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OPTIMIZED SCHWARZ WAVEFORM RELAXATION METHOD FOR THE
INCOMPRESSIBLE STOKES PROBLEM

Duc-Quang Bui1, Caroline Japhet1 and Pascal Omnes1,2,*

Abstract. We propose and analyse the optimized Schwarz waveform relaxation (OSWR) method for
the unsteady incompressible Stokes equations. Well-posedness of the local subdomain problems with
Robin boundary conditions is proved. Convergence of the velocity is shown through energy estimates;
however, pressure converges only up to constant values in the subdomains, and an astute correction
technique is proposed to recover these constants from the velocity. The convergence factor of the
OSWR algorithm is obtained through a Fourier analysis, and allows to efficiently optimize the space-
time Robin transmission conditions involved in the OSWR method. Then, numerical illustrations for
the two-dimensional unsteady incompressible Stokes system are presented to illustrate the performance
of the OSWR algorithm.
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1. Introduction

The study of physical phenomena, whether natural or industrial, is frequently based on numerical simulations
involving an increasing number of degrees of freedom. This growing complexity may require the use of resolution
techniques which on the one hand are suitable for parallel computing architectures, and on the other hand allow
local space and time stepping adapted to the physics, such as space-time domain decomposition (DD) methods.
In this article we are concerned with such methods, with Robin transmission conditions at the interfaces between
subdomains, for solving applications related to incompressible fluid mechanics, that are modelled by the unsteady
(Navier)-Stokes system.

The well-posedness of such systems with Robin conditions (without domain decomposition) has been the
subject of several works in the steady case, see e.g. [48] for the Stokes problem (where the Robin condition is
expressed with the symmetric part of the velocity gradient, instead of the gradient), references [39, 46] for the
Oseen and Navier-Stokes systems, and [17] for the Stokes-Darcy Coupling. On the other hand, there are few
works in the unsteady case; in [40] existence and uniqueness of a solution with a time-dependent Robin boundary
condition of the type curl u × n = 𝛽(𝑡)u is addressed. In [29] the Stokes problem with Robin conditions is
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studied, in the context of a global-in-time DD method applied the coupled nonlinear Stokes and Darcy Flows.
The well-posedness is not shown.

In this article we study the well-posedness of the unsteady incompressible Stokes system with Robin boundary
conditions of type 𝛼(𝜈𝜕nu ·n− 𝑝) +u ·n = 𝑔(𝑡) and 𝛽𝜈𝜕nu×n+u×n = 𝜉(𝑡), in the context of space-time DD
methods.

Concerning the DD approaches with Robin conditions, several studies have been carried out for the incom-
pressible (Navier)-Stokes equations: in [35, 41–44] the steady Oseen equation (and its application to the non-
stationary Navier-Stokes equations, using a spatial DD at each time step) is considered. More precisely,
in [35, 43, 44] a stabilized finite element approximation is proposed (with non-standard Robin conditions due
to the stabilization). The convergence of the DD method is proven for the velocity. For the pressure, the con-
vergence is proven when the original monodomain problem involves Robin boundary conditions on a part of
the physical boundary. However, the authors point out that for an Oseen problem with Dirichlet conditions on
the whole physical boundary, the pressure of the Robin-Robin DD algorithm will converge up to a constant
which can differ for different subdomains. This important observation is also mentioned in [12] for the steady
Stokes problem, where the DD method is based on a penalty term on the interface (in that case the Robin
conditions are not equivalent to the physical ones). The convergence is shown for a modified pressure in the
two-subdomains case. This issue of pressure converging up to a constant that depends on the subdomains is
also raised in [24, 34] for the discrete Schwarz algorithm with a DDFV scheme applied to the semi-discrete in
time Navier-Stokes system. In [7, 13], an optimized Schwarz DD method is studied, and applied at each time
step to the semi-discrete in time Navier-Stokes equations. Other transmission conditions (Dirichlet/Neumann)
are considered e.g. in [22,45,47,50] for Stokes and Navier-Stokes equations.

In this article we consider global-in-time Schwarz methods which use waveform relaxation techniques, i.e.
Schwarz waveform relaxation (SWR). Such iterative methods use computations in the subdomains over the
whole time interval, exchanging space-time boundary data through transmission conditions on the space-time
interfaces. The main advantage is that space-time discretizations can be chosen independently on each subdo-
main, and, at the end of each iteration, only a small amount of information is exchanged, which makes the
parallelization (in space and time) very efficient.

The space-time boundary data play an important role in the convergence process and can be of Dirichlet [19,
23], absorbing, Robin (or Ventcell) type [4, 21, 25, 26, 36]. The value of the Robin (or Ventcell) parameters
can be optimized to improve convergence rates (see [21, 31, 33, 36]), and the corresponding method is called
optimized Schwarz waveform relaxation (OSWR). This method is widely used and analyzed for fluid dynamics,
see references above, and e.g. [1, 3, 6, 20,30,36,37,49].

For the application of the SWR method on the Navier-Stokes equations, we are aware of the article [3] where
an OSWR method is proposed for the rotating 3D incompressible hydrostatic Navier-Stokes equations with
free surface. However, the hydrostatic nature of the model modifies the structure of the continuity equation
which now involves a transport term for the free surface (which plays the same role as the pressure in the
momentum equation of the standard Navier-Stokes system), so that the results in [3] cannot apply to the problem
considered in the present work. In [13], an SWR method for the Oseen equations is studied; optimal transparent
boundary conditions are derived, and local approximations for these nonlocal conditions are proposed. No
general convergence analysis of the resulting algorithm (e.g. via energy estimates) is given. A convergence factor
is obtained in the idealized case of two half-space subdomains and unbounded time interval, via Laplace-Fourier
transforms.

Concerning the compressible Euler and Navier-Stokes equations, in [14,15] an SWR method is proposed and
various numerical experiments are shown.

However, until now, there exists no convergence proof (for SWR or OSWR) for the incompressible Navier-
Stokes equations. We contribute to the understanding of the behaviour of the OSWR method by attacking
representative, though simpler, model problems. To begin with, we analyze the method on the evolutionary
Stokes equations, a simplified version of the evolutionary Navier-Stokes system in which the convection is
simply discarded. The convergence analysis of the velocity iterates involved in the OSWR method, for the
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Stokes equations, can be performed in a similar manner as for parabolic equations. An extension of this analysis
to the evolutionary Oseen equations (a linearization of the Navier-Stokes equations in which the convective
velocity field is considered as a given datum) is given in [10]. However, the convergence analysis of the OSWR
method has its own obstacle related to the pressure converging only up to constants in the various subdomains,
as discussed above. A second purpose of this article is to propose a new technique, in the multidomain case, to
recover the pressure from the velocity (at any iteration).

A third purpose of this article is to discuss the choice of the Robin parameters, which play a crucial role
in the optimization of the convergence rate. Until recently, the common practice was to derive and optimize a
convergence rate in the idealized case of two half-space subdomains and unbounded time interval, via Laplace-
Fourier transforms performed on the continuous model (i.e. without taking into account the actual discretization
method). We first follow this standard approach in this work, but in a second step modify it to also include
the effect of the discretization in the time direction; the Robin parameters obtained with such a modification
improve the convergence rate over the standard choice in our numerical tests. Note that studying the influence
of the numerical scheme over the OSWR convergence rate is a recent approach, pursued for example in [2,16,27].

The remainder of this article is organized as follows. In Section 2, we present the model problem and its
multidomain form. Since the multi-domain formulation involves local Stokes problems with Robin boundary
conditions, we prove the well-posedness of such problems in Section 3. Next, Section 4 is dedicated to the
algorithm. In Section 5 we show that, in general, the pressure calculated by the OSWR algorithm will not
converge to the monodomain solution. In Section 6, we obtain a convergence result on the velocity through an
energy estimate, and in Section 7, we propose an astute technique to recover the pressure from the velocity. In
Section 8, a Fourier analysis is done to get a formulation for the convergence factor of the OSWR algorithm.
In Section 9, an optimization procedure (based on the convergence factor of the method), that allows to obtain
efficient Robin parameters, is given. Then, numerical illustrations for the unsteady Stokes system follow in
Section 10.

2. Presentation of the model and multidomain formulation

For a bounded domain Ω ⊆ R2, and for a given viscosity coefficient 𝜈 > 0 that we suppose constant and
uniform, for given initial condition u0 and source term f , we denote respectively by u, 𝑝 the velocity and pressure
unknowns in the incompressible non-stationary Stokes system:

𝜕𝑡u− 𝜈∆u +∇𝑝 = f in Ω× (0, 𝑇 ),
∇·u = 0 in Ω× (0, 𝑇 ),

u(., 𝑡 = 0) = u0 in Ω,
u = 0 on 𝜕Ω× (0, 𝑇 ).

(1)

This system does not have a unique solution: if (u, 𝑝) is a solution, then (u, 𝑝 + 𝑐) is also a solution, for any
constant 𝑐. Then, for uniqueness, one needs, for example, the zero-mean condition on the pressure∫︁

Ω

𝑝 = 0. (2)

Thus, we introduce the notation 𝐿2
0(Ω) = {𝑝 ∈ 𝐿2(Ω),

∫︀
Ω

𝑝 = 0}.

Next, we shall introduce the following spaces, which are the completions, in 𝐻1(Ω) and in 𝐿2(Ω), respectively,
of the set of compactly supported 𝒞∞ functions with vanishing divergence:

𝑉 =
{︁
u ∈

[︀
𝐻1

0 (Ω)
]︀2

,∇·u = 0
}︁

,

𝐻 =
{︁
u ∈

[︀
𝐿2(Ω)

]︀2
,∇·u = 0,u · n𝜕Ω = 0 on 𝜕Ω

}︁
,
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where n𝜕Ω is the unit, outward pointing, normal vector field on 𝜕Ω. We denote by 𝑉 ′ the dual space of 𝑉 and
denote by ⟨·, ·⟩𝑉 ′,𝑉 the duality bracket between the two spaces. We recall ([8, Proposition IV.5.13]) that, if Ω,
f and u0 are regular enough, problem (1)–(2) has a unique solution (u, 𝑝) such that

u ∈
(︀
𝐿2(0, 𝑇 ; 𝑉 ) ∩ 𝒞0([0, 𝑇 ]; 𝐻)

)︀
, 𝜕𝑡u ∈ 𝐿2(0, 𝑇 ; 𝑉 ′),

𝑝 ∈ 𝑊−1,∞ (︀
0, 𝑇 ; 𝐿2

0(Ω)
)︀
.

