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DISCRETE-TIME ANALYSIS OF OPTIMIZED SCHWARZ WAVEFORM
RELAXATION WITH ROBIN PARAMETERS DEPENDING ON THE

TARGETED ITERATION COUNT

Arthur Arnoult1 , Caroline Japhet1 and Pascal Omnes1,2,*

Abstract. We propose a new approach that provides new results in the convergence analysis of
optimized Schwarz waveform relaxation (OSWR) iterations for parabolic problems, and allows to define
efficient optimized Robin parameters that depend on the targeted iteration count, a property that
is shared by the actual observed optimal parameters, while traditional Fourier analysis in the time
direction leads to iteration independent parameters. This new approach is based on the exact resolution
of the time semi-discrete error equations. It allows to recommend a couple (number of iterations,
Robin parameter) to reach a given accuracy. While the general ideas may apply to an arbitrary space
dimension, the analysis is first presented in the one dimensional case. Numerical experiments illustrate
the performance obtained with such iteration-dependent optimized Robin parameters.
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1. Introduction

Schwarz waveform relaxation (SWR) algorithms [12, 17, 22], and their extensions, have a long history in the
parallel solution of discretized time-dependent models driven by partial differential equations, such as those
arising in engineering, physics, porous media or geophysical applications, etc [1, 4, 6, 8, 10, 20, 25, 29, 36, 39, 41].
The success of these iterative methods is linked to their fast convergence that can be optimized by choosing
appropriate boundary conditions on the space-time interfaces between subdomains. In this contribution, we
consider Robin boundary conditions without overlap, in which the value of the Robin parameter(s) can be
chosen identically on the two sides of the interface (the so-called one-sided case), or differently (the two-sided
case), and can be optimized to improve convergence rates. The corresponding algorithm is called optimized
Schwarz waveform relaxation (OSWR), see [15,20,35]. These methods are well-suited to handle nonconformities
in time and space, and can be combined with a posteriori estimates (to get efficient stopping criteria) or time
parallelization techniques [2, 7, 21,24,26].

Keywords and phrases. Optimized Schwarz waveform relaxation discrete-time convergence analysis, iteration-dependent Robin
parameters.
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Traditional convergence analysis of OSWR algorithms is mostly performed using the continuous model, in
an attempt to obtain a theory which is independent of the actual numerical schemes used for discretization.
This analysis may be performed by energy estimates, both in the one-sided and two-sided cases [26, 28]. This
technique is quite general but does not provide a convergence rate, nor a hint on how to properly choose the
Robin parameters for fast convergence. At the discrete-time level, a convergence proof by energy estimates is
performed for the one-sided case [26], but not for the two-sided case.

On the other hand, Fourier transforms in time and space are commonly used at the continuous level to obtain
convergence rates of the OSWR method for each Fourier mode [3, 13, 15, 20, 30, 35]; although the supremum of
this convergence factor over the whole Fourier space is one, it can however be used to choose efficient Robin
parameters that optimize it over the bounded range of frequencies relevant to the discrete numerical (time and
space) grids. However, actual numerical results obtained with this choice of Robin parameters do not always
perform as efficiently as expected and it has been discussed that this problem may be linked to the Fourier
transform in time that may not always allow to perform an adequate analysis of the convergence properties of
the method [16, 38]. This may be due to the fact that the Fourier transform supposes an infinite time interval,
while the actual simulation is necessarily performed on a finite one; switching to Fourier series does not solve
this issue since the error does not vanish at the final time as it does at the initial time. Another approach,
based on discrete-time analysis is proposed in [9, 27]; for simple schemes, it is based on the so-called one-sided
𝒵 transform, which is a discrete equivalent of the Laplace transform. However, this also requires either to
consider infinite intervals in time or to neglect the error at the final time. On the contrary, in the present
contribution we do not perform any transformation in the time direction; restricting for the sake of simplicity to
the one-dimensional heat equation, we solve directly the full space-time semi-discrete system on any finite time
interval; this is made possible by the Jordan form of the backward Euler scheme that is used to discretize in
the time direction. The extension to higher dimensions with domain decompositions that contain cross-points
is more complex and is the subject of a separate work.

This approach is particularly rich and allows to obtain several new results: first, we prove convergence of
the discrete-time one-sided and two-sided algorithms for any positive value of the Robin coefficients, with a
convergence that, for any fixed value of the number of time steps, depends on a single parameter in the one-
sided case (and on two parameters in the two-sided case) which is a combination of the diffusion coefficient value,
the time step and the Robin parameter; secondly, we obtain exact convergence of the OSWR for a well-chosen
value of the Robin parameters in a number of iterations equal to the number of time steps (one-sided case) or
twice this number (two-sided case). Furthermore, numerical simulations show that the observed optimal Robin
parameter depends itself on the number of iterations performed, and we propose a method to choose an efficient
parameter as a function of this number; this allows us to recommend a couple (number of iterations, Robin
parameter) to reach a given accuracy, e.g. the expected scheme accuracy.

This paper is organized as follows: in Section 2, we consider a model problem and state its well-posedness,
as well as that of the equivalent multi-domain problem. Then we introduce the discrete-time multi-domain
problem, using an implicit Euler scheme. This problem involves a matrix on which our analysis depends; some
of its properties are given in Section 3. In Section 4, we first recall the continuous OSWR method, and the
usual approach to calculate optimized Robin parameters using Fourier transform in time. Then we consider
the discrete-time OSWR algorithm and prove its convergence, as well as various related properties. The main
result of this article is an estimate of the relative convergence error at each iteration, which allows to introduce
a new strategy to define discrete-time optimized parameters that depend on the number of iterations that will
be performed. Finally, in Section 5, numerical experiments show that the proposed error estimate is close to
the relative convergence error at each iteration. Numerical results comparing convergence with continuous or
discrete-time optimized Robin parameters show that, even if the continuous ones can be a reasonable choice
in some cases, the discrete-time ones give better performances, as they are close to the iteration dependent
numerical optimal ones, in all test cases. Asymptotic performance with these optimized parameters shows that
the convergence depends weakly (one-sided) and is almost independent (two-sided) of the time step.
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2. Problem setting

In order to simplify the analysis, we consider the following monodimensional heat equation on Ω × (0, 𝑇 ),
with Ω = R and 𝑇 > 0 the final time,

ℒ𝑢 := 𝜕𝑡𝑢− 𝜈𝜕𝑥𝑥𝑢 = 𝑓 in Ω× (0, 𝑇 ),
𝑢(· , 𝑡 = 0) = 𝑢0 in Ω,

lim
𝑥→±∞

𝑢(𝑥, · ) is bounded on (0, 𝑇 ), (1)

where 𝑓 is a source term, 𝑢0 an initial condition and 𝜈 a positive diffusion coefficient.
Let 𝐻𝑟,𝑠(Ω × (0, 𝑇 )) = 𝐿2(0, 𝑇 ; 𝐻𝑟(Ω)) ∩𝐻𝑠(0, 𝑇 ; 𝐿2(Ω)) be anisotropic Sobolev spaces defined in [33]. Let

us recall Propositions 2.1 and 2.2 below, that can be directly deduced from [34].

Proposition 2.1. If 𝑢0 belongs to 𝐻1(Ω) and 𝑓 to 𝐿2(0, 𝑇 ; 𝐿2(Ω)), then problem (1) admits a unique solution
in 𝐻2,1(Ω× (0, 𝑇 )).

Let us consider a decomposition of Ω into two non-overlapping subdomains

Ω1 = (−∞, 0), Ω2 = (0, +∞),

and introduce the Robin interface operators as follows (see [15,32])

ℬ1 = 𝜈𝜕𝑥 + 𝛼1, ℬ2 = −𝜈𝜕𝑥 + 𝛼2. (2)

Then, problem (1) can be reformulated as the following equivalent multi-domain problem, with 𝑓𝑖 = 𝑓|Ω𝑖
,

𝑢𝑖 = 𝑢|Ω𝑖
, and 𝑢0,𝑖 = 𝑢0|Ω𝑖

, 𝑖 = 1, 2:

ℒ𝑢1 = 𝑓1 in Ω1 × (0, 𝑇 ),
ℬ1𝑢1 = ℬ1𝑢2 on {0} × (0, 𝑇 ),
𝑢1(·, 0) = 𝑢0,1 in Ω1,

lim
𝑥→−∞

𝑢1(𝑥, · ) is bounded on (0, 𝑇 ),

ℒ𝑢2 = 𝑓2 in Ω2 × (0, 𝑇 ),
ℬ2𝑢2 = ℬ2𝑢1 on {0} × (0, 𝑇 ),
𝑢2(·, 0) = 𝑢0,2 in Ω2,

lim
𝑥→+∞

𝑢2(𝑥, · ) is bounded on (0, 𝑇 ).

(3)

The Robin parameters 𝛼1, 𝛼2 involved in (3) (through ℬ𝑖, 𝑖 = 1, 2, defined in (2)) are freely chosen positive real
numbers taken such that: (a) the Robin subdomain problems in (3) are well posed (see e.g. [7, 34]), (b) they
lead to a fast converging OSWR algorithm (see Sect. 4).

Proposition 2.2. Let 𝑖 = 1 or 𝑖 = 2. If 𝑢0,𝑖 ∈ 𝐻1(Ω𝑖), 𝑓𝑖 ∈ 𝐿2(0, 𝑇 ; 𝐿2(Ω𝑖)), and ℬ𝑖𝑢𝑗 ∈ 𝐻
1
4 (0, 𝑇 ), with

𝑗 = 3− 𝑖, then the Robin subdomain problem in Ω𝑖 in (3) has a unique solution in 𝐻2,1(Ω𝑖 × (0, 𝑇 )).

