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ois-Xavier Roux1 Abstra
tThe Optimized Order 2 (OO2) method is a nonoverlapping domain de
omposi-tion method with di�erential interfa
e 
onditions of order 2 along the interfa
eswhi
h approximate the exa
t arti�
ial boundary 
onditions [13℄, [9℄. The 
onver-gen
e of S
hwarz type methods with these interfa
e 
onditions is proved in [12℄.There already exists appli
ations of the OO2 method to 
onve
tion-di�usionequation [9℄ and Helmholtz problem [3℄. We �rst re
all the OO2 method andpresent numeri
al results for the 
onve
tion-di�usion equation dis
retized by a�nite volume s
heme. The aim of this paper is then to provide an extension of apre
onditioning te
hnique introdu
ed in [7℄, [5℄ based upon a global 
oarse prob-lem to non symmetri
 problems like 
onve
tion-di�usion problems. The goal isto get the independen
e of the 
onvergen
e upon the number of subdomains.Numeri
al results on 
onve
tion-di�usion equation will illustrate the eÆ
ien
yof the OO2 algorithm with this 
oarse grid pre
onditioner.Key words: domain de
omposition; OO2 method; arti�
ial boundary 
onditions;
onve
tion-di�usion problems; 
oarse grid pre
onditioner2 The Optimized Order 2 MethodWe re
all the OO2 Method in the 
ase of the 
onve
tion-di�usion problem:L(u) = 
u+ a(x; y)�u�x + b(x; y)�u�y � ��u = f in 
 (1)C(u) = g on �
where 
 is a bounded open set of R2, ~a = (a; b) is the velo
ity �eld, � is thevis
osity, C is a linear operator, 
 is a 
onstant whi
h 
ould be 
 = 1�t with�t a time step of a ba
kward-Euler s
heme for solving the time dependent
onve
tion-di�usion problem. The method 
ould be applied to other PDE's.The OO2 method is based on an extension of the additive S
hwarz algorithmwith nonoverlapping subdomains : �
= [Ni=1 �
i; 
i \
j = ;; i 6= j. We denoteby �i;j the 
ommon interfa
e to 
i and 
j ; i 6= j. The outward normal from
i is ni and � i is a tangential unit ve
tor.1



The additive S
hwarz algorithm with nonoverlapping subdomains ([11℄) is :L(un+1i ) = f; in 
iBi(un+1i ) = Bi(unj ); on �i;j ; i 6= j (2)C(un+1i ) = g on �
i \ �
where Bi is an interfa
e operator. We re
all �rst the OO2 interfa
e operator Biand then the substru
turing formulation of the method.OO2 interfa
e 
onditionsIn the 
ase of S
hwarz type methods, it has been proved in [14℄ that the optimalinterfa
e 
onditions are the exa
t arti�
ial boundary 
onditions [8℄. Unfortu-nately, these 
onditions are pseudo-di�erential operators. Then, it has beenproposed in [13℄ to use low wave number di�erential approximations to theseoptimal interfa
e 
onditions. Numeri
al tests on a �nite di�eren
e s
heme withoverlapping subdomains has shown that the 
onvergen
e was very fast for a ve-lo
ity �eld non tangential to the interfa
e, but very slow, even impossible, for avelo
ity �eld tangential to the interfa
e. So, instead of taking low-wave numberapproximations, it has been proposed in [9℄ to use di�erential interfa
e 
ondi-tions of order 2 along the interfa
e wi
h optimize the 
onvergen
e rate of theS
hwarz algorithm. These \Optimized Order 2" interfa
e operators are de�nedas follows:Bi = ��ni � a:ni �p(a:ni)2 + 4
�2� + 
2 ��� i � 
3 �2�� 2iwhere 
2 = 
2(a:ni; a:� i) and 
3 = 
3(a:ni; a:� i) minimize the 
onvergen
e rateof the S
hwarz algorithm. The analyti
 analysis in the 
ase of 2 subdomains and
onstant 
oeÆ
ients in (1) redu
e the minimization problem to a one parameterminimization problem. This te
hnique is extended in the 
ase of variable 
oeÆ-
ients and an arbitrary de
omposition, that is only one parameter is 
omputed,with a di
hotomy algorithm. With this parameter we get 
2 and 
3 (see [10℄).So the OO2 
onditions are easy to use and not 
ostly. The 
onvergen
e of theS
hwarz algorithm with the OO2 interfa
e 
onditions is proved for a de
ompo-sition in N subdomains (strips) using the te
hniques in [12℄.Substru
turing formulationIn [14℄, the nonoverlapping algorithm (2) is interpreted as a Ja
obi algorithmapplied to the interfa
e problem D� = b (3)where �, restri
ted to 
i, represents the dis
retization of the term Bi(ui) onthe interfa
e �i;j ; i 6= j. The produ
t D�, restri
ted to 
i, represents the dis-
retization of the jump Bi(ui)�Bi(uj) on the interfa
e �i;j ; i 6= j. To a

elerate
onvergen
e, the Ja
obi algorithm is repla
ed by a Krylov type algorithm [16℄.2