In order to apply a domain-decomposition strategy for this problem, we decompose Ω into 𝑀 non-overlapping
subdomains Ω𝑖, i.e. Ω𝑖 ∩ Ω𝑗 = ∅ for 𝑖 ̸= 𝑗, and Ω =

⋃︀𝑀
𝑖=1 Ω𝑖. For 𝑖 = 1, 2, . . . ,𝑀 , we denote by ℐ𝑖 the set of

indices of the neighbouring subdomain(s) of Ω𝑖: it holds that 𝑗 ∈ ℐ𝑖 if and only if |𝜕Ω𝑖 ∩ 𝜕Ω𝑗 | > 0, where | · |
denotes the one dimensional measure. We denote by Γ𝑖𝑗 the interface (if it exists) between Ω𝑖 and Ω𝑗 , n𝑖𝑗 the
unit normal vector on Γ𝑖𝑗 , directed from Ω𝑖 to Ω𝑗 . Note that this implies that n𝑖𝑗 = −n𝑗𝑖.

Denoting by u𝑖, (u0)𝑖, 𝑝𝑖 and f𝑖 the respective restrictions of u, u0, 𝑝 and f to Ω𝑖, the monodomain problem
is equivalent to the following multidomain one

𝜕𝑡u𝑖 − 𝜈∆u𝑖 +∇𝑝𝑖 = f𝑖 in Ω𝑖 × (0, 𝑇 ),
∇·u𝑖 = 0 in Ω𝑖 × (0, 𝑇 ),

u𝑖(., 𝑡 = 0) = (u0)𝑖 in Ω𝑖,
u𝑖 = 0 on (𝜕Ω ∩ 𝜕Ω𝑖, )× (0, 𝑇 ),

(3)

for all 𝑖 ∈ [[1, 𝑀 ]], together with the physical transmission conditions on the space-time interfaces Γ𝑖𝑗 × (0, 𝑇 ),
𝑗 ∈ ℐ𝑖, 𝑖 ∈ [[1, 𝑀 ]],

u𝑖 · n𝑖𝑗 = −u𝑗 · n𝑗𝑖,

u𝑖 × n𝑖𝑗 = −u𝑗 × n𝑗𝑖,

𝜈𝜕n𝑖𝑗
u𝑖 · n𝑖𝑗 − 𝑝𝑖 = 𝜈𝜕n𝑗𝑖

u𝑗 · n𝑗𝑖 − 𝑝𝑗 ,

𝜈𝜕n𝑖𝑗
u𝑖 × n𝑖𝑗 = 𝜈𝜕n𝑗𝑖

u𝑗 × n𝑗𝑖.

(4)

For any choice of (𝛼𝑖𝑗 , 𝛼𝑗𝑖, 𝛽𝑖𝑗 , 𝛽𝑗𝑖) ∈ (R+*)4, those conditions are equivalent to the following Robin transmission
conditions on Γ𝑖𝑗 × (0, 𝑇 ) = Γ𝑗𝑖 × (0, 𝑇 ):

𝛼𝑖𝑗(𝜈𝜕n𝑖𝑗
u𝑖 · n𝑖𝑗 − 𝑝𝑖) + u𝑖 · n𝑖𝑗 = 𝛼𝑖𝑗(𝜈𝜕n𝑖𝑗

u𝑗 · n𝑖𝑗 − 𝑝𝑗) + u𝑗 · n𝑖𝑗 ,

𝛼𝑗𝑖(𝜈𝜕n𝑗𝑖u𝑗 · n𝑗𝑖 − 𝑝𝑗) + u𝑗 · n𝑗𝑖 = 𝛼𝑗𝑖(𝜈𝜕n𝑗𝑖u𝑖 · n𝑗𝑖 − 𝑝𝑖) + u𝑖 · n𝑗𝑖,

𝛽𝑖𝑗𝜈𝜕n𝑖𝑗
u𝑖 × n𝑖𝑗 + u𝑖 × n𝑖𝑗 = 𝛽𝑖𝑗𝜈𝜕n𝑖𝑗

u𝑗 × n𝑖𝑗 + u𝑗 × n𝑖𝑗 ,

𝛽𝑗𝑖𝜈𝜕n𝑗𝑖u𝑗 × n𝑗𝑖 + u𝑗 × n𝑗𝑖 = 𝛽𝑗𝑖𝜈𝜕n𝑗𝑖u𝑖 × n𝑗𝑖 + u𝑖 × n𝑗𝑖.

(5)

Finally, the zero-mean condition for the pressure is equivalent to

𝑀∑︁
𝑖=1

∫︁
Ω𝑖

𝑝𝑖 = 0. (6)

This setting requires that we should study the Stokes system in a domain where Robin boundary conditions
are applied on a part of the boundary. This is what is done in the next section.

3. The Stokes problem with Robin boundary conditions

We now consider a domain, still denoted by Ω, for which the boundary is decomposed into two parts:
𝜕Ω = Γ𝐷 ∪ Γ𝑅, with |Γ𝑅| > 0. Let n be the outgoing normal vector on Γ𝑅; we consider the following system,
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with 𝛼 > 0 and 𝛽 > 0

𝜕𝑡u− 𝜈∆u +∇𝑝 = f in Ω× (0, 𝑇 ),
∇·u = 0 in Ω× (0, 𝑇 ),

u(·, 𝑡 = 0) = u0 in Ω,
u = 0 on Γ𝐷 × (0, 𝑇 ),

𝛼(𝜈𝜕nu · n− 𝑝) + u · n = 𝑔 on Γ𝑅 × (0, 𝑇 ),
𝛽𝜈𝜕nu× n + u× n = 𝜉 on Γ𝑅 × (0, 𝑇 ),

(7)

where f is at least in
[︀
𝐿2(Ω× (0, 𝑇 ))

]︀2, 𝑔 and 𝜉 are at least in
[︀
𝐿2(Γ𝑅 × (0, 𝑇 ))

]︀
.

In order to set this problem under an appropriate (parabolic) variational form, we multiply the first equation
by a divergence-free test function v (smooth enough) that vanishes on Γ𝐷 and integrate by parts on Ω. The
flux (−𝜈𝜕nu + 𝑝n) is then decomposed into normal and tangential parts and boundary conditions of (7) are
used. We obtain then the following parabolic variational problem

⟨𝜕𝑡u,v⟩𝑉 ′𝐷,𝑉𝐷
+ 𝑎(𝑡,u,v) = 𝑐(𝑡,v), a.e. 𝑡 ∈ (0, 𝑇 ),∀v ∈ 𝑉𝐷, (8)

u(0) = u0, (9)

where the spaces are defined as

𝑉𝐷 =
{︁
u ∈

[︀
𝐻1(Ω)

]︀2
,u = 0 on Γ𝐷,∇·u = 0

}︁
,

𝐻𝐷 =
{︁
u ∈

[︀
𝐿2(Ω)

]︀2
,u · n = 0 on Γ𝐷,∇·u = 0

}︁
,

together with their linear and bilinear forms

𝑎(u,v) = 𝜈 (∇u,∇v)Ω +
1
𝛼

(u · n,v · n)Γ𝑅
+

1
𝛽

(u× n,v × n)Γ𝑅
, (10)

𝑐(𝑡,v) = (f(𝑡),v)Ω +
1
𝛼

(𝑔(𝑡),v · n)Γ𝑅
+

1
𝛽

(𝜉(𝑡),v × n)Γ𝑅
. (11)

Here, (·, ·)𝐷 denotes, for any set 𝐷 (whatever the space-dimension of 𝐷) the standard scalar or the matrix-valued
scalar 𝐿2 product on 𝐷. In the same way, we shall use the notation ‖ · ‖𝐷 for the associated 𝐿2(𝐷) norm. All
terms in the definition of the forms 𝑎 and 𝑐 are well-defined for (u,v) ∈ 𝑉𝐷 × 𝑉𝐷.

From these definitions, 𝑉𝐷 is dense in 𝐻𝐷 and the embedding 𝑉𝐷 ⊂ 𝐻𝐷 is continuous. We can identify 𝐻𝐷

with its dual space, and we are in the situation where 𝑉𝐷 ⊂ 𝐻𝐷 ≡ 𝐻 ′
𝐷 ⊂ 𝑉 ′

𝐷, which is the classical setting
for parabolic equations (see e.g. [18], Sect. 6.1, [9], P. 218). In this context, we recall the following theorem
Theorem 6.6 from [18].

Theorem 3.1. Problem (8)–(9) admits a unique solution

u ∈
(︀
𝐿2(0, 𝑇 ; 𝑉𝐷) ∩ 𝒞0([0, 𝑇 ]; 𝐻𝐷)

)︀
,

with 𝜕𝑡u ∈ 𝐿2(0, 𝑇 ; 𝑉 ′
𝐷) if the following properties are verified

– u0 ∈ 𝐻𝐷 and 𝑐 ∈ 𝐿2(0, 𝑇 ; 𝑉 ′
𝐷),

– The function 𝑡 ↦→ 𝑎(𝑡,u,v) is measurable for all (u,v) ∈ 𝑉 2
𝐷,

– ∃𝑀 ∈ R such that |𝑎(𝑡,u,v)| ≤ 𝑀‖u‖𝑉𝐷
‖v‖𝑉𝐷

for almost every 𝑡 and for all (u,v) ∈ 𝑉 2
𝐷,

– ∃𝑚 > 0 such that 𝑎(𝑡,u,u) ≥ 𝑚‖u‖2𝑉𝐷
for almost every 𝑡 and for all u ∈ 𝑉𝐷.