In practice, a problem such as (3) is solved approximately through discretization and approximation of the
derivatives of 𝑢 by discrete formulas. In this article, we are concerned with the implicit Euler approximation of
the time derivative, with uniform time step ∆𝑡 = 𝑇

𝑁 (𝑁 ∈ N*). Thus, we consider the following semi-discrete
approximation of (3): Find 𝑈𝑖 = (𝑈𝑖,1 . . . 𝑈𝑖,𝑁 )𝑇 , for 𝑖 = 1, 2, such that

𝐿𝑈1 = 𝐹1 in Ω1,

𝐵1𝑈1 = 𝐵1𝑈2 at 𝑥 = 0,

lim
𝑥→−∞

𝑈1(𝑥) is bounded,

𝐿𝑈2 = 𝐹2 in Ω2,

𝐵2𝑈2 = 𝐵2𝑈1 at 𝑥 = 0,

lim
𝑥→+∞

𝑈2(𝑥) is bounded,
(4)

with operator 𝐿 : (𝐻2(Ω𝑖))𝑁 → (𝐿2(Ω𝑖))𝑁 , 𝑖 = 1, 2, defined as follows

𝐿𝑈𝑖 :=
1

𝜈∆𝑡
𝐴𝑈𝑖 − 𝑈 ′′𝑖 ,
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where 𝐴 ∈ R𝑁×𝑁 is defined by

𝐴 :=

⎛⎜⎜⎝
1
−1 1

. . . . . .
−1 1

⎞⎟⎟⎠, (5)

and where, for 𝑖 = 1, 2, for all 𝑛 ∈ J1, 𝑁K, for all 𝑥 ∈ Ω𝑖, 𝑈𝑖,𝑛(𝑥) is an approximation of 𝑢𝑖(𝑥, 𝑛∆𝑡), and
𝐹𝑖 = (𝐹𝑖,1 . . . 𝐹𝑖,𝑁 )𝑇 , with 𝐹𝑖,𝑛(𝑥) := 𝑓𝑖(𝑥,𝑛Δ𝑡)

𝜈 + 𝑢0(𝑥)
𝜈Δ𝑡 𝛿1𝑛 (where 𝛿1𝑛 is the Kronecker delta). The discrete

interface operators 𝐵1 and 𝐵2 are extensions of ℬ1 and ℬ2 to vectors in (𝐻2(Ω𝑖))𝑁 , i.e. for 𝑖 = 1, 2,

𝐵𝑖 : 𝑈 ∈
(︀
𝐻2(Ω𝑖)

)︀𝑁 ↦→ (−1)𝑖+1𝜈𝜕𝑥𝑈 + 𝛼𝑖𝑈. (6)

The analysis performed in this article relies on various properties of matrix 𝐴, which are presented in the
next section.

3. Jordan decomposition

As we will see in Theorem 4.1, solving (4) will involve a square root of matrix 𝐴. Therefore, we will prove
that it exists, using the Jordan decomposition of 𝐴. This decomposition will also be very useful for the analysis
of the OSWR algorithm in Section 4.

3.1. Definitions and general results

We recall here some definitions and results about matrix exponential, square root of a matrix and Jordan
decomposition, from [23,37,40].

Definition 3.1 (Square root of a matrix). A square root of a matrix 𝑀 is a matrix whose square is 𝑀 . It
might not exist nor be unique.

Definition 3.2 (Matrix exponential). If 𝑀 is a square matrix, the exponential of M is the matrix defined by

exp(𝑀) :=
+∞∑︁
𝑘=0

𝑀𝑘

𝑘!
·

We recall the following property about matrix exponential from [37], Page 79.

Proposition 3.3. The function 𝜙 : 𝑥 ∈ C ↦→ exp(𝑥𝑀), where 𝑀 is a square matrix, is differentiable with
respect to 𝑥 and 𝜕𝜙

𝜕𝑥 (𝑥) = 𝑀exp(𝑥𝑀) = exp(𝑥𝑀)𝑀 .

We recall the following results (Def. 3.4 and Thm. 3.5) about Jordan decomposition from [40], Page 350
and [23], Page 317.

Definition 3.4 (Jordan block). The Jordan block of parameter 𝜇 and size 𝑟𝑘 is the 𝑟𝑘 × 𝑟𝑘 matrix (𝑟𝑘 ∈ N*),
defined by

𝐽𝜇 :=

⎛⎜⎜⎜⎜⎝
𝜇 1 0

. . . . . .
. . . 1

0 𝜇

⎞⎟⎟⎟⎟⎠.
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Theorem 3.5 (Jordan decomposition). If 𝑀 ∈ C𝑁×𝑁 , then there exists a nonsingular matrix 𝑋 ∈ C𝑁×𝑁 such
that

𝑋𝑀𝑋−1 =

⎛⎜⎝𝐽𝜇1 0
. . .

0 𝐽𝜇𝐾

⎞⎟⎠,

where 𝜇1, . . . 𝜇𝐾 are the eigenvalues of 𝑀 , possibly equal. The number of Jordan blocks associated with an
eigenvalue is equal to its geometric multiplicity, i.e. the dimension of the associated eigenspace.

Proposition 3.6 (Commuting two Jordan blocks of same size). Blocks 𝐽𝜆 and 𝐽𝜇 commute (and thus also 𝐽−1
𝜆

and 𝐽−1
𝜇 ), as well as 𝐽−1

𝜆 and 𝐽𝜇.

3.2. Square root of a matrix

In this part, we prove that a Jordan matrix admits a square root.

Proposition 3.7. Every matrix 𝑀 = 𝜇I𝑁 +𝒩 with 𝜇 nonzero and 𝒩 a nilpotent matrix admits a square root
under the form

√
𝑀 :=

√
𝜇

𝑁∑︁
𝑘=0

(︂ 1
2

𝑘

)︂
1
𝜇𝑘
𝒩 𝑘, (7)

with generalized binomial coefficients:(︂ 1
2

0

)︂
:= 1,

(︂ 1
2

𝑘

)︂
:=

1
2

(︀
1
2 − 1

)︀
. . .
(︀

1
2 − 𝑘 + 1

)︀
𝑘!

, ∀𝑘 ≥ 1.

Proof. Let us start with the case where 𝜇 = 1. Let 𝑑 be the index of 𝒩 . If 𝑑 = 1, then 𝒩 = 0𝑁,𝑁 , thus 𝑀 = I𝑁 ,
and (7) gives

√
𝑀 = I𝑁 , which is indeed a square root of 𝑀 . If 𝑑 > 1, let

𝑃𝑑−1(𝑋) :=
𝑑−1∑︁
𝑘=0

(︂ 1
2

𝑘

)︂
𝑋𝑘.

We will prove that 𝑃 2
𝑑−1(𝒩 ) = I𝑁 + 𝒩 , i.e. that the polynomial 𝑅 defined by 𝑅(𝑋) := 1 + 𝑋 − 𝑃 2

𝑑−1(𝑋)
vanishes in matrix 𝒩 . For this, we will first show that 𝑅 is factorizable as a product of 𝑋𝑑 and a polynomial,
and then use that 𝒩 𝑑 = 0.

The polynomial 𝑃𝑑−1 has been chosen as the (𝑑− 1)-order Taylor expansion of 𝑡 ↦→
√

1 + 𝑡 around 0:
√

1 + 𝑡 =
𝑡→0

𝑃𝑑−1(𝑡) + 𝑜(𝑡𝑑−1).

By squaring the above equality, we get

1 + 𝑡 =
√

1 + 𝑡
2

=
𝑡→0

𝑃 2
𝑑−1(𝑡) + 2𝑃𝑑−1(𝑡)𝑜

(︀
𝑡𝑑−1

)︀
+ 𝑜
(︀
𝑡𝑑−1

)︀2
= 𝑃 2

𝑑−1(𝑡) + 𝑜
(︀
𝑡𝑑−1

)︀
. (8)

The polynomial 𝑅 being of degree 2𝑑−2, it can be written under the form 𝑅(𝑋) =
∑︀2𝑑−2

𝑘=0 𝜂𝑘𝑋𝑘, with 𝜂𝑘 ∈ R
and 𝜂2𝑑−2 ̸= 0. Then, from (8) and the definition of 𝑅, one gets 𝑅(𝑡) =

𝑡→0
𝑜(𝑡𝑑−1) which is only possible if all 𝜂𝑘

are zeros for 𝑘 ∈ [[0, 𝑑− 1]]. This implies that

𝑅(𝑋) =
2𝑑−2∑︁
𝑘=𝑑

𝜂𝑘𝑋𝑘 =
𝑑−2∑︁
𝑘=0

𝜂𝑘+𝑑𝑋
𝑘+𝑑 = 𝑋𝑑

𝑑−2∑︁
𝑘=0

𝜂𝑘+𝑑𝑋
𝑘.
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Using that 𝒩 is a nilpotent matrix of index 𝑑, i.e. 𝒩 𝑑 = 0, it follows that 𝑅(𝒩 ) = 0. According to the definition
of 𝑅, we obtain:

I𝑁 +𝒩 = 𝑃 2
𝑑−1(𝒩 ).

Let us now consider the general case, with 𝜇 nonzero, arbitrary. We can rewrite 𝑀 as 𝑀 = 𝜇(I𝑁 + 1
𝜇𝒩 )

where the 1
𝜇𝒩 is nilpotent of index 𝑑, and then apply the above result to define

√
𝑀 by

√
𝑀 :=

√
𝜇 𝑃𝑑−1

(︂
1
𝜇
𝒩
)︂

,

with
√

𝜇 a complex number whose square is 𝜇. �

Corollary 3.8. If 𝜇 is nonzero, 𝐽𝜇 admits a square root. In this case, 𝒩 is the matrix with 1 on the superdiag-
onal, and 0 elsewhere. Then the 𝑖-th superdiagonal of

√︀
𝐽𝜇 only contains coefficient 𝜇

1
2−𝑖
(︀ 1

2
𝑖

)︀
.

3.3. Application to matrix 𝐴

Let us now prove that matrix 𝐴 (defined in (5)) admits a square root and give the Jordan decomposition of
the latter. The following proposition is immediate.

Proposition 3.9 (Eigenvalue and eigenspace of 𝐴). The only eigenvalue of 𝐴 is 1 and the associated eigenspace
is of dimension one:

𝑆1(𝐴) := Span
(︀
(0, . . . , 0, 1)T

)︀
. (9)

Proposition 3.10 (Definition and properties of
√

𝐴). Matrix 𝐴 admits a square root with the following prop-
erties:
(i) The only eigenvalue of

√
𝐴 is 1 and the associated eigenspace is 𝑆1(𝐴) defined in (9).

(ii)
√

𝐴 admits a Jordan decomposition √
𝐴 = 𝑄−1𝐽1𝑄, (10)

with 𝑄 an invertible matrix and 𝐽1 as in Definition 3.4 with 𝜇 = 1, 𝑟𝑘 = 𝑁 .

Proof. Since 𝐴 = I𝑁 +𝒩 , where 𝒩 is the strictly lower triangular matrix with coefficient −1 on the first lower
diagonal, Proposition 3.7 shows that 𝐴 admits a square root given by formula (7), which additionally shows
that 1 is the only eigenvalue of

√
𝐴, since all powers of 𝒩 are also strictly lower triangular.

Furthermore, let 𝑋 be a nonzero eigenvector associated with the eigenvalue of
√

𝐴. We thus have:
√

𝐴𝑋 = 𝑋.
Then 𝐴𝑋 =

√
𝐴
√

𝐴𝑋 =
√

𝐴𝑋 = 𝑋. As 𝑋 is nonzero, it is also an eigenvector of 𝐴, and, according to
Proposition 3.9, 𝑋 is necessarily collinear to (0, . . . , 0, 1)𝑇 . This shows (i).

From (i) and Theorem 3.5, we obtain the Jordan decomposition (ii). �

4. OSWR algorithm

In this section, after recalling some results in the continuous framework, we study the convergence of the
discrete-time OSWR algorithm. This will then suggest a methodology for calculating the Robin parameters.

