
An Algorithm for Non-Matching Grid Projections

with Linear Complexity

Martin J. Gander1 and Caroline Japhet2

1 Section of Mathematics, University of Geneva, 2-4 Rue du Lièvre, CP 64, 1211 Geneva 4

martin.gander@unige.ch
2 LAGA, Université Paris 13, 99 Av. J-B Clément, 93430 Villetaneuse, France

japhet@math.univ-paris13.fr

1 Introduction

Non-matching grids are becoming more and more common in scientific computing.

Examples are the Chimera methods proposed by [20] and analyzed in [2], the mortar

methods in domain decomposition by [1], and the patch method for local refine-

ment by [6], and [17], which is also known under the name ’numerical zoom’, see

[9]. In the patch method, one has a large scale solver for a particular partial differ-

ential equation, and wants to add more precision in certain areas, without having

to change the large scale code. One thus introduces refined, possibly non-matching

patches in these regions, and uses a residual correction iteration between solutions

on the patches and solutions on the entire domain, in order to obtain a more refined

solution in the patch regions. The mortar method is a domain decomposition method

that permits an entirely parallel grid generation, and local adaptivity independently

of neighboring subdomains, because grids do not need to match at interfaces. The

Chimera method is also a domain decomposition method, specialized for problems

with moving parts, which inevitably leads to non-matching grids, if one wants to

avoid regridding at each step. Contact problems in general lead naturally to non-

matching grids.

In all these cases, one needs to transfer approximate solutions from one grid to

a non-matching second grid by projection. This operation is known in the literature

under the name mesh intersection problem in [12], intergrid communication problem

in [16], grid transfer problem in [18], and similar algorithms are also needed when

one has to interpolate discrete approximations, see [13, Chap. 13].

2 Towards an Optimal Algorithm

There are two problems that need to be addressed in order to obtain an efficient pro-

jection algorithm, a combinatorial one and a numerical one: the combinatorial one

stems from the fact that in principle, every element of one grid could be intersecting

186 Martin J. Gander and Caroline Japhet

with every element of the other grid, and hence the naive approach immediately leads

to an O(n2) algorithm, where n is the number of elements. This is well known in the

domain decomposition community, see for example [4]. The numerical difficulty is

related to the calculation of the intersection of two finite elements, which is numeri-

cally difficult, because one needs to take numerical decisions whether two segments

intersect or not, and whether one point is in an element or not. For the patch method,

[17] state: “Some difficulties remain though since we must compute integrals in-

volving shape functions that are defined on non-compatible meshes”. They use as

approximation a midpoint rule, computing only in which element the barycenter of

the elements of the other grid lies. The influence of the error of a quadrature rule for

this problem is studied in [15]. The authors in [4] mention the substantial complexity

increase when going from one- to two-dimensional interfaces, and a sophisticated

program with many special cases is used to compute the projection, as explained

by [3].

If one needs to interpolate values only, the numerical intersection problem is

avoided, and an elegant way to reduce the complexity to O(n logn) was introduced by

[10], in form of an additional adaptively refined background Cartesian mesh, called

quadtree in 2d and octree in 3d. This approach is currently widely used, for example

in contact problems, see [11], where the overall complexity of the simulation process

is still dominated by the nonlinear monotone multigrid method. A related approach

is to use a binning (or bucket) technique, introduced by [14], see for example [18],

and the MpCCI code from the Fraunhofer [8]. Faster algorithms can be obtained, if

neighboring information for each element is available: in the case of interpolation,

one can use an advancing front technique that starts, for each new point at which

one needs to interpolate data, a local search in the neighborhood of the element

where the previous point was interpolated. Only if this search is not successful in

less than a constant number of steps a brute force search is launched, see [13]. This

approach leads to an algorithm with close to linear complexity. A related technique

uses a self-avoiding walk, see [12], with a vicinity search. This search can only fail

after a boundary element had no intersection with any element of the other mesh,

in which case a quad-tree search is employed. This leads to what the authors call

approximately linear complexity. Further techniques for treating the boundary are

given in [13].

Computing the intersection of elements numerically was first studied in the com-

puter graphics community under the name “polygon clipping”, see [21] and refer-

ences therein. The basic algorithm works as follows: one marches along the edges

of one polygon, and whenever an intersection is found, one switches the polygons

and marches on the edges of the other one. As soon as one returns to a point al-

ready visited, the intersection polygon is obtained. This algorithm is extensively

used in computer graphics, and a generalized version, which can also handle self-

intersecting polygons can be found in [7], where we also find the quote: “So far we

have tacitly assumed that there are no degeneracies, i.e. each vertex of one polygon

does not lie on an edge of the other polygon. Degeneracies can be detected in the

intersect procedure . . . In this case we perturb the vertex slightly. If we take care

that the perturbation is less than a pixel width, the output on the screen will be cor-

Non-Matching Grid Projections 187

rect.” While for computer graphics, a natural scale for the truncation is the pixel, it

is more difficult to determine acceptable perturbations for numerical applications.