We shall apply this result to our setting, with the simplification that the bilinear form defined by (10) does not
depend on time. We obtain the following result:
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Theorem 3.2. Assume that f ∈ 𝐿2(0, 𝑇 ;
[︀
𝐿2(Ω)

]︀2), 𝑔, 𝜉 ∈ 𝐿2(0, 𝑇 ; 𝐿2(Γ𝑅)), and u0 ∈ 𝐻𝐷. Let 𝑎 and 𝑐 be
defined by (10) and (11), respectively. Then, problem (8)–(9) admits a unique solution u ∈ 𝐿2(0, 𝑇 ; 𝑉𝐷) ∩
𝒞0([0, 𝑇 ]; 𝐻𝐷), which is such that 𝜕𝑡u ∈ 𝐿2(0, 𝑇 ; 𝑉 ′

𝐷).

Proof. We shall show that 𝑎 and 𝑐 verify the hypothesis of Theorem 3.1. First, it is well-known that, as soon as
|Γ𝑅| > 0, then

‖u‖𝑉𝐷
:=

(︀
‖∇u‖2Ω + ‖u‖2Γ𝑅

)︀ 1
2 =

(︀
‖∇u‖2Ω + ‖u · n‖2Γ𝑅

+ ‖u× n‖2Γ𝑅

)︀ 1
2

is a norm equivalent to the 𝐻1 norm on 𝑉𝐷, and we shall therefore work with this norm.

Let 𝑀 = max
(︂

𝜈,
1
𝛼

,
1
𝛽

)︂
. From the Cauchy-Schwarz inequality, we get the continuity of 𝑎(·, ·):

|𝑎(u,v)| ≤ 𝑀‖u‖𝑉𝐷
‖v‖𝑉𝐷

, ∀u,v ∈ 𝑉𝐷.

Let 𝑚 = min
(︂

𝜈,
1
𝛼

,
1
𝛽

)︂
> 0. From the definition of ‖ · ‖𝑉𝐷

, we get the coercivity of 𝑎(·, ·):

𝑎(u,u) ≥ 𝑚‖u‖2𝑉𝐷
, ∀u ∈ 𝑉𝐷.

Then, for a.e. 𝑡 ∈ (0, 𝑇 ), the continuity of 𝑐(𝑡, ·) is deduced from the Cauchy-Schwarz inequality and the
equivalence between the 𝐻1(Ω)-norm and ‖ · ‖𝑉𝐷

:

|𝑐(𝑡,v)| ≤
[︂
𝐶1‖f(𝑡)‖Ω +

1
𝛼
‖𝑔(𝑡)‖Γ𝑅

+
1
𝛽
‖𝜉(𝑡)‖Γ𝑅

]︂
‖v‖𝑉𝐷

.

Moreover, thanks to the hypothesis on the time dependence of f , 𝑔 and 𝜉, the quantity

𝐶1‖f(𝑡)‖Ω +
1
𝛼
‖𝑔(𝑡)‖Γ𝑅

+
1
𝛽
‖𝜉(𝑡)‖Γ𝑅

is square integrable on (0, 𝑇 ), and we can now apply Theorem 3.1, which finishes the proof. �

Remark 3.3. Since 𝑉𝐷 is continuously and densely embedded in 𝐻𝐷, the fact that u ∈ 𝒞0([0, 𝑇 ]; 𝐻𝐷) is a
consequence of the fact that the space

𝒲(𝑉𝐷, 𝑉 ′
𝐷) :=

{︀
v : (0, 𝑇 ) ↦→ 𝑉𝐷; v ∈ 𝐿2(0, 𝑇 ; 𝑉𝐷); 𝜕𝑡v ∈ 𝐿2(0, 𝑇 ; 𝑉 ′

𝐷)
}︀

is included in 𝒞0([0, 𝑇 ]; 𝐻𝐷), as stated, for example, by Lemma 6.2 from [18] and Theorem II.5.13 from [8].
This has the important implication that it is legitimate to consider u(𝑡) ∈ 𝐻𝐷 for all 𝑡 ∈ [0, 𝑇 ]. Moreover,

the following integral equality holds for all 𝑡 ∈ [0, 𝑇 ] and for all (u,v) ∈ [𝒲(𝑉𝐷, 𝑉 ′
𝐷)]2 (see [18], Lem. 6.3 and

[8],Thm. II.5.12):∫︁ 𝑡

0

(︀
⟨𝜕𝑡u(𝑠),v(𝑠)⟩𝑉 ′𝐷,𝑉𝐷

+ ⟨𝜕𝑡v(𝑠),u(𝑠)⟩𝑉 ′𝐷,𝑉𝐷

)︀
𝑑𝑠 = (u(𝑡),v(𝑡))Ω − (u(0),v(0))Ω. (12)

Now, since we have obtained the velocity u from the constrained variational problem (8)–(9), we shall construct
the pressure by relaxing the divergence free condition on the velocity test functions, and we shall therefore
consider the space

𝑋𝐷 =
{︁
v ∈

[︀
𝐻1(Ω)

]︀2
,v = 0 on Γ𝐷

}︁
,

equipped with the norm ‖ · ‖𝑋𝐷
:= ‖ · ‖𝑉𝐷

defined above. Like often with the Stokes problem, we shall rely on
the surjectivity of the divergence operator, and on general properties of surjective mappings in Hilbert spaces.
More precisely, we shall use the following results.



OPTIMIZED SCHWARZ WAVEFORM RELAXATION METHOD FOR THE INCOMPRESSIBLE STOKES PROBLEM 1235

Lemma 3.4. The mapping 𝐵 from 𝑋𝐷 into 𝐿2(Ω) defined by 𝐵(v) = −∇ · v is continuous and surjective.

Proof. This is a special case of Lemma 4.9 from [18] (with, using the notations of [18], 𝜕Ω1 = Γ𝐷, 𝜕Ω2 = ∅,
𝜕Ω3 = ∅ and 𝜕Ω4 = Γ𝑅). �

Lemma 3.5. Let 𝐿 be in ℒ(𝐸; 𝐹 ) and 𝐿𝑇 be its adjoint in ℒ(𝐹 ′; 𝐸′). If 𝐿 is surjective in 𝐹 , then Im 𝐿𝑇 is
closed in 𝐸′.

For the proof of Lemma 3.5, see, e.g., Lemma A.40 from [18]. Next, we recall the following definition (see,
e.g., [8], Def. IV.2.1)

Definition 3.6. Let 𝐸 be a Banach space with dual space 𝐸′; then for any subset 𝐴 ⊂ 𝐸, we define 𝐴⊥ ⊂ 𝐸′

as follows:
𝐴⊥ := {𝜑 ∈ 𝐸′,∀𝑥 ∈ 𝐴, ⟨𝜑, 𝑥⟩𝐸′,𝐸 = 0}

as well as the following properties stated, e.g., by Remark IV.2.1 from [8]

Lemma 3.7. If 𝐴 ⊂ 𝐶 ⊂ 𝐸, then 𝐶⊥ ⊂ 𝐴⊥.

Lemma 3.8. If 𝐴 is a linear subspace of 𝐸, then (𝐴⊥)⊥ = 𝐴 if and only if 𝐴 is closed in 𝐸.

Moreover, we also recall the following general result

Lemma 3.9. Let 𝐿 be in ℒ(𝐸; 𝐹 ), then (Im 𝐿𝑇 )⊥ ⊂ Ker 𝐿

Proof. If 𝑓 ∈ (Im 𝐿𝑇 )⊥, then ⟨𝐿𝑇 𝑞, 𝑓⟩𝐸′,𝐸 = 0, ∀𝑞 ∈ 𝐹 ′. Thus ⟨𝑞, 𝐿𝑓⟩𝐹 ′,𝐹 = 0 for all 𝑞 ∈ 𝐹 ′, which means that
𝐿𝑓 = 0, and thus 𝑓 ∈ Ker 𝐿. �

From these results, we obtain the following Lemma, which will be useful in the construction of the pressure
field:

Lemma 3.10. Let 𝐵𝑇 be the adjoint operator of 𝐵, from 𝐿2(Ω) into 𝑋 ′
𝐷. Then for any 𝜑 in 𝑋 ′

𝐷 that vanishes
on 𝑉𝐷, there exists 𝑃 ∈ 𝐿2(Ω) such that 𝜑 = 𝐵𝑇 𝑃 .

Proof. Since 𝐵 is in ℒ(𝑋𝐷; 𝐿2(Ω)) and is surjective (Lem. 3.4), then (Im 𝐵𝑇 ) is closed in 𝑋 ′
𝐷 (Lem. 3.5), and(︀

(Im 𝐵𝑇 )⊥
)︀⊥ = Im 𝐵𝑇 (Lem. 3.8). Now, using Lemmas 3.9 and 3.7, we get (Ker 𝐵)⊥ ⊂

(︀
(Im 𝐵𝑇 )⊥

)︀⊥ = Im 𝐵𝑇 .
So if 𝜑 in 𝑋 ′

𝐷 vanishes on 𝑉𝐷 = Ker 𝐵, then 𝜑 is in (Ker 𝐵)⊥ and so in Im 𝐵𝑇 , which exactly means that there
exists 𝑃 ∈ 𝐿2(Ω) such that 𝜑 = 𝐵𝑇 𝑃 . �

Using this result, we can now state the following theorem.