4.1. Continuous case

The OSWR method for solving (3) consists in choosing initial Robin data 𝜉0
1 , 𝜉0

2 on (0, 𝑇 ), and setting
ℬ1𝑢

0
2(0, ·) := 𝜉0

1 , ℬ2𝑢
0
1(0, ·) := 𝜉0

2 . Then for ℓ = 1, 2, . . . one solves the local Robin problems

ℒ𝑢ℓ
1 = 𝑓1 in Ω1 × (0, 𝑇 ),

ℬ1𝑢
ℓ
1 = ℬ1𝑢

ℓ−1
2 on {0} × (0, 𝑇 ),

𝑢ℓ
1(·, 0) = 𝑢0,1 in Ω1,

lim
𝑥→−∞

𝑢ℓ
1(𝑥, · ) is bounded,

ℒ𝑢ℓ
2 = 𝑓2 in Ω2 × (0, 𝑇 ),

ℬ2𝑢
ℓ
2 = ℬ2𝑢

ℓ−1
1 on {0} × (0, 𝑇 ),

𝑢ℓ
2(·, 0) = 𝑢0,2 in Ω2,

lim
𝑥→+∞

𝑢ℓ
2(𝑥, · ) is bounded.
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The usual Fourier transform in time approach (with the assumption of an infinite time interval) provides an
expression of the convergence factor of the above algorithm (see [14,15]) as follows

𝜌(𝜔, 𝛼1, 𝛼2) :=

(︃√
𝜈𝑖𝜔 − 𝛼1√
𝜈𝑖𝜔 + 𝛼1

)︃(︃√
𝜈𝑖𝜔 − 𝛼2√
𝜈𝑖𝜔 + 𝛼2

)︃
,

for all Fourier time frequencies 𝜔. While we have max𝜔∈R |𝜌(𝜔, 𝛼1, 𝛼2)| = 1, the convergence factor can be
used to calculate efficient Robin parameters in the discrete setting. Indeed, in numerical computations the time
frequency is bounded, i.e. in [ 𝜋

𝑇 , 𝜋
Δ𝑡 ]. Then, one can define continuous optimized Robin parameters 𝛼1,𝐶 , 𝛼2,𝐶

such that
|𝜌(𝜔, 𝛼1,𝐶 , 𝛼2,𝐶)| = min

(𝛼1,𝛼2)∈(R+*)2
max

𝜔∈[ 𝜋
𝑇 , 𝜋

Δ𝑡 ]
|𝜌(𝜔, 𝛼1, 𝛼2)|,

see e.g. [13, 15, 31, 35]. In our numerical experiments of Section 5, the minimization is done using the GNU
Octave fminsearch function [11].

One can also consider the one-sided case 𝛼 := 𝛼1 = 𝛼2 and define 𝛼𝐶 as the solution of the above minimization
problem on 𝛼 ∈ R+*. Reference [14] gives an explicit formula for 𝛼𝐶 when 𝜈 = 1. Its extension to any 𝜈 through
a change of variables provides

𝛼𝐶 =
√

𝜋𝜈

(︂
1

𝑇∆𝑡

)︂1/4

.

4.2. Dimensionless Robin parameters

In what follows, we will use the notation below, for dimensionless Robin parameters:

�̄�𝑖 := 𝛼𝑖

√︂
∆𝑡

𝜈
, 𝑖 = 1, 2, �̄� := (�̄�1, �̄�2). (11)

This notation will be useful for the convergence analysis in the discrete-time setting. More precisely, we will
observe in Section 4.4 that the convergence depends only on �̄� and 𝑁 .

Using this notation, the dimensionless continuous optimized Robin parameters, for the one and two-sided
cases, are respectively denoted by

�̄�𝐶 :=
√

𝜋

(︂
∆𝑡

𝑇

)︂1/4

, �̄�𝐶 :=

√︂
∆𝑡

𝜈
(𝛼1,𝐶 , 𝛼2,𝐶). (12)

4.3. Discrete-time algorithm

The discrete-time OSWR algorithm for solving the coupled problem (4) is as follows.

Algorithm 1. Discrete-time OSWR.
Choose initial Robin data Ξ0

1, Ξ
0
2 ∈ R𝑁 at 𝑥 = 0, and set 𝐵1𝑈

0
2 := Ξ0

1, 𝐵2𝑈
0
1 := Ξ0

2

for ℓ = 1, 2, . . . do
Solve the local Robin problems

𝐿𝑈 ℓ
1 = 𝐹1 in Ω1,

𝐵1𝑈
ℓ
1 = 𝐵1𝑈

ℓ−1
2 at 𝑥 = 0,

lim
𝑥→−∞

𝑈 ℓ
1(𝑥) is bounded,

𝐿𝑈 ℓ
2 = 𝐹2 in Ω2,

𝐵2𝑈
ℓ
2 = 𝐵2𝑈

ℓ−1
1 at 𝑥 = 0,

lim
𝑥→+∞

𝑈 ℓ
2(𝑥) is bounded.

(13)

end for

In what follows, an analysis of the convergence of Algorithm 1 is given.
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4.4. Discrete-time convergence analysis

Let us denote by (𝑈1, 𝑈2) the solution of (4). Then, by linearity, the error 𝐸ℓ
𝑖 := 𝑈 ℓ

𝑖 −𝑈𝑖, 𝑖 = 1, 2, at iteration ℓ
of Algorithm 1, satisfies, for ℓ ≥ 1,

𝐿𝐸ℓ
1 = 0𝑁 in Ω1,

lim
𝑥→−∞

𝐸ℓ
1(𝑥) is bounded,

𝐿𝐸ℓ
2 = 0𝑁 in Ω2,

lim
𝑥→+∞

𝐸ℓ
2(𝑥) is bounded. (14)

𝐵1𝐸
ℓ
1 = 𝐵1𝐸

ℓ−1
2 at 𝑥 = 0, 𝐵2𝐸

ℓ
2 = 𝐵2𝐸

ℓ−1
1 at 𝑥 = 0, (15)

with
𝐵𝑖𝐸

0
𝑗 (0) := Ξ0

𝑖 −𝐵𝑖𝑈𝑖(0), 𝑗 = 3− 𝑖, 𝑖 = 1, 2. (16)

Then we have the following result:

Theorem 4.1. Let ℓ ≥ 1. There exists 𝛽ℓ
𝑖 ∈ R𝑁 , 𝑖 = 1, 2, such that the subdomain solutions of (14) are of the

form

𝐸ℓ
𝑖 (𝑥) = e

−|𝑥|√
𝜈Δ𝑡

√
𝐴
𝛽ℓ

𝑖 , ∀𝑥 ∈ Ω𝑖, 𝑖 = 1, 2. (17)

The proof of Theorem 4.1 is given in Appendix A.
Let us introduce the dimensionless initial Robin data for the errors

�̄�0
𝑖 :=

√︂
∆𝑡

𝜈

(︀
Ξ0

𝑖 − (𝐵𝑖𝑈𝑖)(0)
)︀
, 𝑖 = 1, 2. (18)

Let us also extend (17) to the case ℓ = 0, for �̄�𝑗 ̸= 1, 𝑗 = 1, 2,

𝛽0
𝑖 :=

(︁
�̄�𝑗I𝑁 −

√
𝐴
)︁−1

�̄�0
𝑗 , 𝑗 = 3− 𝑖, 𝑖 = 1, 2, (19)

𝐸0
𝑖 (𝑥) := e

−|𝑥|√
𝜈Δ𝑡

√
𝐴
𝛽0

𝑖 , ∀𝑥 ∈ Ω𝑖, 𝑖 = 1, 2. (20)

For ℓ ≥ 1, the dimensionless Robin data for the errors are denoted by

�̄�ℓ
𝑖 :=

√︂
∆𝑡

𝜈

(︀
𝐵𝑖

(︀
𝐸ℓ

𝑗

)︀)︀
(0) =

(︁
�̄�𝑖I𝑁 −

√
𝐴
)︁
𝛽ℓ

𝑗 , 𝑗 = 3− 𝑖, 𝑖 = 1, 2. (21)

Let 𝐻𝐻𝐻1(Ω𝑖) := (𝐻1(Ω𝑖))𝑁 and 𝐿𝐿𝐿∞(Ω𝑖) := (𝐿∞(Ω𝑖))𝑁 , equipped respectively with

‖𝑈‖𝐻𝐻𝐻1(Ω𝑖) :=
√︃ ∑︁

𝑗∈[[1,𝑁 ]]

(︁
‖𝑈𝑗‖2𝐻1(Ω𝑖)

)︁
, ‖𝑈‖𝐿𝐿𝐿∞(Ω𝑖) := max

𝑗∈[[1,𝑁 ]]

(︀
‖𝑈𝑗‖𝐿∞(Ω𝑖)

)︀
.

With these notations and Theorem 4.1, we can now prove the convergence of Algorithm 1.

Theorem 4.2 (OSWR convergence). Let 𝛼𝑖 > 0, 𝑖 = 1, 2. Then, Algorithm 1 converges in (𝐻𝐻𝐻1(Ω1)∩𝐿𝐿𝐿∞(Ω1))×
(𝐻𝐻𝐻1(Ω2) ∩𝐿𝐿𝐿∞(Ω2)) to the solution of (4).

Moreover, setting1

𝑀(�̄�) :=
(︁
�̄�𝑖I𝑁 +

√
𝐴
)︁−1(︁

�̄�𝑖I𝑁 −
√

𝐴
)︁(︁

�̄�𝑗I𝑁 +
√

𝐴
)︁−1(︁

�̄�𝑗I𝑁 −
√

𝐴
)︁
, (22)

we have the following relations on the Robin data for the errors, for 𝑖 = 1, 2,

�̄�2ℓ
𝑖 = (𝑀(�̄�))ℓ

�̄�0
𝑖 , ∀ℓ ≥ 0, (23a)

1As all matrices of type (�̄�𝑖I𝑁 ±
√

𝐴) and their inverses commute one with the other, matrix 𝑀 is independent of indices 𝑖
and 𝑗.
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�̄�2ℓ+1
𝑖 = (𝑀(�̄�))ℓ

�̄�1
𝑖 , ∀ℓ ≥ 0, (23b)

as well as the discrete-time relations for the errors on the interface2

𝛽2ℓ
𝑖 = (𝑀(�̄�))ℓ

𝛽0
𝑖 ∀ℓ ≥ 0, (24a)

𝛽2ℓ+1
𝑖 = (𝑀(�̄�))ℓ

𝛽1
𝑖 ∀ℓ ≥ 0, (24b)

from which we deduce the following convergence estimates, for even and odd iterations⃦⃦
𝐸2ℓ

𝑖 (0)
⃦⃦
∞

‖𝐸0
𝑖 (0)‖∞

≤
⃦⃦

(𝑀(�̄�))ℓ
⃦⃦
∞, ∀ℓ ≥ 0, (25a)⃦⃦

𝐸2ℓ+1
𝑖 (0)

⃦⃦
∞

‖𝐸1
𝑖 (0)‖∞

≤
⃦⃦

(𝑀(�̄�))ℓ
⃦⃦
∞, ∀ℓ ≥ 0. (25b)

Thus, ‖(𝑀(�̄�))ℓ‖∞ is an estimate of the relative 𝐿∞-error at iterations 2ℓ and 2ℓ + 1, for all ℓ ≥ 0.