Since we did not find an elegant and robust solution for degenerate cases in the con-

text of mortar applications, we propose an entirely different algorithm below, which

can also easily be generalized to three-dimensional interfaces. A numerically robust

way to determine intersections is however presented in [19], who is using adaptive

precision floating point arithmetic. The award winning mesh generator “triangle” by

the same author computes intersections of two non-matching triangular grids using

this approach.

For a problem in two dimensions, the mortar method has one-dimensional inter-

faces, and a simple algorithm based on the ideas of merge sort computes the projec-

tion in O(n) steps, where n is the number of elements touching the interface, see [5].

We show in this paper a generalization of this algorithm to higher dimensions. We use

an advancing front technique and neighboring information, which is often available

in finite element meshes, in order to obtain an algorithm with linear complexity. Its

implementation is surprisingly short, and we give the entire Matlab code. For com-

puting the intersection, we use a new approach, which turns out to be numerically

robust and can be generalized to higher dimensions. We show numerical experiments

both in 2d and 3d, which illustrate the optimal complexity and negligible overhead

of the algorithm.

3 The Algorithm for Computing the Intersection

We now present an algorithm that computes the intersection polygon of two arbi-

trary triangles. It first computes all edge intersections, and all corners of the tri-

angles that are contained in the other one. Then the algorithm orders the set of

points obtained counterclockwise in order to obtain the intersection polygon, see

Figure 1. The graphic primitive EdgeIntersections(X,Y) computes all intersec-

tions of edges of triangle X (corner coordinates stored column-wise) with edges of

triangle Y, including borderline cases by using greater or equal in the decisions. The

routine PointsOfXInY(X,Y) computes corners of triangle X in triangle Y, again in-

cluding borderline cases. The routine SortAndRemoveDoubles(P) sorts the points

in P in counterclockwise order and removes duplicates, which turns out to make the

algorithm numerically robust.

In addition to computing the intersection polygon, the algorithm also returns two

more results needed later: in n which neighboring triangles of X will also intersect

with Y, and in M the integrals on the intersection P of products of element shape

functions of X with the ones of Y, or any related quantity obtained from the routine

MortarInt.

This algorithm can be generalized to compute the intersection of tetrahedra in 3d

(see also Section 5): one first calculates all points were an edge of one tetrahedron

traverses the face of the other, and all corners of one tetrahedron contained in the

other. Then one orders the points face by face counterclockwise. Note also that this

intersection algorithm can easily be generalized to convex polygons and polyhedra.

188 Martin J. Gander and Caroline Japhet

function [P,n,M]=Intersect(X,Y);
% INTERSECT intersection of two triangles and mortar contribution
% [P,n,M]=Intersect(X,Y); computes for two given triangles X and Y
% the points P where they intersect, in n the indices of neighbors
% of X that also intersect with Y, and the local mortar matrix M
% of contributions of the element X on the element Y.

[P,n]=EdgeIntersections(X,Y);
Q=PointsOfXInY(X,Y);
if size(Q,2)>1 % if there are two or more

n=[1 1 1]; % interior points, the triangle
end % is candidate for all neighbors
P=[P Q];
P=[P PointsOfXInY(Y,X)];
P=SortAndRemoveDoubles(P); % sort counterclockwise
M=zeros(3,3);
if size(P,2)>0

for j=2:size(P,2)-1 % compute local Mortar matrix
M=M+MortarInt(P(:,[1 j j+1]),X,Y);

end;
end;

Fig. 1. Algorithm for computing the intersection polygon of two triangles.

4 The Projection Algorithm with Linear Complexity

We now show an algorithm that computes, for two non-matching triangular meshes

representing the same planar geometry, the associated mortar projection matrix, see

[1], or any other similar quantity on each intersection polygon defined by MortarInt

in the Intersect procedure. The algorithm is using advancing fronts and the fact

that each triangle knows which are its neighbors, see Fig. 2. The input of the algo-

rithm are two triangular grids. The grid node coordinates are stored column wise in

N. The triangles are stored row wise in T, the first three numbers referring to the nodal

coordinates of the triangle in N, and the next three to the neighboring triangles in T,

both ordered counterclockwise. The algorithm then works as follows: it starts with a

pair of intersecting triangles (assumed to be the first ones in Ta and Tb), which are

often trivially available at a corner, but otherwise could also be found by one direct

search. We then compute first the intersection of these two triangles using the inter-

section routine from Section 3. We then add the neighbors of the triangle from mesh

a as candidates in a list al, since they could intersect with our triangle from mesh

b. Picking triangles from list al one by one, we compute their intersection with the

current triangle from mesh b and add non treated neighbors to the list al until all

triangles in al have been treated. This implies that the starting triangle from mesh b

cannot intersect any triangles from mesh a any more. Now we put all the neighbors

of the starting triangle of mesh b into a list bl, and perform the same steps as for

the first triangle on each one in the list bl, until it becomes empty, and the algorithm

terminates.