Theorem 3.11. Assume that f ∈ 𝐿2(0, 𝑇 ;
[︀
𝐿2(Ω)

]︀2), 𝜉, 𝑔 ∈ 𝐿2(0, 𝑇 ; 𝐿2(Γ𝑅)) and u0 ∈ 𝐻𝐷, then there exists
unique u ∈

(︀
𝐿2(0, 𝑇 ; 𝑉𝐷) ∩ 𝒞0([0, 𝑇 ]; 𝐻𝐷)

)︀
and 𝑝 ∈ 𝑊−1,∞(0, 𝑇 ; 𝐿2(Ω)), with 𝜕𝑡u ∈ 𝐿2(0, 𝑇 ; 𝑉 ′

𝐷) such that
(u, 𝑝) verifies problem (7) in the sense that

∙ u verifies (8)–(9)
∙ 𝑝 = 𝜕𝑡𝑃 with 𝑃 ∈ 𝐿∞(0, 𝑇 ; 𝐿2(Ω)) that satisfies∫︁ 𝑡

0

𝑐(𝑠,v)𝑑𝑠− (u(𝑡),v)Ω + (u0,v)Ω −
∫︁ 𝑡

0

𝑎(u(𝑠),v)𝑑𝑠 = −
∫︁

Ω

𝑃 (𝑡)∇ · v , ∀v ∈ 𝑋𝐷. (13)
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Proof. Using Theorem 3.2, the existence and uniqueness of u being the solution of (8)–(9) and satisfying the
regularity claim of the present theorem is obtained. Thus, we only have to show the existence and uniqueness
of the pressure field 𝑝 as defined above. For this, we first show that the linear form over 𝑋𝐷 defined by the
left-hand side of (13) is continuous on 𝑋𝐷 and thus an element of 𝑋 ′

𝐷. Secondly, we use Lemma 3.10 to show
the existence of 𝑃 (𝑡) ∈ 𝐿2(Ω) such that (13) is verified for all 𝑡 ≥ 0. The third step is to prove that ‖𝑃 (𝑡)‖𝐿2(Ω)

is bounded with respect to time. Finally, we shall prove that 𝑝 is unique.
First step: Consider, for u being the solution of (8)–(9), the function 𝑡 ↦→ 𝑎(u(𝑡),v) and the function 𝑡 ↦→

𝑐(𝑡,v) where 𝑎 and 𝑐 are defined by (10) and (11). Then their definitions can be straightforwardly extended to
consider v ∈ 𝑋𝐷 and, for any 𝑡 ∈ (0, 𝑇 ), the following element of 𝑋 ′

𝐷 is well-defined:

𝑏(𝑡,v) :=
∫︁ 𝑡

0

𝑐(𝑠,v)𝑑𝑠− (u(𝑡),v)Ω + (u0,v)Ω −
∫︁ 𝑡

0

𝑎(u(𝑠),v)𝑑𝑠 , ∀v ∈ 𝑋𝐷.

Indeed, one has that ⃒⃒⃒⃒∫︁ 𝑡

0

𝑎(u(𝑠),v)𝑑𝑠

⃒⃒⃒⃒
≤

∫︁ 𝑡

0

𝑀‖u(𝑠)‖𝑋𝐷
‖v‖𝑋𝐷

𝑑𝑠

≤ 𝑀
√

𝑡

[︂∫︁ 𝑡

0

‖u(𝑠)‖2𝑋𝐷
𝑑𝑠

]︂ 1
2

‖v‖𝑋𝐷

≤ 𝑀
√

𝑇‖u‖𝐿2(0,𝑇 ;𝑉𝐷)‖v‖𝑋𝐷
,

and ⃒⃒⃒⃒∫︁ 𝑡

0

𝑐(𝑠,v)𝑑𝑠

⃒⃒⃒⃒
≤

∫︁ 𝑡

0

(︂
𝐶1‖f(𝑠)‖Ω +

1
𝛼
‖𝑔(𝑠)‖Γ𝑅

+
1
𝛽
‖𝜉(𝑠)‖Γ𝑅

)︂
‖v‖𝑋𝐷

≤ 𝛾1‖v‖𝑋𝐷
,

with

𝛾1 = 𝐶1

√
𝑇‖f‖𝐿2(0,𝑇 ;[𝐿2(Ω)]2) +

√
𝑇

𝛼
‖𝑔‖𝐿2(0,𝑇 ;𝐿2(Γ𝑅)) +

√
𝑇

𝛽
‖𝜉‖𝐿2(0,𝑇 ;𝐿2(Γ𝑅)).

In addition, since u belongs to 𝒞0([0, 𝑇 ]; 𝐻𝐷), then

|− (u(𝑡),v)Ω + (u0,v)Ω| ≤ 2‖u‖𝐿∞([0,𝑇 ];[𝐿2(Ω)]2)‖v‖Ω
≤ 2𝐶1‖u‖𝐿∞([0,𝑇 ];[𝐿2(Ω)]2)‖v‖𝑋𝐷

.

Defining 𝐶2 = 2𝐶1‖u‖𝐿∞([0,𝑇 ];[𝐿2(Ω)]2) + 𝛾1 + 𝑀
√

𝑇‖u‖𝐿2(0,𝑇 ;𝑉𝐷), this leads to the fact that

|𝑏(𝑡,v)| ≤ 𝐶2‖v‖𝑋𝐷
, ∀v ∈ 𝑋𝐷, ∀𝑡 ∈ (0, 𝑇 ), (14)

and thus proves that the left-hand side of (13) defines and element of 𝑋 ′
𝐷, which ends the first step of the proof.

Second step: From (8) and (12) (with v not depending on time), we obtain that 𝑏(𝑡,v) = 0 for all v ∈ 𝑉𝐷, for
all 𝑡 ∈ (0, 𝑇 ). Thus, using Lemma 3.10, we conclude that, for all 𝑡 ∈ (0, 𝑇 ), there exists 𝑃 (𝑡) ∈ 𝐿2(Ω) satisfying

𝑏(𝑡,v) = ⟨𝐵𝑇 𝑃 (𝑡),v⟩𝑋′𝐷,𝑋𝐷
= −(𝑃 (𝑡),∇ · v)Ω = −

∫︁
Ω

𝑃 (𝑡)∇ · v , ∀v ∈ 𝑋𝐷, (15)

which is exactly (13) and ends the second step of the proof.
Third step: the surjectivity of the divergence mapping leads to the following inf-sup condition: there exists

𝛾2 > 0, s.t.

inf
𝑞∈𝐿2(Ω)

sup
v∈𝑋𝐷

(𝐵v, 𝑞)Ω
‖v‖𝑋𝐷

‖𝑞‖𝐿2(Ω)
= 𝛾2 > 0,
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which implies, for all 𝑞 ∈ 𝐿2(Ω)

𝛾2‖𝑞‖𝐿2(Ω) ≤ sup
v∈𝑋𝐷

(𝐵v, 𝑞)Ω
‖v‖𝑋𝐷

. (16)

In order to use 𝑞 = 𝑃 (𝑡) in (16), we need to evaluate (𝐵v, 𝑃 (𝑡))Ω. From (15), we obtain that (𝐵v, 𝑃 (𝑡))Ω =
⟨𝐵𝑇 𝑃 (𝑡),v⟩𝑋′𝐷,𝑋𝐷

= 𝑏(𝑡,v); together with (14), we get

‖𝑃 (𝑡)‖𝐿2(Ω) ≤
1
𝛾2

sup
v∈𝑋𝐷

𝑏(𝑡,v)
‖v‖𝑋𝐷

≤ 𝐶2

𝛾2
.

We conclude that 𝑃 (𝑡) ∈ 𝐿∞(0, 𝑇 ; 𝐿2(Ω)). Then, we define the pressure 𝑝 = 𝜕𝑡𝑃 ; thus 𝑝 ∈ 𝐻−1,∞(0, 𝑇 ; 𝐿2(Ω)),
which concludes the third step of the proof.

The final step of the proof is to show that 𝑝 is unique. Consider the case u0 = 0 and 𝑐 = 0. Then, we have
u = 0, and (13) leads to

∫︀
Ω

𝑃 (𝑡)∇·v = 0, ∀v ∈ 𝑋𝐷. From the surjectivity of the divergence mapping, one gets
that 𝑃 (𝑡) = 0 for all 𝑡, and then 𝑝 = 0. �

4. Optimized Schwarz Waveform Relaxation Algorithm

The OSWR algorithm for solving the multidomain problem (3)–(4) is as follows.

Algorithm 1 (OSWR)
Choose initial Robin data 𝑔0

𝑖𝑗 , 𝜉0
𝑖𝑗 on Γ𝑖𝑗 × (0, 𝑇 ), 𝑗 ∈ ℐ𝑖, 𝑖 = 1, 2, . . . , 𝑀

for ℓ = 1, 2, . . . do
1. Solve the local space-time Robin problems, for 𝑖 = 1, 2, . . . , 𝑀

𝜕𝑡u
ℓ
𝑖 − 𝜈Δuℓ

𝑖 +∇𝑝ℓ
𝑖 = f𝑖 in Ω𝑖 × (0, 𝑇 )

∇·uℓ
𝑖 = 0 in Ω𝑖 × (0, 𝑇 )

uℓ
𝑖(., 𝑡 = 0) = u0,𝑖 in Ω𝑖

𝛼𝑖𝑗(𝜈𝜕n𝑖𝑗u
ℓ
𝑖 · n𝑖𝑗 − 𝑝ℓ

𝑖) + uℓ
𝑖 · n𝑖𝑗 = 𝑔ℓ−1

𝑖𝑗 on Γ𝑖𝑗 × (0, 𝑇 ), 𝑗 ∈ ℐ𝑖

𝛽𝑖𝑗𝜈𝜕n𝑖𝑗u
ℓ
𝑖 × n𝑖𝑗 + uℓ

𝑖 × n𝑖𝑗 = 𝜉ℓ−1
𝑖𝑗 on Γ𝑖𝑗 × (0, 𝑇 ), 𝑗 ∈ ℐ𝑖

uℓ
𝑖 = 0 on (𝜕Ω𝑖 ∩ 𝜕Ω)× (0, 𝑇 )

(17)