Proof. Let us first prove (23) for ℓ ≥ 1 (the case ℓ = 0 being trivial).
Using Proposition 3.3, equation (17), and the definition of the Robin operator 𝐵𝑖 in (6), we get, for 𝑖 = 1, 2

and 𝑗 = 3− 𝑖:

(𝐵𝑖𝐸
ℓ
𝑖 )(0) =

(︃
𝛼𝑖I𝑁 + 𝜈

√
𝐴√

𝜈∆𝑡

)︃
𝛽ℓ

𝑖 , (𝐵𝑖𝐸
ℓ
𝑗)(0) =

(︃
𝛼𝑖I𝑁 − 𝜈

√
𝐴√

𝜈∆𝑡

)︃
𝛽ℓ

𝑗 , ∀ℓ ≥ 1.

Thus, using (15) and (16) lead to, for 𝑖 = 1, 2,(︃
𝛼𝑖I𝑁 + 𝜈

√
𝐴√

𝜈∆𝑡

)︃
𝛽1

𝑖 = Ξ0
𝑖 − (𝐵𝑖𝑈𝑖)(0),(︃

𝛼𝑖I𝑁 + 𝜈

√
𝐴√

𝜈∆𝑡

)︃
𝛽ℓ

𝑖 =

(︃
𝛼𝑖I𝑁 − 𝜈

√
𝐴√

𝜈∆𝑡

)︃
𝛽ℓ−1

𝑗 , 𝑗 = 3− 𝑖, ∀ℓ ≥ 2,

or equivalently, using the dimensionless notations (11) and (18), for 𝑖 = 1, 2,(︁
�̄�𝑖I𝑁 +

√
𝐴
)︁
𝛽1

𝑖 = �̄�0
𝑖 , (26a)(︁

�̄�𝑖I𝑁 +
√

𝐴
)︁
𝛽ℓ

𝑖 =
(︁
�̄�𝑖I𝑁 −

√
𝐴
)︁
𝛽ℓ−1

𝑗 , 𝑗 = 3− 𝑖, ∀ℓ ≥ 2. (26b)

For 𝑖 = 1, 2, the matrix (�̄�𝑖I𝑁 +
√

𝐴) is nonsingular. Indeed, using the Jordan decomposition of
√

𝐴 given
in (10), and that �̄�𝑖 > 0, we get

det
(︁
�̄�𝑖I𝑁 +

√
𝐴
)︁

= det
(︀
𝑄−1(�̄�𝑖I𝑁 + 𝐽1)𝑄

)︀
= det(�̄�𝑖I𝑁 + 𝐽1) = (�̄�𝑖 + 1)𝑁 ̸= 0.

Thus, from (26a) and (26b) we obtain, for 𝑖 = 1, 2,

𝛽2
𝑖 =

(︁
�̄�𝑖I𝑁 +

√
𝐴
)︁−1(︁

�̄�𝑖I𝑁 −
√

𝐴
)︁(︁

�̄�𝑗I𝑁 +
√

𝐴
)︁−1

�̄�0
𝑗 , 𝑗 = 3− 𝑖, (27a)

𝛽ℓ
𝑖 = 𝑀(�̄�)𝛽ℓ−2

𝑖 , ∀ℓ ≥ 3. (27b)

2Formulas (24a) and (25a) below are only well-defined for �̄�𝑗 ̸= 1, 𝑗 = 1, 2. If �̄�𝑗 = 1, for 𝑗 = 1 or 𝑗 = 2, we have, for 𝑖 = 3− 𝑗,

the equality 𝛽2ℓ
𝑖 = (𝑀(�̄�))ℓ−1𝛽2

𝑖 and the convergence estimate
‖𝐸2ℓ

𝑖 (0)‖∞
‖𝐸2

𝑖 (0)‖∞
≤ ‖(𝑀(�̄�))ℓ−1‖∞, ∀ℓ ≥ 1.



2380 A. ARNOULT, C. JAPHET AND P. OMNES

Multiplying now (27a) and (27b) by (�̄�𝑗I𝑁−
√

𝐴), with 𝑗 = 3−𝑖, then using that all matrices of type (�̄�𝑖I𝑁±
√

𝐴)
and their inverses commute one with the other, and using (21), we get, for 𝑗 = 1, 2,

�̄�2
𝑗 = 𝑀(�̄�)�̄�0

𝑗 ,

�̄�ℓ
𝑗 = 𝑀(�̄�)�̄�ℓ−2

𝑗 , for ℓ ≥ 3,

from which (23) is deduced by induction. From (27b), we also get (24b) by induction. Then, taking the 𝐿∞-norm
of (24b), and using (17), we deduce (25b).

Let us now prove (24a) and (25a). We will distinguish the following cases:

Case �̄�𝑖 ̸= 1, for 𝑖 = 1, 2

Multiplying equations (23) by (�̄�𝑖I𝑁 −
√

𝐴)−1 and then using (19) and (21) lead to (24a). Then, taking the
𝐿∞-norm of (24a), and using (17) and (20), we get (25a).

Case �̄�𝑖 = 1, for 𝑖 = 1 or 𝑖 = 2

In that case, relations (24a) and (25a) are replaced by 𝛽2ℓ
𝑖 = (𝑀(�̄�))ℓ−1𝛽2

𝑖 and ‖𝐸2ℓ
𝑖 (0)‖∞

‖𝐸2
𝑖 (0)‖∞ ≤ ‖(𝑀(�̄�))ℓ−1‖∞,

∀ℓ ≥ 1, respectively (see footnote2 above). The first relation is obtained by induction from (27b). Then, taking
its 𝐿∞-norm, and using (17), we obtain the second one.

Let us now prove that Algorithm 1 converges. Matrix
√

𝐴 is lower triangular with value 1 on the diagonal.
Thus, 𝑀(�̄�) is a lower triangular matrix with a unique diagonal coefficient 𝜎, that is its unique eigenvalue,
given by

𝜎 =
(︂

�̄�1 − 1
�̄�1 + 1

)︂(︂
�̄�2 − 1
�̄�2 + 1

)︂
·

Thus the spectral radius of 𝑀(�̄�) is equal to |𝜎| and strictly smaller than 1, as �̄�𝑖 > 0.
Consequently, we have limℓ→∞(𝑀(�̄�))ℓ = 0𝑁,𝑁 , and thus limℓ→∞ 𝛽2ℓ

𝑖 = limℓ→∞ 𝛽2ℓ+1
𝑖 = 0𝑁 , for 𝑖 = 1, 2.

Then, from (17) we get limℓ→∞ ‖𝐸2ℓ
𝑖 ‖𝐿𝐿𝐿∞(Ω𝑖) = limℓ→∞ ‖𝐸2ℓ+1

𝑖 ‖𝐿𝐿𝐿∞(Ω𝑖) = 0, for 𝑖 = 1, 2, as well as
limℓ→∞ ‖𝐸2ℓ

𝑖 ‖𝐻𝐻𝐻1(Ω𝑖) = limℓ→∞ ‖𝐸2ℓ+1
𝑖 ‖𝐻𝐻𝐻1(Ω𝑖) = 0, 𝑖 = 1, 2, for all positive �̄�1, �̄�2, which proves the convergence

of Algorithm 1. �

From Theorem 4.2, the following finite convergence results can be derived.

Theorem 4.3 (Finite convergence of OSWR method). Let �̄�𝑖, 𝑖 = 1, 2, be the dimensionless Robin parameters
defined in (11).

(i) If �̄�1 = 1 or �̄�2 = 1 (two-sided case), then the OSWR Algorithm 1 converges in at most 2𝑁 + 2 iterations;
(ii) If �̄�1 = �̄�2 = 1 (one-sided case), then the OSWR Algorithm 1 converges in at most 𝑁 + 1 iterations.

Proof. Let us prove (i). Using in (23a) the Jordan decomposition of
√

𝐴 (given in (10)), we get, for ℓ ≥ 0, for
𝑖 = 1, 2

�̄�2ℓ
𝑖 = 𝑄−1

(︁
(�̄�𝑖I𝑁 + 𝐽1)−1(−�̄�𝑖I𝑁 + 𝐽1)(�̄�𝑗I𝑁 + 𝐽1)−1(−�̄�𝑗I𝑁 + 𝐽1)

)︁ℓ

𝑄 �̄�0
𝑖 .

Using Property 3.6, the four matrices commute one with the other (as each matrix is a Jordan matrix, e.g.
�̄�𝑖I𝑁 + 𝐽1 = 𝐽1+�̄�𝑖). Then, we have:

�̄�2ℓ
𝑖 = 𝑄−1(�̄�𝑖I𝑁 + 𝐽1)−ℓ(−�̄�𝑖I𝑁 + 𝐽1)ℓ(�̄�𝑗I𝑁 + 𝐽1)−ℓ(−�̄�𝑗I𝑁 + 𝐽1)ℓ

𝑄 �̄�0
𝑖 . (28)

Let 𝑖 = 1 or 𝑖 = 2, and 𝑗 = 3 − 𝑖. Let �̄�𝑖 = 1 (and �̄�𝑗 arbitrary). Then the matrix −�̄�𝑖I𝑁 + 𝐽1 has all its
coefficients zero, except the superdiagonal ones. Thus, −�̄�𝑖I𝑁 + 𝐽1 is an 𝑁 × 𝑁 nilpotent matrix of index 𝑁 .
Consequently, from (28) with ℓ = 𝑁 , we have �̄�2𝑁

𝑖 = 0𝑁 . Using now relations (26b) and (21), we obtain

𝛽ℓ+1
𝑖 =

(︁
�̄�𝑖I𝑁 +

√
𝐴
)︁−1(︁

�̄�𝑖I𝑁 −
√

𝐴
)︁
𝛽ℓ

𝑗 =
(︁
�̄�𝑗I𝑁 +

√
𝐴
)︁−1

�̄�ℓ
𝑖 ,
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and thus we obtain 𝛽2𝑁+1
𝑖 = 0𝑁 , and with (26b) we also have

𝛽ℓ+2
𝑗 =

(︁
�̄�𝑗I𝑁 +

√
𝐴
)︁−1(︁

�̄�𝑗I𝑁 −
√

𝐴
)︁
𝛽ℓ+1

𝑖 ,

thus 𝛽2𝑁+2
𝑗 = 0𝑁 . Finally, from (17), we get 𝐸2𝑁+2

𝑖 = 0𝑁 , 𝑖 = 1, 2.
Let us now prove (ii). Taking �̄�1 = �̄�2 = 1 and multiplying both equations of (26) by (I𝑁 −

√
𝐴), one gets:

�̄�1
𝑗 =

(︁
I𝑁 +

√
𝐴
)︁−1(︁

I𝑁 −
√

𝐴
)︁
�̄�0

𝑖 ,

�̄�ℓ
𝑗 =

(︁
I𝑁 +

√
𝐴
)︁−1(︁

I𝑁 −
√

𝐴
)︁
�̄�ℓ−1

𝑖 , 𝑗 = 3− 𝑖, ∀ℓ ≥ 2.