We now address the complexity of our algorithm: the key step is that we stored

a starting candidate from list al for each of the triangles added to list bl in list

bil. This information is obtained without extra calculation in the computation of the

intersection. Thus there is never a search needed for a candidate triangle of mesh a

Non-Matching Grid Projections 189

function M=InterfaceMatrix(Na,Ta,Nb,Tb);
% INTERFACEMATRIX projection matrix for non-matching triangular grids
% M=InterfaceMatrix(Na,Ta,Nb,Tb); takes two triangular meshes Ta
% and Tb with associated nodal coordinates in Na and Nb and
% computes the associated mortar projection matrix M

bl=[1]; % bl: list of triangles of Tb to treat
bil=[1]; % bil: list of triangles Ta to start with
bd=zeros(size(Tb,1)+1,1); % bd: flag for triangles in Tb treated
bd(end)=1; % guard, to treat boundaries
bd(1)=1; % mark first triangle in b list.
M=sparse(size(Nb,2),size(Na,2));
while length(bl)>0

bc=bl(1); bl=bl(2:end); % bc: current triangle of Tb
al=bil(1); bil=bil(2:end); % triangle of Ta to start with
ad=zeros(size(Ta,1)+1,1); % same as for bd
ad(end)=1;
ad(al)=1;
n=[0 0 0]; % triangles intersecting with neighbors
while length(al)>0

ac=al(1); al=al(2:end); % take next candidate
[P,nc,Mc]=Intersect(Nb(:,Tb(bc,1:3)),Na(:,Ta(ac,1:3)));
if ~isempty(P) % intersection found

M(Tb(bc,1:3),Ta(ac,1:3))=M(Tb(bc,1:3),Ta(ac,1:3))+Mc;
t=Ta(ac,3+find(ad(Ta(ac,4:6))==0));
al=[al t]; % add neighbors
ad(t)=1;
n(find(nc>0))=ac; % ac is starting candidate for neighbor

end
end
tmp=find(bd(Tb(bc,4:6))==0); % find non-treated neighbors
idx=find(n(tmp)>0); % take those which intersect
t=Tb(bc,3+tmp(idx));
bl=[bl t]; % and add them
bil=[bil n(tmp(idx))]; % with starting candidates Ta
bd(t)=1;

end

Fig. 2. Algorithm with linear complexity for computing the intersection of two non-matching

triangular grids and the associated mortar projection matrix.

that could intersect the currently treated triangle from mesh b. The algorithm treats

triangles of mesh b one by one, and checks for each triangle at most a constant

number of triangles in mesh a, which shows that the average complexity is linear.

The worst-case complexity however is quadratic, namely when the constant equals

the total number of triangles in mesh a. This situation arises when every triangle of

mesh a intersects every triangle of mesh b, and quadratic complexity is unavoidable

in this case.

Note that our algorithm does not depend on the number of dimensions; it only

uses the fact that each element has a given number of neighbors, which in the imple-

mentation shown is three. We however assumed that the two meshes are connected,

and also that the intersection of one element with the elements of the other mesh are

simply connected. Otherwise the algorithm would need extra starting points in order

to find the complete intersections.

190 Martin J. Gander and Caroline Japhet

5 Numerical Experiments

We show in Fig. 3 a comparison of our algorithm with the brute force search, where

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

number of triangles

tim
e

fo
r

20
 p

ro
je

ct
io

ns

Brute Force
New Method
O(n)2

O(n)

10
1

10
2

10
0

10
1

10
2

10
3

10
4

10
5

number of triangles

tim
e

fo
r

5
pr

oj
ec

tio
ns

Brute Force
New Method
O(n)2

O(n)

Fig. 3. Comparison in computing time for two-dimensional meshes on the left, and three-

dimensional meshes on the right.

for every element in the first mesh the intersection with every element in the second

mesh is computed. On the left, we show the average computing time for twenty

projection calculations in two dimensions, each time with two random triangular

meshes, and on the right a similar comparison for the three-dimensional case, where

we show the average computing time for five projection calculations. In addition to

the asymptotic superiority, we also see that the new algorithm is already competitive

for small meshes, i.e. the algorithmic overhead is negligible.

6 Conclusions

The intersection algorithm we presented for two triangles can be made slightly faster

by first using an inexact range test to quickly exclude non-intersecting triangles,

before starting the actual computation of the intersection.

