimize the choice of the interface
conditions B; with respect to the convergence of the domain decomposition method
(see [TB94], [EZ98] for the operator n — A, and [Jap97] for the convection-diffusion
equation and [CN98§] for the wave equation). For ease of implementation, B; is sought
in the form

9 o o ,

The parameters are chosen in order to minimize the maximum of the convergence
rate over all the wavenumbers which can be represented on the computational grid,
|€] < 1/h (h is the typical mesh size):

25
o D 5 ey L6 2 B 2, B ) (25)
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where

AL(€) = (a1 + BiIE+mE)

AS(E) + (a1 + P11 + 1&?)

‘)‘3(5) - (az — B2I¢ + ’7252) e 2 a2 1 aTa, v +ag2u25 v
AL(E) + (a2 = B2 I€ + 7287

This minimization problem is difficult since it is not differentiable nor convex. Tt

p(ﬁ,a1,[7’1,71,a2,[7’2,72) = ‘ (26)

can be proved that choosing a;,v > 0, as — @1 = agz, /1 = —f2, y1 = 72 and
sgn(f1) = —sgn(f2) = sgn(ay) is sufficient for having |p| < 1. Moreover, when
ay = 0, the min-max problem (25) is equivalent to a 1D minimization problem over a
wavenumber &;,,; such that p(&int) = 0. In the general case a, # 0 this last procedure
is used, see [Jap97]. In the limit h — 0, a theoretical estimate shows that for the Taylor
interface conditions at order 0 or 2 , p ~ 1 — C*|alh/v while for the OO2 interface
condition p ~ 1—C*(|a|h/v)'/3. For a variable coefficient operator, a frozen coefficient
approximation is used for computing the parameters of the interface condition.

In order to improve the convergence, the iterative algorithm (19) is replaced by a
Krylov type method applied to the substructured problem with B;(u) as unknowns
on the interfaces, see [NR94].

Numerical Results for the O02 method

Dirichlet, Taylor of order zero, Taylor of order 2 and OO2 interface conditions are
compared. A BICGSTAB algorithm is used for the substructured problem. The
stopping criterion was the maximum error between the converged solution and the
iterative solution to be smaller than 1076, The problems in the subdomains are solved
by a direct method.

We first consider an upwind finite difference scheme with a small overlap of size h.
The time step is taken very large (At = 10°) so that it corresponds to a stationary
equation. For a decomposition into 16 x 1 subdomains, we have the following iteration
count for two velocity fields: one normal to the interface and one tangential to the

interface:
Nb of iterations | Dirichlet | Taylor 0 | Taylor 2 | 002
a,=0,a, =y 60 137 15 15
a, =0,a, =2 60 90 265 9

Table 5: Overlapping subdomains - v = 1072, h = 1/241

We see that the OO2 interface conditions lead to the fastest algorithms.

We now consider a finite volume discretization with no overlap between the
subdomains (§ = 0). The Dirichlet interface conditions cannot be used anymore. For
the same parameters as in Table 5, we have

Nb of iterations | Taylor 0 | Taylor 2 | 002
a,=0,a, =y 140 122 18
a; =0,ay =2 85 divergence | 20

Table 6: Non Overlapping subdomains - v = 1074, h = 1/241
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Once more, the OO2 interface conditions give the best results. We now focus on the
robustness of the algorithms which are illustrated by the following tables. These results
can be related to the estimate of § 1.

Nb of points | 65 x 65 | 129 x 129 | 241 x 241
002 25 26 30
Taylor 0 76 130 224
Table 7: Non Overlapping subdomains— 4 by 4 subdomains—rotating velocity field

la|At/h 107 1 10% ] 10° | 107
002 3 12 15 15
Taylor 0 | 3 18 | 48 | 141
Taylor 2 | 2 21 | 58 | 123
Table 8 Non Overlapping subdomains— 16 by 1 subdomains — boundary layer velocity field

When the operator degenerates to a Laplace operator, a coarse grid preconditioner
has to be used in order to keep the robustness of the method, see [JNR9S].

Conclusion

We have presented two very different methods which are adapted to non symmetric
scalar problems. Tt seems to us that they perform essentially equally well (see Tables 4
and 7) although a thorough study should be made. Through its variational formulation
(see (10), the Robin-Robin preconditioner can be easily implemented in a FEM. As for
the OO2 approach, its extension to other type of equations seems more easily feasible.
An interesting perspective is the extension of both approaches to systems of equations.
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