Thus, by induction, we obtain

�̄�ℓ
𝑗 =

(︁
I𝑁 +

√
𝐴
)︁−ℓ(︁

I𝑁 −
√

𝐴
)︁ℓ

�̄�0
𝑖/𝑗 ,

where �̄�0
𝑖/𝑗 is �̄�0

𝑗 if ℓ is even, �̄�0
𝑖 is ℓ is odd.

Using the Jordan decomposition of
√

𝐴 in the above equality (as in (i)), we get

�̄�ℓ
𝑗 = 𝑄−1(I𝑁 + 𝐽1)−ℓ(I𝑁 − 𝐽1)ℓ

𝑄�̄�0
𝑖/𝑗 .

Then, if ℓ = 𝑁 , one gets that �̄�𝑁
𝑗 = 0, 𝑗 = 1, 2, and thus, using (26b) and (21), we get 𝛽𝑁+1

𝑗 =
(I𝑁 +

√
𝐴)−1(I𝑁 −

√
𝐴)𝛽𝑁

𝑖 = (I𝑁 +
√

𝐴)−1�̄�𝑁
𝑗 = 0𝑁 , 𝑗 = 1, 2. Finally, from (17), we have 𝐸𝑁+1

𝑗 = 0𝑁 , for
𝑗 = 1, 2. �

From Theorem 4.2, the following result can be obtained.

Theorem 4.4 (Convergence depending only on �̄�). For a given 𝑁 ≥ 1, the 𝐿∞-norm convergence of Algo-
rithm 1 depends only on �̄�.

Proof. This result directly comes from (24) where 𝑀 depends only on �̄�𝛼𝛼 and on 𝑁 through its dimension.
Indeed, the convergence of the sequence (𝛽ℓ

𝑖 )ℓ∈N, 𝑖 = 1, 2, depends only on �̄� and 𝑁 . Then, using (17) and that
‖𝐸ℓ

𝑖 ‖𝐿𝐿𝐿∞(Ω𝑖) = ‖𝛽ℓ
𝑖 ‖∞ 𝑖 = 1, 2, the theorem is proven. �

Remark 4.5. For a given 𝑁 ≥ 1 (and thus for a given ∆𝑡), once the choice of �̄� = (�̄�1, �̄�2) has been performed
as recommended in Section 4.5 below, one simply has to choose 𝛼𝑖 = �̄�𝑖

√︀
𝜈
Δ𝑡 , 𝑖 = 1, 2, to obtain an efficient

convergence which will not depend on 𝜈 (as follows from Thm. 4.4).

Remark 4.6 (Notation for matrix 𝑀). Throughout the sequel of this paper, the matrix defined in (22) will be
denoted by 𝑀(�̄�) in the one-sided case �̄� = (�̄�, �̄�), and by 𝑀(�̄�) in the two-sided case �̄� = (�̄�1, �̄�2).

Remark 4.7. Note that in (25), one could use the upper bound⃦⃦
(𝑀(�̄�))ℓ

⃦⃦
∞ ≤ ‖𝑀(�̄�)‖ℓ

∞, (29)

and then define Robin parameters, for the one-sided and two-sided cases, respectively denoted by �̄�𝑀 and �̄�𝑀 ,
as follows

‖𝑀(�̄�𝑀 )‖∞ = min
�̄�∈]0,1]

‖𝑀(�̄�)‖∞, ‖𝑀(�̄�𝑀 )‖∞ = min
�̄�∈]0,1]2

‖𝑀(�̄�)‖∞. (30)

However, for a given 𝑁 ≥ 1, ‖𝑀(�̄�𝑀 )‖ℓ
∞ is larger than ‖(𝑀(�̄�𝑀 ))ℓ‖∞, and differs more and more from

‖(𝑀(�̄�𝑀 ))ℓ‖∞ when ℓ increases. Thus one loses information in the use of the upper bound (29). This will be
observed numerically in Section 5.6, where the convergence with �̄�𝑀 is much slower (except for the very first
iterations) than that with the parameter �̄� that minimizes ‖(𝑀(�̄�))ℓ‖∞. Consequently, one main objective of
this article is to search for discrete-time optimized Robin parameters �̄� = �̄�(ℓ), that depend on iteration ℓ, and
minimize ‖(𝑀(�̄�))ℓ‖∞. Such parameters will be defined in Section 4.5.
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Remark 4.8 (Equivalent writing of discrete-time estimate and notation). From relations (25), the discrete-time
estimates at iteration ℓ read ⃦⃦

𝐸ℓ
𝑖 (0)

⃦⃦
∞

‖𝐸0
𝑖 (0)‖∞

≤
⃦⃦⃦
(𝑀(�̄�))𝑞(ℓ)

⃦⃦⃦
∞

, ∀ℓ ≥ 0 even, (31a)⃦⃦
𝐸ℓ

𝑖 (0)
⃦⃦
∞

‖𝐸1
𝑖 (0)‖∞

≤
⃦⃦⃦
(𝑀(�̄�))𝑞(ℓ)

⃦⃦⃦
∞

, ∀ℓ ≥ 1 odd, (31b)

with 𝑞(ℓ) :=

{︃
ℓ
2 if ℓ is even

ℓ−1
2 if ℓ is odd

, ∀ℓ ≥ 0. (32)

Thus, ‖(𝑀(�̄�))𝑞(ℓ)‖∞ is an estimate of the relative 𝐿∞-error at iteration ℓ, for ℓ ≥ 0.

4.5. Choice of the Robin parameters

Let us first consider the one-sided case, i.e. �̄� := �̄�1 = �̄�2. The convergence matrix defined in (22) then reads

𝑀(�̄�) =
(︂(︁

�̄�I𝑁 +
√

𝐴
)︁−1(︁

�̄�I𝑁 −
√

𝐴
)︁)︂2

, 𝑖 = 1, 2.

Remarks 4.7 and 4.8 lead us to define a discrete-time optimized Robin parameter, denoted by �̄�𝐷[ℓ], depending
on iteration ℓ ≥ 2, as follows (see footnote 3).⃦⃦⃦(︀

𝑀
(︀
�̄�𝐷[ℓ]

)︀)︀𝑞(ℓ)⃦⃦⃦
∞

= min
�̄�∈]0,1]

⃦⃦⃦
(𝑀(�̄�))𝑞(ℓ)

⃦⃦⃦
∞

, (33)

where 𝑞(ℓ) is defined in (32).
For example, if one wants to optimize the convergence at iteration ℓ = 7, then one can use the Robin

parameter �̄�𝐷[7] such that ‖(𝑀(�̄�𝐷[7]))3‖∞ = min�̄�∈]0,1] ‖(𝑀(�̄�))3‖∞.

Remark 4.9. In practice, for the minimization problem in (33), we calculate ‖(𝑀(𝛾𝑗))𝑞(ℓ)‖∞, with 𝛾𝑗 := 𝑗
100

for 𝑗 ∈ J1, 100K, then take the index 𝑗0 that gives the minimum value, and set �̄�𝐷[ℓ] = 𝛾𝑗0 .
Note that, although this process requires the repeated inversion of matrices, its cost remains low for the

following reasons:

– the matrices are of size 𝑁 and thus remain of moderate size, since for long time computations a splitting of
the time interval into windows is necessary, and one uses the OSWR method in each time window [5,26];

– the matrices involved at iteration ℓ will be recycled for iteration ℓ+1, so that the marginal cost of computing
the norms of the matrices for an extra iteration remains cheap;

– the calculation of the terms ‖(𝑀(𝛾𝑗))𝑞(ℓ)‖∞, 𝑗 ∈ J1, 100K, can be completely parallelized (with respect to 𝑗);
– the method provides a dimensionless optimized parameter �̄�𝐷[ℓ] whose dependency is only in ℓ and 𝑁 , and

thus independent of the other parameters 𝜈, 𝑓 , 𝑢0 and of space discretization. It can therefore be calculated
only once, at fixed 𝑁 , whatever the other data of the problem. The (dimensional) optimized Robin parameter
is then given by 𝛼𝐷[ℓ] :=

√︀
𝜈
Δ𝑡 �̄�𝐷[ℓ].

This process can be extended to the two-sided case with corresponding two-sided discrete-time optimized
parameters denoted by �̄�𝐷[ℓ] = (�̄�1,𝐷[ℓ], �̄�2,𝐷[ℓ]), as follows :⃦⃦⃦(︀

𝑀
(︀
�̄�𝐷[ℓ]

)︀)︀𝑞(ℓ)⃦⃦⃦
∞

= min
�̄�∈]0,1]2

⃦⃦⃦
(𝑀(�̄�))𝑞(ℓ)

⃦⃦⃦
∞

, (34)

where 𝑀(�̄�) is defined in (22).

3The choice of the interval ]0, 1] in the minimization problem comes from the fact that the Robin parameters are positive, and
from our numerical observations in Section 5.
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Remark 4.10. Note that, by definition of �̄�𝑀 and �̄�𝑀 in (30), and of �̄�𝐷[ℓ] and �̄�𝐷[ℓ], ℓ ≥ 2, in (33) and (34)
respectively, we have the following relations:

�̄�𝑀 = �̄�𝐷[2] = �̄�𝐷[3], �̄�𝑀 = �̄�𝐷[2] = �̄�𝐷[3].

5. Numerical results

In this section, some numerical experiments are presented to illustrate the theoretical results of Section 4.
The domain Ω = [− 1

2 , 1
2 ] is of length 𝐿Ω = 1. The resolution is done using a finite element code developed

in the GNU Octave [11] language, whose mesh size is ∆𝑥 = 10−3 (except in Sect. 5.5 where ∆𝑥 = 5× 10−5).
The final time is 𝑇 = 1, and the time step is ∆𝑡 = 𝑇

𝑁 , where 𝑁 will vary, depending on the numerical examples.
In our test cases we simulate the error equations, i.e. we take 𝑢0 = 0 and 𝑓 = 0. As the domain is now

bounded, we add homogeneous Dirichlet conditions at 𝑥 = − 1
2 and 𝑥 = 1

2 .
We use the OSWR algorithm with the interface at 𝑥 = 0, and with the most general initial Robin data on the

interface, under the form of random values, as commonly done in the study of OSWR methods (see e.g. [3,19]).
The algorithm is stopped when the 𝐿∞-norm of the jump of the Robin transmission conditions on the interface

is smaller than 10−12, unless specified.
In Section 4.4 we have proved that the convergence of the discrete-time OSWR algorithm depends only

on dimensionless Robin parameters �̄� = (�̄�1, �̄�2) and on 𝑁 . Thus, in what follows, we will consider only
dimensionless Robin parameters �̄�1, �̄�2

4.
The solution of the fully discrete error equations at iteration ℓ is denoted 𝐸ℓ

𝑖,Δ𝑥, and is measured, on the
interface5, either in the 𝐿∞-norm, or in the 𝐿∞-norm scaled by the initial error, as in our theoretical result (31b)6.