2. Update the Robin terms 𝑔ℓ
𝑖𝑗 , 𝜉ℓ

𝑖𝑗 on Γ𝑖𝑗 × (0, 𝑇 ), for 𝑗 ∈ ℐ𝑖, 𝑖 = 1, 2, . . . , 𝑀

𝑔ℓ
𝑖𝑗 = 𝛼𝑖𝑗(𝜈𝜕n𝑖𝑗u

ℓ
𝑗 · n𝑖𝑗 − 𝑝ℓ

𝑗) + uℓ
𝑗 · n𝑖𝑗 , (18a)

𝜉ℓ
𝑖𝑗 = 𝛽𝑖𝑗𝜈𝜕n𝑖𝑗u

ℓ
𝑗 × n𝑖𝑗 + uℓ

𝑗 × n𝑖𝑗 . (18b)

end for

Remark 1. Let 𝑖 ∈ J1, 𝑀K, 𝑗 ∈ ℐ𝑖. Formulas given by (18) can be rewritten as

𝑔ℓ
𝑖𝑗 =

𝛼𝑖𝑗

𝛼𝑗𝑖

(︀
𝛼𝑗𝑖(𝜈𝜕n𝑗𝑖

uℓ
𝑗 · n𝑗𝑖 − 𝑝ℓ

𝑗) + uℓ
𝑗 · n𝑗𝑖

)︀
− 𝛼𝑖𝑗

𝛼𝑗𝑖
uℓ

𝑗 · n𝑗𝑖 + uℓ
𝑗 · n𝑖𝑗

𝜉ℓ
𝑖𝑗 =

𝛽𝑖𝑗

𝛽𝑗𝑖

(︀
𝛽𝑗𝑖𝜈𝜕n𝑗𝑖u

ℓ
𝑗 × n𝑗𝑖 + uℓ

𝑗 × n𝑗𝑖

)︀
− 𝛽𝑖𝑗

𝛽𝑗𝑖
uℓ

𝑗 × n𝑗𝑖 + uℓ
𝑗 × n𝑖𝑗 ,

or equivalently, using the Robin transmission conditions in (17),

𝑔ℓ
𝑖𝑗 =

𝛼𝑖𝑗

𝛼𝑗𝑖
𝑔ℓ−1

𝑗𝑖 − 𝛼𝑖𝑗 + 𝛼𝑗𝑖

𝛼𝑗𝑖
uℓ

𝑗 · n𝑗𝑖, (19a)

𝜉ℓ
𝑖𝑗 =

𝛽𝑖𝑗

𝛽𝑗𝑖
𝜉ℓ−1
𝑗𝑖 − 𝛽𝑖𝑗 + 𝛽𝑗𝑖

𝛽𝑗𝑖
uℓ

𝑗 × n𝑗𝑖. (19b)
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One advantage of formula (19) is that, if 𝑔ℓ−1
𝑖𝑗 and 𝜉ℓ−1

𝑖𝑗 have 𝐿2(Γ𝑖𝑗) regularity, so will 𝑔ℓ
𝑖𝑗 and 𝜉ℓ

𝑖𝑗 . Indeed, in (19)
the regularities of 𝑔ℓ

𝑖𝑗 and 𝜉ℓ
𝑖𝑗 depend only on those of 𝑔ℓ−1

𝑗𝑖 , 𝜉ℓ−1
𝑗𝑖 and uℓ

𝑗 , whose trace is in 𝐿2(0, 𝑇 ; 𝐻
1
2 (Γ𝑖𝑗))

(recall that we have uℓ
𝑗 ∈ 𝐿2

(︀
0, 𝑇 ;

[︀
𝐻1(Ω𝑗)

]︀2 )︀
, see Section 3). On the other hand, formula (18) will return

new Robin boundary data 𝑔ℓ
𝑖𝑗 and 𝜉ℓ

𝑖𝑗 with a lower regularity, which is not satisfying for an iterative algorithm.
Another advantage of formula (19) is that it is easier to implement in practice, than formula (18) (as one doesn’t
need to calculate the discrete counterpart of the fluxes).

Now, we may express the iterative algorithm in the following way. We first define

𝑉𝑖 = {u ∈
[︀
𝐻1(Ω𝑖)

]︀2
,u = 0 on 𝜕Ω𝑖 ∩ 𝜕Ω , ∇ · u = 0 in Ω𝑖},

𝐻𝑖 = {u ∈
[︀
𝐿2(Ω𝑖)

]︀2
,u · n𝜕Ω𝑖

= 0 on 𝜕Ω𝑖 ∩ 𝜕Ω , ∇ · u = 0 in Ω𝑖}.

𝑋𝑖 =
{︁
u ∈

[︀
𝐻1(Ω𝑖)

]︀2
,u = 0 on 𝜕Ω𝑖 ∩ 𝜕Ω

}︁
,

Then, we set, for all u,v ∈ 𝑋𝑖 and 𝑡 ∈ (0, 𝑇 ),

𝑎𝑖(u,v) := 𝜈 (∇u,∇v)Ω𝑖
+

∑︁
𝑗∈ℐ𝑖

1
𝛼𝑖𝑗

(u · n𝑖𝑗 ,v · n𝑖𝑗)Γ𝑖𝑗
+

1
𝛽𝑖𝑗

(u× n𝑖𝑗 ,v × n𝑖𝑗)Γ𝑖𝑗
,

𝑐ℓ
𝑖(𝑡,v) := (f(𝑡),v)Ω𝑖

+
∑︁
𝑗∈ℐ𝑖

1
𝛼𝑖𝑗

(︀
𝑔ℓ−1

𝑖𝑗 (𝑡),v · n𝑖𝑗

)︀
Γ𝑖𝑗

+
1

𝛽𝑖𝑗

(︀
𝜉ℓ−1
𝑖𝑗 (𝑡),v × n𝑖𝑗

)︀
Γ𝑖𝑗

,

(20)

and the algorithm reads: for all ℓ ≥ 1, given 𝑔ℓ−1
𝑖𝑗 , 𝜉ℓ−1

𝑖𝑗 on each space-time interface Γ𝑖𝑗 × (0, 𝑇 ), solve, for each
𝑖 = 1 . . . 𝑀 : ⟨︀

𝜕𝑡uℓ
𝑖 ,v

⟩︀
𝑉 ′𝑖 ,𝑉𝑖

+ 𝑎𝑖(uℓ
𝑖 ,v) = 𝑐ℓ

𝑖(𝑡,v), a.e. 𝑡 ∈ (0, 𝑇 ),∀v ∈ 𝑉𝑖,

uℓ
𝑖(0) = u0.𝑖.

(21)

Then we construct 𝑝ℓ
𝑖 = 𝜕𝑡𝑃

ℓ
𝑖 , where 𝑃 ℓ

𝑖 is such that

(︀
uℓ

𝑖(𝑡),v
)︀
Ω𝑖
− (u0,𝑖,v)Ω𝑖

+
∫︁ 𝑡

0

𝑎𝑖(uℓ
𝑖(𝑠),v)𝑑𝑠− (𝑃 ℓ

𝑖 ,∇ · v)Ω𝑖
−

∫︁ 𝑡

0

𝑐ℓ
𝑖(𝑠,v)𝑑𝑠 = 0,

∀v ∈ 𝑋𝑖.

(22)

Finally, the data are updated by using (19a)–(19b) on the space-time interfaces.
With this formulation, we can state the following result

Theorem 4.1. Assume that 𝑔0
𝑖𝑗 , 𝜉

0
𝑖𝑗 ∈ 𝐿2(0, 𝑇 ; 𝐿2(Γ𝑖𝑗)) and u0|Ω𝑖 ∈ 𝐻𝑖. Then, the OSWR algorithm is well-

defined and for all ℓ, uℓ
𝑖 ∈ 𝐿2(0, 𝑇 ; 𝑉𝑖) ∩ 𝒞0([0, 𝑇 ]; 𝐻𝑖), 𝜕𝑡uℓ

𝑖 ∈ 𝐿2(0, 𝑇 ; 𝑉 ′
𝑖 ), 𝑝ℓ

𝑖 ∈ 𝑊−1,∞(0, 𝑇 ; 𝐿2(Ω𝑖)) and
𝑔ℓ

𝑖𝑗 , 𝜉
ℓ
𝑖𝑗 ∈ 𝐿2(0, 𝑇 ; 𝐿2(Γ𝑖𝑗)).

Proof. By Theorem 3.11, if 𝑔ℓ−1
𝑖𝑗 , 𝜉ℓ−1

𝑖𝑗 ∈ 𝐿2(0, 𝑇 ; 𝐿2(Γ𝑖𝑗)), then one gets uℓ
𝑖 verifying (21) with uℓ

𝑖 ∈ 𝐿2(0, 𝑇 ; 𝑉𝑖)∩
𝒞0([0, 𝑇 ]; 𝐻𝑖) and 𝜕𝑡uℓ

𝑖 ∈ 𝐿2(0, 𝑇 ; 𝑉 ′
𝑖 ). Additionally, Theorem 3.11 tells us that there exists 𝑃 ℓ

𝑖 verifying (22).
We take 𝑝ℓ

𝑖 = 𝜕𝑡𝑃
ℓ
𝑖 ∈ 𝑊−1,∞(0, 𝑇 ; 𝐿2(Ω𝑖)).

Using the trace theorem, the normal and tangent traces of uℓ
𝑖 on Γ𝑖𝑗 × (0, 𝑇 ) belong to 𝐿2(0, 𝑇 ; 𝐿2(Γ𝑖𝑗)).

Hence, using the update formula (19), we infer that 𝑔ℓ
𝑖𝑗 , 𝜉

ℓ
𝑖𝑗 ∈ 𝐿2(0, 𝑇 ; 𝐿2(Γ𝑖𝑗)).