Numeri
al resultsThe method is applied to a �nite volume s
heme [1℄ (
ollaboration with MatraBAe Dynami
s Fran
e) with a de
omposition in N nonoverlapping subdomain.We 
ompare the results obtained with the OO2 interfa
e 
onditions and theTaylor order 0 ([4℄,[2℄, [13℄) or order 2 interfa
e 
onditions ([13℄). The interfa
eproblem (3) is solved by a Bi
gstab algorithm. This involves solving N inde-pendant subproblems whi
h 
an be done in parallel. Ea
h subproblem is solvedby a dire
t method. We denote by h the mesh size.1. We 
onsider the problem: L(u) = 0; 0 � x � 1; 0 � y � 1with u(0; y) = �u�x (1; y) = 0; 0 � y � 1; �u�y (x; 1) = 0; u(x; 0) = 1; 0 � x � 1.In order to observe the in
uen
e on the 
onvergen
e of the 
onve
tion velo
ityangle to the interfa
es, we �rst take a de
omposition in strips. The table 1 showsthat the OO2 interfa
e 
onditions give a signi�
antly better 
onvergen
e whi
his independant of the 
onve
tion velo
ity angle to the interfa
es. One of theadvantages is that for a given number of subdomains, the de
omposition of thedomain doesn't a�e
t the 
onvergen
e. We also observe that the 
onvergen
efor the studied numeri
al 
ases is independant of the mesh size (see table 2 andtable 3). 
onve
tion velo
ity OO2 Taylor order 2 Taylor order 0normal velo
ity to the interfa
e 15 123 141a = y; b = 0tangential velo
ity to the interfa
e 20 not 75a = 0; b = y 
onvergentTable 1: Number of iterations versus the 
onve
tion velo
ity's angle16� 1 subdomains � = 1:d� 2; CFL = 1:d9; h = 1241 ; log10(Error) < 1:d� 6grid 65� 65 129� 129 241� 241OO2 15 15 15Taylor order 2 49 69 123Taylor order 0 49 82 141Table 2: Number of iterations versus the mesh size16�1 subdomains; a = y; b = 0; � = 0:01; CFL = 1:d9; log10(Error) < 1:d�6grid 65� 65 129� 129 241� 241OO2 49 48 48Taylor order 0 152 265 568Table 3: Number of iterations versus the mesh size16� 1 subdomains, rotating velo
ity,a = � sin (�(y � 12 )) 
os (�(x� 12 )); b = 
os (�(y � 12 )) sin (�(x � 12 ))� = 1:d� 2; CFL = 1:d9; log10(Error) < 1:d� 63



2. The OO2 method was also tested for a 
onve
tion velo
ity �eld issuedfrom the velo
ity �eld of a Navier-Stokes in
ompressible 
ow, with Reynoldsnumber Re = 10000, around a 
ylinder. This velo
ity �eld is issued from a
omputation at the aerodynami
 department at Matra. The 
omputationaldomain is de�ned by 
 = f(x; y) = (r 
os (�); r sin (�)); 1 � r � R; 0 � � � 2�gwith R > 0 given.We 
onsider the problem L(u) = 0 in 
 with u = 1 on f(x; y) = (
os (�); sin (�));0 � � � 2�g and u = 0 on f(x; y) = (R 
os (�); R sin (�)) 0 � � � 2�g. The gridis f(x; y) = (ri 
os (�j); ri sin (�j))g, and is re�ned around the 
ylinder and inthe dire
tion of the 
ow. The OO2 interfa
e 
onditions give also signi�
antlybetter 
onvergen
e in that 
ase. Numeri
ally the 
onvergen
e is pra
ti
allyindependant of the vis
osity � (see table 4). We note Nmax = (number ofpoints on the boundary of a subdomain) � (number of subdomains).
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Figure 1: Isovalues of the solution u, � = 1:d� 4; CFL = 1:d9OO2 Taylor order 2 Taylor order 0� = 1:d� 5 56 41 119� = 1:d� 4 43 121 374� = 1:d� 3 32 Nmax = 768 Nmax = 768log10(Error) = �5:52 log10(Error) = �2:44Table 4: Number of iterations versus the vis
osity4� 2 subdomains, CFL = 1:d9, log10(Error) < 1:d� 64