In what follows, we will use the following terms, that are associated to the OSWR iteration ℓ (excepted for
the first item in the list below):

– continuous optimized Robin parameter(s): �̄�𝐶 or �̄�𝐶 given in (12);
– fully discrete numerical solution: 𝐸ℓ

𝑖,Δ𝑥 (as defined above);

– relative 𝐿∞-error : error term ‖𝐸ℓ
𝑖,Δ𝑥(0)‖∞

‖𝐸1
𝑖,Δ𝑥(0)‖∞ ;

– discrete-time convergence estimate: upper bound ‖(𝑀(�̄�))𝑞(ℓ)‖∞ in (31);
– discrete-time optimized Robin parameter(s): �̄�𝐷[ℓ] or �̄�𝐷[ℓ], see Section 4.5.

Since the problem is symmetrical for the two domains, the results presented here are only for the left domain
(similar results will be obtained for the right domain, up to a permutation of 𝛼1 and 𝛼2 in the two-sided
case). Moreover, in the two-sided case, the symmetry implies that the relative error, on odd iterations, obtained
with (�̄�1, �̄�2) is the same as with (�̄�2, �̄�1); thus we consider �̄�1 ≤ �̄�2 in what follows.

Remark 5.1. While our analysis has been carried out on an infinite domain, in practice, the fully discrete
numerical solution is necessarily calculated on a bounded domain. However, we can show that the theory is not
very much affected by the bounded domain, as long as

√
𝜈∆𝑡 ≪ 𝐿Ω. Indeed, on a bounded domain, the solution

is not exactly (17) but will involve matrices e
−|𝑥|√

𝜈Δ𝑡

√
𝐴 and e

|𝑥|√
𝜈Δ𝑡

√
𝐴 (as shown below in (A.2)), and the norm of

the vector coefficient associated to the latter will become very small if
√

𝜈∆𝑡 ≪ 𝐿Ω. Thus, in our fully discrete
numerical experiments, 𝜈, ∆𝑡 and 𝐿Ω have been chosen so that they verify this condition.

Remark 5.2. As our analysis has been carried out in the semi-discrete in time case, we will take ∆𝑥 small
enough in the numerical experiments, to approach the discrete-time problem, i.e. we take ∆𝑥 ≪

√
𝜈∆𝑡. However,

when the previous condition is not satisfied, e.g. when ∆𝑥 = ∆𝑡, we get similar numerical results.

4This means that in the OSWR algorithm we take 𝛼𝑖 = �̄�𝑖

√︁
𝜈
Δ𝑡

, 𝑖 = 1, 2.

5Similar results will be obtained if one takes the maximum of the 𝐿∞-errors in the subdomains.
6One could also consider a scaling by ‖𝐸0

𝑖 (0)‖∞ = ‖𝛽0
𝑖 ‖∞ as in (31a), which will lead to similar results, if one takes random

values for 𝛽0
𝑖 , and then set �̄�0

𝑖 := (�̄�𝑖I𝑁 −
√

𝐴)𝛽0
𝑗 , 𝑗 = 3− 𝑖, 𝑖 = 1, 2.
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Figure 1. Illustration of convergence, which only depends on �̄�, for a fixed 𝑁 : 𝐿∞-error, with
𝑁 = 100 and different values of 𝜈, for �̄� = 0.1 (top left), �̄� = 0.5 (top right), �̄� = 1 (bottom
left), �̄� = 3 (bottom right).

Section 5.1 illustrates that, for a given 𝑁 ≥ 1, the convergence depends only on �̄�. Then, in Section 5.2,
we verify that, at each OSWR iteration, the discrete-time convergence estimate is an accurate evaluation of
the relative 𝐿∞-error. Sections 5.3 and 5.4 illustrate the importance of choosing Robin parameters that are
optimized for a targeted iteration count. In Section 5.5, asymptotic behaviors as a function of 𝑁 are shown.
Finally in Section 5.6, a comparison with �̄�𝑀 and �̄�𝑀 (defined in (30)) is given.

In Sections 5.1–5.3 we consider one-sided Robin parameters �̄� := �̄�1 = �̄�2. The case of two-sided param-
eters (�̄�1 and �̄�2 possibly different) will be treated in Section 5.4, and both cases will be considered in Sec-
tions 5.5 and 5.6.

5.1. Convergence depending only on �̄�, for a given N

In this part we take 𝑁 = 100. From Theorem 4.4 and Remark 4.5, we expect, for a fixed �̄�, a convergence
almost independent of 𝜈 when 𝛼 is chosen as 𝛼 = �̄�

√︀
𝜈
Δ𝑡 .

In Figure 1, we plot the evolution of the 𝐿∞-error as a function of the number of iterations, for three values
of 𝜈 (0.1, 0.05, 0.01). The four graphs correspond to four values of �̄� (0.1, 0.5, 1 and 3). We observe that the
convergence is not influenced by the diffusion coefficient 𝜈, as expected. As a consequence, in what follows, we
only consider the case 𝜈 = 0.05.
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Figure 2. Comparison of relative 𝐿∞-error (solid line) and discrete-time estimate (dashed
line), for 𝑁 = 100, with �̄� = 0.1 (top left), �̄� = 0.5 (top right), �̄� = 1 (bottom left), �̄� = 3
(bottom right).

5.2. Comparison between discrete-time estimate and relative 𝐿∞-error

In this part, we show that the discrete-time convergence estimate ‖(𝑀(�̄�))𝑞(ℓ)‖∞ in (31) approaches well the
relative 𝐿∞-error, at each OSWR iteration ℓ, when the Robin initial guess has no particular structure, e.g. is a
random vector, which implies that one cannot do better than going from equalities (24) to inequalities (25).

In Figure 2, we plot the relative 𝐿∞-error (solid line) and the discrete-time estimate (dashed line), as functions
of the number of iterations, for 𝑁 = 100, and for different values of �̄� (0.1, 0.5, 1 and 3).

We observe that the discrete-time estimate is an upper bound of the relative 𝐿∞-error, as expected from (31).
Thus, we could not expect both curves to exactly overlay. However, the discrete-time estimates follow the actual
relative 𝐿∞-error curves, with very similar shapes, and are closer when �̄� is larger. A possible explanation for
the differences is that the theoretical analysis of this paper is done on an infinite domain, while the numerical
results are performed on the bounded domain

[︀
− 1

2 , 1
2

]︀
. Another possible explanation is the loss of information

when going from equalities (24) to inequalities (25).

Remark 5.3. Additional tests seem to show that changing the initial Robin data from random values to values
with a particular structure, e.g. the Robin operator applied to (𝑢− 𝑢0) as can be done in practice (where 𝑢 is
the solution of (1), and 𝑢0 is the (time independent) initial condition) has a (limited) influence on the shapes
of the relative 𝐿∞-error curves, which are not as close to the discrete-time estimate as in the case of a random
initial guess. In any case, the discrete-time estimates remain an upper bound of the actual error curves.



2386 A. ARNOULT, C. JAPHET AND P. OMNES

Figure 3. Relative 𝐿∞-error on the interface as a function of �̄�, at iteration 7 (left) and 21
(right). In each case, the triangles show �̄�𝐷[7] (left) and �̄�𝐷[21] (right), and the stars show �̄�𝐶 .

Table 1. Dimensionless one-sided Robin parameter optimized with continuous and discrete-
time analysis, and numerical optimal parameter.

𝑁 �̄�𝐶 �̄�𝐷[7] �̄�opt[7] �̄�𝐷[21] �̄�opt[21]

20 0.84 0.68 0.69 1.00 1.00
50 0.67 0.50 0.48 0.69 0.70
100 0.56 0.40 0.35 0.56 0.56
200 0.47 0.32 0.24 0.45 0.45

In this article, we intend to treat the most general case in which no information is known on the initial Robin
data. Thus, in what follows, we focus on obtaining optimized dimensionless Robin parameters that minimize
the discrete-time estimate, as done in Section 4.5, with random initial Robin values.

5.3. One-sided optimization

In this part, we consider one-sided Robin parameters (�̄�1 = �̄�2). We compute �̄�𝐷[ℓ] using the method
described in Remark 4.9.

5.3.1. Comparison of continuous and discrete-time parameters

In this section we compare the convergence obtained with the discrete-time optimized parameter �̄�𝐷[ℓ] to
those obtained with the continuous optimized parameter �̄�𝐶 defined in (12) on the one hand, and with the actual
numerical optimal one at iteration ℓ on the other hand. For this, we will consider two different iterations : ℓ = 7
and ℓ = 21.

On Figure 3 we plot the actual relative 𝐿∞-error at iteration 7 (left) and at iteration 21 (right) versus
the Robin parameter �̄�. On these graphs, stars stand for continuous optimized Robin parameters �̄�𝐶 , and
triangles are discrete-time optimized Robin parameters �̄�𝐷[7] (left) and �̄�𝐷[21] (right). Figure 3 allows to find
the numerical optimal Robin parameter at iteration ℓ (for ℓ = 7 and ℓ = 21), denoted �̄�opt[ℓ].

The values of �̄�𝐶 , �̄�opt[7], �̄�opt[21], �̄�𝐷[7], and �̄�𝐷[21] (rounded to the nearest hundredth), versus 𝑁 , are
reported in Table 1. Recall that �̄�𝐶 is independent of the iterations, while �̄�𝐷[7] and �̄�𝐷[21] optimize iterations 7
and 21, respectively.

On Figure 3 (left) and in Table 1 we observe that, at iteration 7, for all values of 𝑁 , the parameter �̄�𝐷[7] is
close to the numerical optimal �̄�opt[7]. The value of �̄�𝐷[7] deviates slightly from that of �̄�opt[7], when 𝑁 increases;
however the corresponding 𝐿∞-error values remain close (within a factor of approximately 2, for 𝑁 = 200). On
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Figure 4. Relative 𝐿∞-error computed with one-sided continuous, discrete-time (optimized at
iteration ℓ = 7 and 21) and numerical optimal (at iteration ℓ = 7) Robin parameters, for 𝑁 = 20
(top left), 𝑁 = 50 (top right), 𝑁 = 100 (bottom left), 𝑁 = 200 (bottom right). Note the scale
change for the top left figure (in that case convergence with �̄�𝐷[21] = 1 is almost exact at the
21st iteration, as expected from Thm. 4.3). The curves with �̄�opt[21] are not shown, since they
are superimposed with those of �̄�𝐷[21].