The proof is then carried out by a simple induction. �

Remark 4.2. The OSWR algorithm is constructed without considering the last condition (6), hence it may
not converge to the monodomain solution. We shall show in the next section that, indeed, the pressure in each
subdomain may not converge to the restriction of the monodomain pressure.
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5. First observations on the two subdomains case

For the trivial case of a one-dimensional problem and two subdomains, one can show that the velocity iterates
converge, while the pressure iterates do not converge in general, see [10].

This result generalizes to higher dimensions as follows : let us consider the two-subdomain case, i.e. 𝑀 = 2.
To simplify notation, we set Γ := Γ12 = Γ21, and for any 𝜑 in (𝛼, 𝑔,u), we write 𝜑1 and 𝜑2 instead of 𝜑12 and
𝜑21, respectively.

The divergence-free condition of the velocity in each subdomain leads to∫︁
𝜕Ω𝑖

uℓ
𝑖 · n𝜕Ω𝑖

= 0 =
∫︁

Γ

uℓ
𝑖 · n𝑖, 𝑖 = 1, 2. (23)

The update of Robin terms for the normal components can also be written as

𝑔ℓ
𝑖 =

𝛼𝑖

𝛼𝑗
𝑔ℓ−1

𝑗 − 𝛼𝑖 + 𝛼𝑗

𝛼𝑗
uℓ

𝑗 · n𝑗 , 𝑗 = 3− 𝑖, 𝑖 = 1, 2.

Integrating over Γ, and taking (23) into account, we get∫︁
Γ

𝑔ℓ
𝑖 =

𝛼𝑖

𝛼𝑗

∫︁
Γ

𝑔ℓ−1
𝑗 =

∫︁
Γ

𝑔ℓ−2
𝑖 , 𝑗 = 3− 𝑖, 𝑖 = 1, 2.

Therefore, a necessary condition for the convergence of the algorithm to the monodomain solution is∫︁
Γ

𝑔0
𝑖 =

∫︁
Γ

𝑔𝑖, 𝑖 = 1, 2, (24)

with 𝑔𝑖 = 𝛼𝑖(𝜈𝜕n𝑖u · n𝑖 − 𝑝) + u · n𝑖, 𝑖 = 1, 2, in which (u, 𝑝) is the monodomain solution of problem (1).
Condition (24) cannot be achieved in practice because the quantity 𝑔𝑖, 𝑖 = 1, 2, is not known.

More precisely, whereas the convergence of the velocity iterates will be proven in Section 6 below, indepen-
dently of condition (24), the pressure iterates will converge only if condition (24) is satisfied, and thus will
not converge in general. A correction technique to recover the pressure from the velocity will be proposed in
Section 7.

6. Convergence of the velocity via energy estimate

In this Section, we suppose additional regularity on u0, f and Ω, which leads to regularity properties of the
strong solution of problem (1)–(2). Namely, we recall Theorem 1, Page 86 from [32].

Theorem 6.1. Let Ω be a bounded domain of R2 with twice continuously differentiable boundary. For any
u0 ∈ 𝑉 and f ∈ 𝐿2(0, 𝑇 ; 𝐿2(Ω))2), problem (1)–(2) has a unique solution (u, 𝑝) such that

u ∈ 𝒞0([0, 𝑇 ]; 𝑉 ) ∩ 𝐿2(0, 𝑇 ; (𝐻2(Ω))2), 𝜕𝑡u ∈ 𝐿2(0, 𝑇 ; 𝐿2(Ω))2,
𝑝 ∈ 𝐿2(0, 𝑇 ; 𝐻1(Ω)).

Using Theorem 6.1, we prove that, if its hypotheses are satisfied, then the velocity iterates converge to the
monodomain velocity.

Theorem 6.2. Assume that the hypotheses of Theorem 6.1 are satisfied. Let 𝑔0
𝑖𝑗 and 𝜉0

𝑖𝑗 belong to
𝐿2(0, 𝑇 ; 𝐿2(Γ𝑖𝑗)) and let uℓ

𝑖 be the velocity component of the solution of Algorithm 1 (OSWR). Then, if 𝛼𝑖𝑗 = 𝛼𝑗𝑖

and 𝛽𝑖𝑗 = 𝛽𝑗𝑖, the sequence uℓ
𝑖 converges to u𝑖 = u|Ω𝑖

in 𝒞0([0, 𝑇 ]; 𝐻𝑖) ∩ 𝐿2(0, 𝑇 ; 𝑉𝑖).
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Proof. Denote by 𝑝𝑖 = 𝑝|Ω𝑖
. Then, thanks to the extra regularity of (u, 𝑝) given by Theorem 6.1, we can define

its Robin trace on any space-time interface Γ𝑖𝑗 × (0, 𝑇 )

𝑔𝑖𝑗 = 𝛼𝑖𝑗(𝜈𝜕n𝑖𝑗u𝑗 · n𝑖𝑗 − 𝑝𝑗) + u𝑗 · n𝑖𝑗 , (25a)
𝜉𝑖𝑗 = 𝛽𝑖𝑗𝜈𝜕n𝑖𝑗

u𝑗 × n𝑖𝑗 + u𝑗 × n𝑖𝑗 , (25b)

and they both belong to 𝐿2(0, 𝑇 ; 𝐿2(Γ𝑖𝑗)). Then (5) implies

𝑔𝑖𝑗 =
𝛼𝑖𝑗

𝛼𝑗𝑖
𝑔𝑗𝑖 −

𝛼𝑖𝑗 + 𝛼𝑗𝑖

𝛼𝑗𝑖
u𝑗 · n𝑗𝑖, (26a)

𝜉𝑖𝑗 =
𝛽𝑖𝑗

𝛽𝑗𝑖
𝜉𝑗𝑖 −

𝛽𝑖𝑗 + 𝛽𝑗𝑖

𝛽𝑗𝑖
u𝑗 × n𝑗𝑖. (26b)

Moreover, (u𝑖, 𝑝𝑖) is the strong solution of each local Robin boundary problem with source term f𝑖, initial
condition u0,𝑖 and Robin terms 𝑔𝑖𝑗 and 𝜉𝑖𝑗 on Γ𝑖𝑗 . We can write these local problems in variational forms
similar to (20)–(21), in which we replace 𝑔ℓ

𝑖𝑗 by 𝑔𝑖𝑗 and 𝜉ℓ
𝑖𝑗 by 𝜉𝑖𝑗 .

We define the errors as the differences between the iterates and the restrictions (to each subdomain) of the
monodomain solution and denote by

eℓ
𝑖 := uℓ

𝑖 − u𝑖 , ℎℓ
𝑖𝑗 = 𝑔ℓ

𝑖𝑗 − 𝑔𝑖𝑗 , 𝜁ℓ
𝑖𝑗 = 𝜉ℓ

𝑖𝑗 − 𝜉𝑖𝑗 , 𝑗 ∈ ℐ𝑖, 𝑖 ∈ J1, 𝑀K. (27)

Then, the errors also verify the following variational problems similar to (20)–(21): for a.e. 𝑡 ∈ (0, 𝑇 ),∀v ∈ 𝑉𝑖,

⟨𝜕𝑡eℓ
𝑖 ,v⟩𝑉 ′𝑖 ,𝑉𝑖

+ 𝑎𝑖(eℓ
𝑖 ,v) =

∑︁
𝑗∈ℐ𝑖

1
𝛼𝑖𝑗

(ℎℓ−1
𝑖𝑗 ,v · n𝑖𝑗)Γ𝑖𝑗

+
∑︁
𝑗∈ℐ𝑖

1
𝛽𝑖𝑗

(𝜁ℓ−1
𝑖𝑗 ,v × n𝑖𝑗)Γ𝑖𝑗

, (28)

with initial condition eℓ
𝑖(0) = 0. All integrals on Γ𝑖𝑗 are well defined since 𝑔𝑖𝑗 and 𝜉𝑖𝑗 are both in 𝐿2(0, 𝑇 ; 𝐿2(Γ𝑖𝑗)),

and since we have proved that this is also the case for 𝑔ℓ
𝑖𝑗 and 𝜉ℓ

𝑖𝑗 as soon as it is true for ℓ = 0.
With 𝛼𝑖𝑗 = 𝛼𝑗𝑖 and 𝛽𝑖𝑗 = 𝛽𝑗𝑖, the update formulas (19) and (26) for the Robin terms on Γ𝑖𝑗 × (0, 𝑇 ) lead to

eℓ
𝑖 · n𝑖𝑗 =

1
2

(︀
ℎℓ−1

𝑖𝑗 − ℎℓ
𝑗𝑖

)︀
, eℓ

𝑖 × n𝑖𝑗 =
1
2

(︀
𝜁ℓ−1
𝑖𝑗 − 𝜁ℓ

𝑗𝑖

)︀
. (29)

Choosing eℓ
𝑖 as test function in (28), one gets

⟨𝜕𝑡eℓ
𝑖 , e

ℓ
𝑖⟩𝑉 ′𝑖 ,𝑉𝑖

+ 𝜈(∇eℓ
𝑖 ,∇eℓ

𝑖)Ω𝑖

+
∑︁
𝑗∈ℐ𝑖

1
𝛼𝑖𝑗

(eℓ
𝑖 · n𝑖𝑗 , eℓ

𝑖 · n𝑖𝑗)Γ𝑖𝑗
+

∑︁
𝑗∈ℐ𝑖

1
𝛽𝑖𝑗

(eℓ
𝑖 × n𝑖𝑗 , eℓ

𝑖 × n𝑖𝑗)Γ𝑖𝑗

=
∑︁
𝑗∈ℐ𝑖

1
𝛼𝑖𝑗

(ℎℓ−1
𝑖𝑗 , eℓ

𝑖 · n𝑖𝑗)Γ𝑖𝑗
+

∑︁
𝑗∈ℐ𝑖

1
𝛽𝑖𝑗

(𝜁ℓ−1
𝑖𝑗 , eℓ

𝑖 × n𝑖𝑗)Γ𝑖𝑗
.