3 Extension of a 
oarse grid pre
onditioner tonon symmetri
 problemsNumeri
ally, the 
onvergen
e ratio of the method is nearly linear upon the num-ber of subdomains in one dire
tion of spa
e. To ta
kle this problem, the aimof this paper is to extend a 
oarse grid pre
onditioner introdu
ed in [7℄, [5℄ tonon symmetri
 problems like 
onve
tion-di�usion problems. This pre
ondition-ing te
hnique has been introdu
ed for the FETI method, in linear elasti
ity,when lo
al Neumann problems are used and are ill posed (see [7℄). It has beenextended for plate or shell problems, to ta
kle the singularities at interfa
e 
ross-points ([6℄, [5℄, [15℄). In that 
ase, this pre
onditioner is a proje
tion for (D:; :)2on the spa
e orthogonal to a 
oarse grid spa
e wi
h 
ontain the 
orner modes.This 
onsists in 
onstraining the Lagrange multiplier to generate lo
al displa
e-ment �elds whi
h are 
ontinuous at interfa
e 
rosspoints. The independan
eupon the number of subdomains has been proved.In this paper we extend this pre
onditioner by 
onsidering a (D:;D:)2 proje
-tion on the spa
e orthogonal to a 
oarse grid spa
e. The goal is to �lter thelow frequen
y phenomena, in order to get the independen
e of the 
onvergen
eupon the number of subdomains. So the 
oarse grid spa
e, denoted W , is a setof fun
tions 
alled \
oarse modes" whi
h are de�ned on the interfa
es by :� Pre
onditioner M1 : the \
oarse modes" are the �elds with unit value onone interfa
e and 0 on the others.� Pre
onditioner M2 : the \
oarse modes" in a subdomain 
i are on oneinterfa
e the restri
tion of Kiui where ui = 1 2 
i and Ki is the sti�nessmatrix, and 0 on the others.Then, at ea
h iteteration, �p satis�es the 
ontinuity requirement of asso
iated�eld up at interfa
e : (DW )ti(D�p � b) = 0 8iThat is, if we introdu
e the proje
tor P on W? for (D:;D:)2, the proje
tedgradient of the 
ondensed interfa
e problem is:Pgp = gp +Xi (DW )iÆi (4)and verify (DW )tiPgp = 0 8i (5)With (4), the 
ondition (5) 
an be written as the 
oarse problem :(DW )t(DW )Æ = �(DW )tgpSo the method has two level : at ea
h iteration of the Krylov method at the�ne level, an additional problem has to be solved at the 
oarse grid level.5



Numeri
al resultsThe pre
onditioned OO2 method is applied to problem (1) dis
retized by the�nite volume s
heme with nonoverlapping subdomains. The interfa
e problem(3) is solved by a proje
ted GCR algorithm, that is the iterations of GCR arein the (D:;D:)2 orthogonal to the 
oarse grid spa
e. Ea
h subproblem is solvedby a dire
t method. We 
ompare the results obtained with the pre
onditionersM1 and M2.1. We 
onsider the problem: L(u) = 0; 0 � x � 1; 0 � y � 1 with�u�x (1; y) = 0; u(0; y) = 1; 0 � y � 1 and �u�y (x; 1) = 0; u(x; 0) = 1; 0 � x � 1.The 
onve
tion velo
ity is a = y; b = 0. In that 
ase, the solution is 
onstant inall the domain : u = 1 in [0; 1℄2. Table 5 justify the 
hoi
e of the pre
onditionerM2. In fa
t, in that 
ase the �eld � asso
iated to the solution on the interfa
esis in the 
oarse grid spa
e of pre
onditioner M2.2. We 
onsider the problem: L(u) = 0; 0 � x � 1; 0 � y � 1 with�u�x (1; y) = u(0; y) = 0; 0 � y � 1 and �u�y (x; 1) = 0; u(x; 0) = 1; 0 � x � 1,with a rotating 
onve
tion velo
ity: a = � sin (�(y � 12 )) 
os (�(x � 12 )) andb = 
os (�(y � 12 )) sin (�(x � 12 )). Figure 3 shows that the 
onvergen
e of theOO2 method with the pre
onditioner M2 is nearly independant of the num-ber of subdomains. The 
onvergen
e is better with pre
onditioner M2 thanpre
onditioner M1 (�gure 2).without pre
onditioner pre
onditioner M1 pre
onditioner M2OO2 15 17 1Table 5: Number of iterations, 8� 1 subdomainsa = y; b = 0; � = 1:d� 2; CFL = 1:d9; h = 1129 ; log10(Error) < 1:d� 6
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ity, � = 1:d� 2; CFL = 1:d9; h = 12414 Con
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