Figure 3 (right) and Table 1, we see that at iteration 21 the parameter �̄�𝐷[21] is extremely close to the numerical
optimal �̄�opt[21]. This is also the case for the parameter �̄�𝐶 , obtained by the continuous framework, except for
𝑁 = 200. However, at iteration ℓ = 21 for 𝑁 = 20 and 𝑁 = 200, and at iteration ℓ = 7, for all 𝑁 , the parameter
�̄�𝐶 is a worse approximation of �̄�opt[ℓ] than �̄�𝐷[ℓ]. This observation is crucial when one wants to perform a small
number of iterations: in that case, the continuous optimization provides only a poor Robin coefficient and thus
does not allow the OSWR algorithm to work efficiently.

On Figure 4, we plot the relative 𝐿∞-error as a function of OSWR iterations (note the scale change for
the top left figure), for different values of 𝑁 , and with �̄�𝐶 , �̄�𝐷[7], �̄�opt[7] and �̄�𝐷[21]. Since the values of �̄�𝐷[21]

and �̄�opt[21] are extremely close for each 𝑁 , the curves obtained with �̄�opt[21] are not added on Figure 4.
We observe that at iteration 7 (resp. 21), the 𝐿∞-error with �̄�𝐷[7] (resp. �̄�𝐷[21]) is very close to the one

obtained with �̄�opt[7] (resp. �̄�opt[21]) and is smaller than the ones obtained with �̄�𝐶 . This confirms the relevance
of choosing an optimized parameter that depends on the targeted iteration, as pointed out by the analysis. We
also notice that, for 𝑁 ≥ 50, the curves obtained with �̄�𝐶 and �̄�𝐷[21] are almost superimposed, since these
Robin parameters are almost the same.

One of the main results of this article is that there is not a single Robin coefficient, independent of the
iterations, that optimizes each iteration. Figures 3 and 4 illustrate this point: the numerical optimum varies
according to ℓ; the parameter 𝛼𝐶 , that minimizes the continuous convergence factor (which is independent of
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Figure 5. Discrete-time optimized Robin parameter �̄�𝐷[ℓ] (top left) and associated discrete-
time convergence estimate ‖(𝑀(�̄�𝐷[ℓ]))𝑞(ℓ)‖∞ (top right), versus OSWR iterations, with a zoom
on the first iterations (bottom).

the iteration), cannot optimize all iterations, whereas the method presented here allows to find a quite accurate
approximation of the numerical optimum parameter, for each iteration ℓ.

5.3.2. Choice of an optimized pair (ℓ, �̄�) to reach a given accuracy

In this part, we give an abacus that allows to find an optimized pair (ℓA, �̄�𝐷[ℓA]) to reach a given accuracy,
e.g. the expected accuracy of the numerical scheme, or a fraction thereof.

Figure 5 shows, for different values of 𝑁 , the values of �̄�𝐷[ℓ] as a function of the targeted iteration count ℓ (top
left figure), and the associated discrete-time estimate ‖(𝑀(�̄�𝐷[ℓ]))𝑞(ℓ)‖∞ versus iteration ℓ (top right figure),
with a zoom on the first iterations (bottom figure). With the cases 𝑁 = 20 and 𝑁 = 50, we see that for ℓ ≥ 𝑁
iterations, the discrete-time optimized Robin parameter is 1, as expected from Theorem 4.3. These numerical
results also show that, after a few iterations, �̄�𝐷[ℓ] is a globally increasing function of ℓ, that tends to 1, and a
decreasing function of 𝑁 .

Abacus 5.4 (How to choose ℓ and �̄� to reach a given accuracy). Figure 5 allows to find an optimized pair
(ℓ, �̄�𝐷[ℓ]) to reach a given accuracy, e.g. the expected accuracy of the numerical scheme, or a fraction thereof.
More precisely, the top right (or bottom) figure enables, for a given 𝑁 , to find the minimum number ℓ of
iterations one has to perform in order to reach a given error. Then, the top left figure gives the associated Robin
parameter �̄�𝐷[ℓ].

Let us now use the above abacus on an example. We choose 𝑓 and the values of the boundary and initial
conditions so that the continuous solution of (1) is given by 𝑢(𝑥, 𝑡) = (1 + 𝑡 + 𝑡2)(sin(𝜋𝑥) + cos(𝜋𝑥)). The
relative scheme error (between the fully discrete monodomain solution and the continuous solution) in 𝐿∞-
norm, denoted 𝜀𝑠𝑐ℎ, is given in Table 2 (first line), for different values of 𝑁 . For each 𝑁 , a pair (ℓA, �̄�𝐷[ℓA]) is
obtained by Abacus 5.4 to reach 𝜀𝑠𝑐ℎ, and is given in Table 2 (last two lines).
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Table 2. Relative 𝐿∞-error of the fully discrete numerical scheme on the interface, as a function
of 𝑁 , and associated optimized iteration ℓA and �̄�𝐷[ℓA] given by Abacus 5.4.

𝑁 20 50 100 200

𝜀𝑠𝑐ℎ 3.5× 10−2 1.4× 10−2 7.1× 10−3 3.6× 10−3

ℓA 7 9 11 13
�̄�𝐷[ℓA] 0.68 0.54 0.45 0.38

Figure 6. Relative 𝐿∞-error computed with �̄�𝐷[ℓ𝐴] provided by Abacus 5.4 for 𝑁 = 20 (top
left), 𝑁 = 50 (top right), 𝑁 = 100 (bottom left), 𝑁 = 200 (bottom right). The error curves
corresponding to �̄�𝐷[ℓopt=ℓA−2] and �̄�opt[ℓopt] are also shown, where ℓopt is the overall minimum
(whatever the values of �̄�) of iterations needed to reach the error scheme, represented by the
horizontal line.

For example, for 𝑁 = 200, if one wants to guarantee a relative 𝐿∞-error smaller than 𝜀𝑠𝑐ℎ = 3.6×10−3, then
from Figure 5 (top right or bottom) one only needs to perform thirteen iterations (ℓA = 13). Then Figure 5
(top left) gives the discrete-time optimized Robin parameter �̄�𝐷[ℓA] = �̄�𝐷[13] = 0.38.

Then, we choose �̄� = �̄�𝐷[ℓA] in the actual simulation and plot on Figure 6 the corresponding relative 𝐿∞-
error (circle) curve as a function of OSWR iterations for the different values of 𝑁 as well as a horizontal line
corresponding to the scheme error (the other two curves of Fig. 6 are discussed below). Then, we check two
important questions. The first is to know whether the actual error reached by choosing �̄� = �̄�𝐷[ℓA] is indeed
lower than 𝜀𝑠𝑐ℎ after ℓ𝐴 iterations. This is the case, since we observe on Figure 6 that the circle located on the
vertical dashed line is below the horizontal line. The second is to verify that the proposed value of ℓ𝐴 iterations
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Figure 7. Level curves for the relative 𝐿∞-error (in logarithmic scale) after 7 iterations (left),
and 21 iterations (right), for various values of the parameters �̄� = (�̄�1, �̄�2), for 𝑁 = 100. The
blue star shows �̄�𝐶 , the orange triangle shows �̄�𝐷[7] (left) and �̄�𝐷[21] (right), and the cyan
circle shows �̄�opt[7] (left) and �̄�opt[21] (right).

is equal, or at least close to the overall (whatever the values of �̄�) minimum value ℓopt of iterations needed to
reach 𝜀𝑠𝑐ℎ. This is also the case, since, in the examples that we treated, we found that ℓopt = ℓ𝐴 − 2. This
leads the practitioner to the following alternative: either one chooses the couple (ℓ𝐴, �̄�𝐷[ℓA]) and this leads to
a comfortable safety margin that ensures that the additional error due to domain decomposition is negligible
with respect to the scheme error, or one chooses in a heuristic way the couple (ℓ𝐴−2, �̄�𝐷[ℓ𝐴−2]) (pink curves on
Fig. 6) and this leads to an error which is lower than the scheme error, close to the best possible error obtained
in the optimal number of iterations ((ℓopt, �̄�opt[ℓopt]) cyan curves on Fig. 6).

5.4. Two-sided optimization

We now consider two-sided Robin parameters (i.e. �̄�1 and �̄�2 are possibly different), and more precisely the
following ones:

– continuous �̄�𝐶 = (�̄�1,𝐶 , �̄�2,𝐶), defined in (12) (independent of the iterations);
– discrete-time �̄�𝐷[7] that optimizes iteration 7, defined in (34) with ℓ = 7;
– discrete-time �̄�𝐷[21] that optimizes iteration 21, defined in (34) with ℓ = 21.

We will compare the convergence obtained with these parameters to that obtained with the actual numerical
optimal ones.

On Figure 7, we plot the level curves for the relative 𝐿∞-error (in logarithmic scale) after 7 iterations (left),
and 21 iterations (right), for various values of the two-sided Robin parameters �̄� = (�̄�1, �̄�2), for 𝑁 = 100. The
blue star shows the continuous optimized parameter �̄�𝐶 , the orange triangle shows the discrete-time optimized
parameter �̄�𝐷[7] (left figure) and �̄�𝐷[21] (right figure). Figure 7 allows to find the numerical optimal Robin
parameter at iteration ℓ (for ℓ = 7 and ℓ = 21), denoted �̄�opt[ℓ], and represented by the cyan circle, for 𝑁 = 100.

The values of �̄�𝐶 , �̄�opt[7], �̄�opt[21], �̄�𝐷[7], and �̄�𝐷[21] (rounded to the nearest hundredth), versus 𝑁 , are given
in Table 3. For 𝑁 = 20, 50, 200, the values of �̄�opt[7] and �̄�opt[21] are determined in a similar way to those of
the case 𝑁 = 100.

On Figure 7 and in Table 3, we observe that, at iteration 7 (resp. 21), the discrete-time optimized parame-
ter �̄�𝐷[7] (resp. �̄�𝐷[21]) is close to the numerical optimal �̄�opt[7] (resp. �̄�opt[21]), and much closer to this optimal
value than �̄�𝐶 .



DISCRETE-TIME ANALYSIS OF OSWR 2391

Table 3. Dimensionless two-sided Robin parameters optimized with continuous and discrete-
time analysis, and numerical optimal parameters.

𝑁 �̄�𝐶 �̄�𝐷[7] �̄�opt[7] �̄�𝐷[21] �̄�opt[21]

20 (0.56, 1.26) (0.55, 0.86) (0.69, 0.70) (1.00, 1.00) (1.00, 1.00)
50 (0.30, 1.49) (0.33, 0.80) (0.38, 0.74) (0.68, 0.70) (0.70, 0.71)
100 (0.21, 1.46) (0.23, 0.74) (0.25, 0.69) (0.48, 0.66) (0.56, 0.57)
200 (0.17, 1.33) (0.16, 0.77) (0.17, 0.77) (0.30, 0.69) (0.28, 0.64)

Figure 8. Relative 𝐿∞-error computed with two-sided continuous, discrete-time (optimized
at iteration ℓ = 7 and 21) and numerical optimal (at iteration ℓ = 7 and 21) Robin parameters,
for 𝑁 = 20 (top left), 𝑁 = 50 (top right), 𝑁 = 100 (bottom left), 𝑁 = 200 (bottom right).
Note the scale change for the top left figure, as explained in Figure 4. Note that, for 𝑁 = 20,
since �̄�𝐷[21] and �̄�opt[21] are equal, the associated curves are superimposed.