(30)

On the boundary Γ𝑖𝑗 , 𝑗 ∈ ℐ𝑖, replacing (29) into (30), one gets

⟨𝜕𝑡eℓ
𝑖 , e

ℓ
𝑖⟩𝑉 ′𝑖 ,𝑉𝑖

+ 𝜈(∇eℓ
𝑖 ,∇eℓ

𝑖)Ω𝑖
+

1
4

∑︁
𝑗∈ℐ𝑖

1
𝛼𝑖𝑗

(ℎℓ−1
𝑖𝑗 − ℎℓ

𝑗𝑖, ℎ
ℓ−1
𝑖𝑗 − ℎℓ

𝑗𝑖)Γ𝑖𝑗

+
1
4

∑︁
𝑗∈ℐ𝑖

1
𝛽𝑖𝑗

(𝜁ℓ−1
𝑖𝑗 − 𝜁ℓ

𝑗𝑖, 𝜁
ℓ−1
𝑖𝑗 − 𝜁ℓ

𝑗𝑖)Γ𝑖𝑗

=
1
2

∑︁
𝑗∈ℐ𝑖

1
𝛼𝑖𝑗

(ℎℓ−1
𝑖𝑗 , ℎℓ−1

𝑖𝑗 − ℎℓ
𝑗𝑖)Γ𝑖𝑗

+
1
2

∑︁
𝑗∈ℐ𝑖

1
𝛽𝑖𝑗

(𝜁ℓ−1
𝑖𝑗 , 𝜁ℓ−1

𝑖𝑗 − 𝜁ℓ
𝑗𝑖)Γ𝑖𝑗

,
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or equivalently

⟨𝜕𝑡eℓ
𝑖 , e

ℓ
𝑖⟩𝑉 ′𝑖 ,𝑉𝑖

+ 𝜈‖∇eℓ
𝑖‖2Ω𝑖

+
1
4

∑︁
𝑗∈ℐ𝑖

1
𝛼𝑖𝑗

‖ℎℓ
𝑗𝑖‖2Γ𝑖𝑗

+
1
4

∑︁
𝑗∈ℐ𝑖

1
𝛽𝑖𝑗
‖𝜁ℓ

𝑗𝑖‖2Γ𝑖𝑗

=
1
4

∑︁
𝑗∈ℐ𝑖

1
𝛼𝑖𝑗

‖ℎℓ−1
𝑖𝑗 ‖2Γ𝑖𝑗

+
1
4

∑︁
𝑗∈ℐ𝑖

1
𝛽𝑖𝑗
‖𝜁ℓ−1

𝑖𝑗 ‖2Γ𝑖𝑗
,

(31)

(recall that notation || · ||𝐷 corresponds to the 𝐿2(𝐷)-norm for any set 𝐷).
Adapting (12) to Ω𝑖, integrating (31) on (0, 𝑇 ), and using that eℓ

𝑖(0) = 0, we get

‖eℓ
𝑖(𝑇 )‖2Ω𝑖

+ 2𝜈

∫︁ 𝑇

0

‖∇eℓ
𝑖‖2Ω𝑖

+
∑︁
𝑗∈ℐ𝑖

1
2𝛼𝑖𝑗

∫︁ 𝑇

0

‖ℎℓ
𝑗𝑖‖2Γ𝑖𝑗

+
∑︁
𝑗∈ℐ𝑖

1
2𝛽𝑖𝑗

∫︁ 𝑇

0

‖𝜁ℓ
𝑗𝑖‖2Γ𝑖𝑗

=
∑︁
𝑗∈ℐ𝑖

1
2𝛼𝑖𝑗

∫︁ 𝑇

0

‖ℎℓ−1
𝑖𝑗 ‖2Γ𝑖𝑗

+
∑︁
𝑗∈ℐ𝑖

∫︁ 𝑇

0

1
2𝛽𝑖𝑗

‖𝜁ℓ−1
𝑖𝑗 ‖2Γ𝑖𝑗

.

(32)

Then, summing with respect to 𝑖, from 1 to 𝑀 , we get

𝑀∑︁
𝑖=1

‖eℓ
𝑖(., 𝑇 )‖2Ω𝑖

+ 2𝜈

𝑀∑︁
𝑖=1

∫︁ 𝑇

0

‖∇eℓ
𝑖‖2Ω𝑖

+ 𝐸ℓ
𝑅 = 𝐸ℓ−1

𝑅 ,

where 𝐸ℓ
𝑅 =

∑︀𝑀
𝑖=1

∑︀
𝑗∈ℐ𝑖

1
2𝛽𝑖𝑗

∫︀ 𝑇

0
‖𝜁ℓ

𝑖𝑗‖2Γ𝑖𝑗
+

∑︀𝑀
𝑖=1

∑︀
𝑗∈ℐ𝑖

1
2𝛼𝑖𝑗

∫︀ 𝑇

0
‖ℎℓ

𝑖𝑗‖2Γ𝑖𝑗
.

Summing now with respect to ℓ, from 1 to 𝐿, we obtain

𝐿∑︁
ℓ=1

𝑀∑︁
𝑖=1

‖eℓ
𝑖(., 𝑇 )‖2Ω𝑖

+ 2𝜈

𝐿∑︁
ℓ=1

𝑀∑︁
𝑖=1

∫︁ 𝑇

0

‖∇eℓ
𝑖‖2Ω𝑖

(𝑡)𝑑𝑡 + 𝐸𝐿
𝑅 = 𝐸0

𝑅.

As 𝐸𝐿
𝑅 ≥ 0 for all 𝐿, the sums

∑︀𝐿
ℓ=1

∑︀𝑀
𝑖=1 ‖eℓ

𝑖(., 𝑇 )‖2Ω𝑖
and

∑︀𝐿
ℓ=1

∑︀𝑀
𝑖=1

∫︀ 𝑇

0
‖∇eℓ

𝑖‖2Ω𝑖
are bounded; hence

‖eℓ
𝑖(𝑇 )‖2Ω𝑖

and
∫︀ 𝑇

0
‖∇eℓ

𝑖‖2Ω𝑖
(𝑡)𝑑𝑡 tend to 0 when ℓ →∞.

In addition, in (32), we can integrate on (0, 𝑡) instead of (0, 𝑇 ), and we get for all 𝑡 ∈ (0, 𝑇 )

𝐿∑︁
ℓ=1

𝑀∑︁
𝑖=1

‖eℓ
𝑖(𝑡)‖2Ω𝑖

≤ 𝐸0
𝑅.

This first leads to the convergence of ‖eℓ
𝑖(𝑡)‖Ω𝑖 to 0 for all 𝑡 and thus to the convergence of eℓ

𝑖 to 0 in 𝒞0([0, 𝑇 ]; 𝐻𝑖),
but also to the fact that, integrating on (0, 𝑇 ), it holds that

𝐿∑︁
ℓ=1

𝑀∑︁
𝑖=1

∫︁ 𝑇

0

‖eℓ
𝑖(𝑡)‖2Ω𝑖

𝑑𝑡 ≤ 𝑇𝐸0
𝑅.

This implies that
∫︀ 𝑇

0
‖eℓ

𝑖(𝑡)‖2Ω𝑖
𝑑𝑡 tends to 0 when ℓ → +∞. Then, summing with

∫︀ 𝑇

0
‖∇eℓ

𝑖(𝑡)‖2Ω𝑖
𝑑𝑡 that also

tends to 0, we have that
∫︀ 𝑇

0
‖eℓ

𝑖(𝑡)‖2[𝐻1(Ω𝑖)]2
𝑑𝑡 tends to 0, or, in other words, that eℓ

𝑖 tends to 0 in 𝐿2(0, 𝑇 ; 𝑉𝑖),
for 𝑖 ∈ J1, 𝑀K. �

Now, we prove a convergence result for the pressure. We set 𝑃 (𝑡) =
∫︀ 𝑡

0
𝑝(𝑠)𝑑𝑠 and 𝑃𝑖 = 𝑃 |Ω𝑖 and denote the

error by 𝐷ℓ
𝑖 (𝑡) = (𝑃 ℓ

𝑖 − 𝑃𝑖)(𝑡), 𝑖 ∈ J1, 𝑀K. Then we can state the following result.
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Corollary 6.3. Let all hypotheses of Theorem 6.2 be satisfied. Then for all 𝑡 ∈ [0, 𝑇 ] it holds that ‖𝐷ℓ
𝑖 (𝑡) −

1
|Ω𝑖|

∫︀
Ω𝑖

𝐷ℓ
𝑖 (𝑡)‖Ω𝑖

→ 0 when ℓ →∞.

Proof. Let 𝑖 ∈ J1, 𝑀K. As (u𝑖, 𝑝𝑖) is the strong solution of the Robin problem with boundary conditions
𝑔𝑖𝑗 , 𝜉𝑖𝑗 , 𝑗 ∈ ℐ𝑖, then 𝑃𝑖 verifies a variational formulation similar to (22): ∀ v ∈ 𝑋𝑖 it holds

(u𝑖(𝑡),v)Ω𝑖
− (u0,𝑖,v)Ω𝑖

+
∫︁ 𝑡

0

𝑎𝑖(u𝑖(𝑠),v)𝑑𝑠− (𝑃𝑖(𝑡),∇ · v)Ω𝑖
−

∫︁ 𝑡

0

𝑐𝑖(𝑠,v)𝑑𝑠 = 0 (33)

Then, from (22) and (33), taking the test function v ∈
[︀
𝐻1

0 (Ω𝑖)
]︀2 ⊂ 𝑋𝑖, the boundary terms in 𝑐ℓ

𝑖(𝑠,v) and
𝑐𝑖(𝑠,v) vanish and then 𝑐ℓ

𝑖(𝑠,v)− 𝑐𝑖(𝑠,v) also vanishes. Then we get

(𝐷ℓ
𝑖 (𝑡),∇ · v)Ω𝑖

=
(︀
eℓ

𝑖(𝑡),v
)︀
Ω𝑖

+
∫︁ 𝑡

0

𝑎𝑖(eℓ
𝑖(𝑠),v)𝑑𝑠 ,∀v ∈

[︀
𝐻1

0 (Ω𝑖)
]︀2

.