The projection algorithm itself has also been extended to contact problems, where

the interfaces of the two neighboring domains do not quite lie in the same physical

manifold, and an additional projection “normal” to the interface is necessary. All

codes and a demo are available at www.unige.ch/∼gander.

Acknowledgement. We thank a referee for detailed comments. This research was supported in

part by the Swiss National Science Foundation Grant 200020-1 17577/1.

Non-Matching Grid Projections 191

References

[1] Bernardi, C., Maday, Y., Patera, A.T.: Domain decomposition by the mortar el-

ement method. In H. G. Kaper and M. Garbey, eds., Asymptotic and Numerical

Methods for Partial Differential Equations with Critical Parameters, vol. 384,

269–286. N.A.T.O. ASI, Kluwer Academic, 1993.

[2] Brezzi, F., Lions, J.-L., Pironneau, O.: Analysis of a Chimera method. C. R.

Acad. Sci. Paris Sér. I Math., 332(7):655–660, 2001.

[3] Flemisch, B., Hager, C.: Mortar projection algorithms. Private Communication,

2007.

[4] Flemisch, B., Kaltenbacher, M., Wohlmuth, B.I.: Elasto-acoustic and acoustic-

acoustic coupling on nonmatching grids. Internat. J. Numer. Methods Engrg.,

67(13):1791–1810, 2006.

[5] Gander, M.J., Japhet, C., Maday, Y., Nataf, F.: A new cement to glue non-

conforming grids with Robin interface conditions: The finite element case. In

R. Kornhuber et al. eds., Proceedings of the 15th international domain decom-

position conference, volume 40, 259–266. Springer LNCSE, 2005.

[6] Glowinski, R., He, J., Lozinski, A., Rappaz, J., Wagner, J.: Finite element ap-

proximation of multi-scale elliptic problems using patches of elements. Numer.

Math., 101(4):663–687, 2005.

[7] Greiner, G., Hormann, K.: Efficient clipping of arbitrary polygons. ACM Trans.

Graph., 17(2):71–83, 1998.

[8] Fraunhofer Institute: MpCCI 3.0.6-12 Documentation. Fraunhofer Institute for

Algorithms and Scientific Computing, 2007.

[9] Apoung Kamga, J.-B., Pironneau, O.: Numerical zoom for multiscale problems

with an application to nuclear waste disposal. J. Comput. Phys, 224:403–413,

2007.

[10] Knuth, D.N.: The Art of Computer Programming, volume 3. Addison-Wesley,

1973.

[11] Krause, R., Sander, O.: Fast solving of contact problems on complicated ge-

ometries. In R. Kornhuber et al. eds., Proceedings of the 15th international

domain decomposition conference, vol. 40, 495–502. Springer LNCSE, 2005.

[12] Lee, P., Yang, C.-H., Yang, J.-R.: Fast algorithms for computing self-avoiding

walks and mesh intersections over unstructured meshes. Adv. Engrg. Softw., 35:

61–73, 2004.

[13] Löhner, R.: Applied CFD Techniques: An Introduction Based on Finite Element

Methods. Wiley, 2001.

[14] Löhner, R., Morgan, K.: An unstructured multigrid method for elliptic prob-

lems. Internat. J. Numer. Methods Engrg., 24:101–115, 1987.

[15] Maday, Y., Rapetti, F., Wohlmuth, B.I.: The influence of quadrature formulas in

2d and 3d mortar element methods. In Recent developments in domain decom-

position methods (Zürich, 2001) Lect. Notes Comput. Sci., vol. 23, 203–221.

Springer, 2002.

192 Martin J. Gander and Caroline Japhet

[16] Meakin, R.L.: A new method for establishing intergrid communication among

systems of overset grids. 10th AIAA Comput. Fluid Dyn. Conf. (Honolulu, HI),,

91(1586), 1991.

[17] Picasso, M., Rappaz, J., Rezzonico, V.: Multiscale algorithm with patches of

finite elements. Comm. Numer. Methods Engrg., 24(6):477–491, 2007.

[18] Plimpton, S., Hendrickson, B., Stewart, J.: A parallel rendezvous algorithm for

interpolation between multiple grids. J. Parallel Distr. Comput., 64(2), 2004.

[19] Shewchuk. J.R.: Adaptive precision floating-point arithmetic and fast robust

geometric predicates. Comput. Geom., 18(3):305–363, 1997.

[20] Steger, J.L., Dougherty, F.C., Benek, J.A.: A chimera grid scheme, advances in

grid generation. In K.N. Ghia and U. Ghia, eds., ASME FED, vol. 5, 1983.

[21] Weiler, K., Atherton, P.: Hidden surface removal using polygon area sorting.

Siggraph 11(2):214–222, 1977.