On Figure 8 we plot the relative 𝐿∞-error as a function of OSWR iterations (note the scale change for the
top left figure), obtained with these parameters.

As in the one-sided case, we observe that, at iteration 7 (resp. 21), the 𝐿∞-error with �̄�𝐷[7] (resp. �̄�𝐷[21]) is
very close to the one obtained with �̄�opt[7] (resp. �̄�opt[21]) and is smaller than the one obtained with �̄�𝐶 . At
iteration 7, the parameter �̄�𝐶 is a little less efficient than the discrete-time optimized parameter �̄�𝐷[7]. However,
for a larger number of iterations (e.g. ℓ = 21), �̄�𝐶 appears to be significantly less efficient than the discrete-time
optimized parameter �̄�𝐷[21]. Again, we observe that the discrete-time optimized Robin coefficients proposed in
this article allow to optimize efficiently the 𝐿∞-error at a targeted iteration.
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Figure 9. Ratio between discrete-time optimized two-sided Robin coefficients.

Figure 10. Asymptotic behavior: number of iterations ℓ⋆ to obtain a relative 𝐿∞-error smaller
than 10−3 (left figures) and 10−6 (right figures), as a function of 𝑁 , with ∆𝑥 = 5× 10−5, with
continuous and discrete-time optimized parameters, in one-sided (top) and two-sided (bottom)
cases.

Moreover, we notice that, the higher the number ℓ of domain decomposition iterations, the less �̄�1,𝐷[ℓ]

and �̄�2,𝐷[ℓ] differ, as shown on Figure 9.

5.5. Asymptotic behavior as a function of 𝑁

In this part, we present the asymptotic performance as a function of 𝑁 (or ∆𝑡), with continuous and discrete-
time optimized parameters. Thus, we take ∆𝑥 = 5× 10−5 (to ensure ∆𝑥 ≪

√
𝜈∆𝑡, see Rem. 5.2).

In Figure 10 we plot the number ℓ⋆ of iterations that it takes to reduce the relative 𝐿∞-error by a factor 10−3

(left figures) and 10−6 (right figures), as a function of 𝑁 , on a log–log plot, in the one-sided case (top figures)
and in the two-sided case (bottom figures). On top figures, the blue star curves are obtained with �̄�𝐶 , and the
brown circle curves with �̄�𝐷[ℓA], where (ℓA, �̄�𝐷[ℓA]) is obtained by Abacus 5.4 to reach 10−3 (top left) and 10−6



DISCRETE-TIME ANALYSIS OF OSWR 2393

Figure 11. Comparison with parameters �̄�𝑀 and �̄�𝑀 : relative 𝐿∞-errors computed with one-
sided optimized parameters �̄�𝐶 , �̄�𝑀 , �̄�𝐷[7], �̄�𝐷[21] (left), and two-sided optimized parameters
�̄�𝐶 , �̄�𝑀 , �̄�𝐷[7], �̄�𝐷[21] (right), for 𝜈 = 0.05 and 𝑁 = 100.

(top right); e.g. for 𝑁 = 200, Abacus 5.4 gives ℓ𝐴 = 23 to reach 10−6, then, choosing �̄� = �̄�𝐷[23](= �̄�𝐷[22]

from Definition (33)) in the actual simulation, one needs ℓ⋆ = 22 iterations to actually reach the relative
accuracy 10−6. We proceed similarly in the two-sided case (bottom figures).

Using that ∆𝑡 = 𝑇
𝑁 , the numerical results show the following asymptotic behaviors:

– ℓ⋆ = 𝒪(𝑁
1
4 ) = 𝒪(∆𝑡−

1
4 ) in the one-sided case, both for discrete-time and continuous optimized parameters

(as predicted in [15] for the latter);
– ℓ⋆ = 𝒪(𝑁

1
8 ) = 𝒪(∆𝑡−

1
8 ) in the two-sided case, both for discrete-time and continuous optimized parameters.

The curves on Figure 10 show that discrete-time and continuous optimized parameters give similar asymptotic
behaviors versus 𝑁 (or ∆𝑡), depending only a little on 𝑁 (or ∆𝑡) for one-sided (increasing approximately by a
factor 2 when 𝑁 is multiplied by a factor 16), and almost independent of 𝑁 (or ∆𝑡) for two-sided parameters
(increasing approximately by a factor 2 when 𝑁 is multiplied by a factor 256).

5.6. Comparison with �̄�𝑀

In this test, we take 𝑁 = 100. Figure 11 shows the relative 𝐿∞-errors as a function of OSWR iterations,
obtained with �̄�𝑀 and �̄�𝑀 defined in (30), compared to those obtained with continuous and discrete-time
optimized parameters. Using Remark 4.10, we find �̄�𝑀 = 1 and �̄�𝑀 = (0.02, 1). We observe that, except for
the very first iterations, the convergence with �̄�𝑀 (left) or �̄�𝑀 (right) is much slower than with the other
parameters.

6. Conclusion

We have observed that the numerical optimal Robin parameter varies according to the performed number of
OSWR iterations; therefore the continuous optimized parameter (which is independent of this number) cannot
optimize all iterations, whereas the method presented here allows to find a quite accurate approximation of the
numerical optimal parameter, for each OSWR iteration count, and allows to find an optimized pair (ℓ, �̄�𝐷[ℓ]) to
reach a given accuracy.

As a perspective, we have noted in Remark 5.3 that changing the initial Robin data influences the shapes
of the convergence curves, in particular those of Figures 2 and 3. Therefore, additional analysis is required to
further improve the choice of the Robin parameter. Note also that, as shown in [18,19], taking into account the
effect of spatial discretization in the methodology to choose optimized Robin parameters is not trivial. Finally,



2394 A. ARNOULT, C. JAPHET AND P. OMNES

the extension to other time schemes is currently under investigation. For these two issues, additional work is
needed.

Appendix A. Proof of Theorem 4.1

Proof. Let us first consider the problem in Ω1 in (14): find 𝑈 such that

𝐿𝑈 = 0 in Ω1,

lim
𝑥→−∞

𝑈(𝑥) is bounded. (A.1)

From Proposition 3.10 and equation (7), the matrix 𝐶 := 1√
𝜈Δ𝑡

√
𝐴 is lower triangular, invertible, with all its

diagonal coefficients equal to 1√
𝜈Δ𝑡

> 0.

Setting 𝑍 :=
(︂

𝑈 ′

𝑈

)︂
, 𝜒 := 𝑈 ′(𝑥 = 0), Ψ := 𝑈(𝑥 = 0), and 𝑀 :=

(︂
0 𝐶2

𝐼 0

)︂
, then problem (A.1) can be written

into the equivalent first order differential system

𝑍 ′ = 𝑀𝑍 in (−∞, 0),

𝑍(𝑥 = 0) = (𝜒, Ψ)𝑇 ,

𝑍 is bounded in (−∞, 0).

The solution of the above problem is given by

𝑍(𝑥) = e𝑥𝑀

(︂
𝜒
Ψ

)︂
, ∀𝑥 ∈ (−∞, 0).

Using that 𝑀2 =
(︂

𝐶2 0
0 𝐶2

)︂
, we get by induction 𝑀2𝑘 =

(︂
𝐶2𝑘 0

0 𝐶2𝑘

)︂
and 𝑀2𝑘+1 =

(︂
0 𝐶2𝑘+2

𝐶2𝑘 0

)︂
, ∀𝑘 ∈ N,

and thus

e𝑥𝑀 =
+∞∑︁
𝑘=0

𝑥2𝑘

2𝑘!
𝑀2𝑘 +

+∞∑︁
𝑘=0

𝑥2𝑘+1

(2𝑘 + 1)!
𝑀2𝑘+1

=
+∞∑︁
𝑘=0

𝑥2𝑘

2𝑘!

(︂
𝐶2𝑘 0

0 𝐶2𝑘

)︂
+

+∞∑︁
𝑘=0

𝑥2𝑘+1

(2𝑘 + 1)!

(︂
0 𝐶2𝑘+1𝐶

𝐶2𝑘+1𝐶−1 0

)︂
=
(︂

ch(𝑥𝐶) 0
0 ch(𝑥𝐶)

)︂
+
(︂

0 sh(𝑥𝐶)𝐶
sh(𝑥𝐶) 𝐶−1 0

)︂
=
(︂

ch(𝑥𝐶) sh(𝑥𝐶)𝐶
sh(𝑥𝐶)𝐶−1 ch(𝑥𝐶)

)︂
.

Then we have, ∀𝑥 ∈ (−∞, 0),(︂
𝑈 ′(𝑥)
𝑈(𝑥)

)︂
=

(︃
ch(𝑥𝐶) sh(𝑥𝐶)𝐶

sh(𝑥𝐶)𝐶−1 ch(𝑥𝐶)

)︃(︂
𝜒

Ψ

)︂
,

from which we obtain, ∀𝑥 ∈ (−∞, 0),

𝑈(𝑥) = sh(𝑥𝐶)𝐶−1𝜒 + ch(𝑥𝐶)Ψ.

The solutions of the system can therefore be written as follows

𝑈(𝑥) = e𝑥𝐶𝛽+ + e−𝑥𝐶𝛽−, (A.2)
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where 𝛽+ ∈ R𝑁 and 𝛽− ∈ R𝑁 will be determined using the boundary conditions.
More precisely, let us show that the condition 𝑈 is bounded in (−∞, 0) implies that 𝛽− = 0𝑁 . We set

ℰ(𝑥) := exp(−𝑥𝐶)𝛽−. (A.3)

Since 𝐶 is lower triangular, so are the sums and multiples of 𝐶. Coming back to the definition of the exponential
of a matrix (with power series), we deduce that exp(−𝑥𝐶) is a lower triangular matrix whose diagonal is only
composed of the exponential of − 𝑥√

𝜈Δ𝑡
. Thus, the first line of (A.3) gives (ℰ(𝑥))1 = e

−𝑥√
𝜈Δ𝑡 (𝛽−)1, with 1√

𝜈Δ𝑡
> 0.

Since 𝑈 (and thus ℰ) is bounded as 𝑥 tends to−∞, we deduce that (𝛽−)1 = 0. Then, the second line of (A.3) gives
(𝛽−)2 = 0, and by induction we obtain 𝛽− = 0𝑁 . Thus, the solutions of (A.1) are of the form 𝑈(𝑥) = e𝑥𝐶𝛽+,
with 𝛽+ ∈ R𝑁 . The problem in Ω2 is treated similarly to that in Ω1, by using a change of variables, which ends
the proof of Theorem 4.1. �
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