As (𝑐,∇ · v)Ω𝑖 = 0 for all constants 𝑐 and v ∈
[︀
𝐻1

0 (Ω𝑖)
]︀2, the above formulation implies that ∀v ∈

[︀
𝐻1

0 (Ω𝑖)
]︀2

(𝐷ℓ
𝑖 (𝑡)− 1

|Ω𝑖|

∫︁
Ω𝑖

𝐷ℓ
𝑖 (𝑡),∇ · v)Ω𝑖

=
(︀
eℓ

𝑖(𝑡),v
)︀
Ω𝑖

+
∫︁ 𝑡

0

𝑎𝑖(eℓ
𝑖(𝑠),v)𝑑𝑠.

Since (𝐷ℓ
𝑖 −

1
|Ω𝑖|

∫︀
Ω𝑖

𝐷ℓ
𝑖 ) ∈ 𝐿2

0(Ω𝑖) =
{︀
𝑝 ∈ 𝐿2(Ω𝑖),

∫︀
Ω𝑖

𝑝 = 0
}︀

, 𝑖 ∈ J1, 𝑀K, from the inf-sup condition there exists

𝛾3 s.t.

‖𝐷ℓ
𝑖 −

1
|Ω𝑖|

∫︁
Ω𝑖

𝐷ℓ
𝑖‖Ω𝑖

≤ 1
𝛾3

sup
v∈[𝐻1

0 (Ω𝑖)]2

|
(︀
eℓ

𝑖(𝑡),v
)︀
Ω𝑖

+
∫︀ 𝑡

0
𝑎𝑖(eℓ

𝑖(𝑠),v)𝑑𝑠|
‖v‖[𝐻1

0 (Ω𝑖)]2
·

We apply again the continuity of 𝑎𝑖(., .)

|
∫︁ 𝑡

0

𝑎𝑖(eℓ
𝑖(𝑠),v)𝑑𝑠| ≤ 𝑀𝑖

∫︁ 𝑡

0

‖eℓ
𝑖(𝑠)‖𝑋𝑖

‖v‖𝑋𝑖
𝑑𝑠 ≤ 𝑀𝑖‖v‖[𝐻1

0 (Ω𝑖)]2
√

𝑇‖eℓ
𝑖‖𝐿2(0,𝑇 ;𝑋𝑖)

as well as the Cauchy-Schwarz and Poincaré inequalities on
(︀
eℓ

𝑖(𝑡),v
)︀
Ω𝑖

, we get

‖𝐷ℓ
𝑖 −

1
|Ω𝑖|

∫︁
Ω𝑖

𝐷ℓ
𝑖‖Ω𝑖 ≤

1
𝛾3

[︁
𝐶𝑃𝑖‖eℓ

𝑖(𝑡)‖Ω𝑖 + 𝑀𝑖

√
𝑇‖eℓ

𝑖‖𝐿2(0,𝑇 ;𝑋𝑖)

]︁
with 𝐶𝑃𝑖

the Poincaré constant of Ω𝑖. From the convergence of the velocity, we get the corollary. �

Remark 6.4. Corollary 6.3 tells us that, when ℓ grows, the space fluctuations of (the time primitive of) the
pressure error converge to 0 in each subdomain. Thus, the pressure error itself behaves for large ℓ like a piecewise
constant function, with values that possibly depend on the subdomain Ω𝑖 and iteration count ℓ. And, indeed,
numerical results given in Section 10 show that pressure iterates do not converge to the monodomain solution,
unless a correction is applied, which is the object of the next Section.

7. Recovering the pressure

Let us introduce the notation ⟨𝑝⟩𝒪 = 1
|𝒪|

∫︀
𝒪 𝑝 𝑑𝑥 for the mean value of a function on a domain 𝒪 (whatever

the space dimension of 𝒪).
We set 𝑑ℓ

𝑖 := 𝑝𝑖 − 𝑝ℓ
𝑖 , 𝑖 ∈ J1, 𝑀K, and recall that ℎℓ

𝑖𝑗 is defined in (27).
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Hypothesis 7.1. In this section, we suppose that, for a.e 𝑡 ∈ (0, 𝑇 )

– ‖𝑑ℓ
𝑖 − ⟨𝑑ℓ

𝑖⟩Ω𝑖‖Ω𝑖 −→ 0 for all 𝑖 when ℓ −→ +∞
– (⟨𝑑ℓ

𝑖⟩Γ𝑖𝑗
− ⟨𝑑ℓ

𝑖⟩Ω𝑖
) tends to 0 for all 𝑗 ∈ ℐ𝑖, for all 𝑖, when ℓ −→ +∞

–
(︀
⟨ℎℓ−1

𝑖𝑗 ⟩Γ𝑖𝑗 + 𝛼𝑖𝑗⟨𝑑ℓ
𝑖⟩Γ𝑖𝑗

)︀
−→ 0 for all 𝑗 ∈ ℐ𝑖, for all 𝑖, when ℓ −→ +∞

Remark 7.2. The above hypothesis can be implied from stronger assumptions on the regularity and conver-
gence of the velocity. Indeed, suppose that (eℓ

𝑖 , 𝑑
ℓ
𝑖) is the strong solution of the following Robin problem

𝜕𝑡eℓ
𝑖 − 𝜈∆eℓ

𝑖 +∇𝑑ℓ
𝑖 = 0 in Ω𝑖 × (0, 𝑇 )

∇·eℓ
𝑖 = 0 in Ω𝑖 × (0, 𝑇 )

eℓ
𝑖(., 𝑡 = 0) = 0 in Ω𝑖

eℓ
𝑖 = 0 on (𝜕Ω ∩ 𝜕Ω𝑖)× (0, 𝑇 )

𝛼𝑖𝑗(𝜈𝜕n𝑖𝑗
eℓ

𝑖 · n𝑖𝑗 − 𝑑ℓ
𝑖) + eℓ

𝑖 · n𝑖𝑗 = ℎℓ−1
𝑖𝑗 on Γ𝑖𝑗 × (0, 𝑇 )

𝛽𝑖𝑗𝜈𝜕n𝑖𝑗
eℓ

𝑖 × n + eℓ
𝑖 × n𝑖𝑗 = 𝜁ℓ−1

𝑖𝑗 on Γ𝑖𝑗 × (0, 𝑇 )

with the following convergence

‖eℓ
𝑖‖𝐿∞(0,𝑇 ;[𝐻2(Ω𝑖)]

2) −→ 0, ‖𝜕𝑡eℓ
𝑖‖𝐿∞(0,𝑇 ;[𝐿2(Ω𝑖)]

2) −→ 0.

From this, we get, for a.e. 𝑡 ∈ (0, 𝑇 ), ‖∇𝑑ℓ
𝑖(𝑡)‖Ω𝑖

−→ 0, which implies the first and second items in Hypothesis 7.1.
This also implies the convergence of trace of the velocity: for a.e. 𝑡 ∈ (0, 𝑇 ), we have ‖𝛼𝑖𝑗𝜈𝜕n𝑖𝑗

eℓ
𝑖(𝑡) ·n𝑖𝑗 +eℓ

𝑖(𝑡) ·
n𝑖𝑗‖Γ𝑖𝑗 −→ 0 that leads to the third item in Hypothesis 7.1.

One can rewrite the three items in Hypothesis 7.1 on the error as follows :
when ℓ −→ +∞, ∀𝑖 ∈ J1, 𝑀K,

‖(𝑝ℓ
𝑖 − 𝑝𝑖)− (⟨𝑝ℓ

𝑖⟩Ω𝑖 − ⟨𝑝𝑖⟩Ω𝑖)‖Ω𝑖 −→ 0, (34)

(⟨𝑝ℓ
𝑖 − 𝑝𝑖⟩Γ𝑖𝑗

)− (⟨𝑝ℓ
𝑖 − 𝑝𝑖⟩Ω𝑖

) −→ 0, ∀𝑗 ∈ ℐ𝑖, (35)[︀
⟨𝑔ℓ−1

𝑖𝑗 ⟩Γ𝑖𝑗
− ⟨𝑔𝑖𝑗⟩Γ𝑖𝑗

]︀
+ 𝛼𝑖𝑗⟨𝑝ℓ

𝑖 − 𝑝𝑖⟩Γ𝑖𝑗
−→ 0, ∀𝑗 ∈ ℐ𝑖. (36)

Expression (34) shows that 𝑝ℓ
𝑖(𝑡) will tend to 𝑝𝑖(𝑡) if and only if the mean-value of 𝑝ℓ

𝑖(𝑡) on Ω𝑖 tends to the mean
value of 𝑝𝑖(𝑡). However, no constraint was imposed on the mean-value of 𝑝ℓ

𝑖(𝑡) in the algorithm, since, thanks
to the Robin boundary conditions, such constraint is not necessary to obtain local well-posed problems at each
iteration. In Section 5, we observed cases in which 𝑝ℓ

𝑖 does not converge to the monodomain solution 𝑝𝑖. In this
section, we build a modified pressure 𝑝ℓ

𝑖 such that 𝑝ℓ
𝑖(𝑡) tends to 𝑝𝑖(𝑡) in 𝐿2(Ω𝑖), 𝑖 = 1, . . . ,𝑀 .

Let us denote 𝑋𝑖(𝑡) := ⟨𝑝𝑖(𝑡)⟩Ω𝑖
, ∀𝑖 ∈ J1, 𝑀K. Then, using this notation, (34) reads

‖
(︀
𝑝ℓ

𝑖(𝑡)− ⟨𝑝ℓ
𝑖(𝑡)⟩Ω𝑖

+ 𝑋𝑖(𝑡)
)︀
− 𝑝𝑖(𝑡)‖𝐿2(Ω𝑖) −→ 0 when ℓ →∞. (37)

From (37), we see that
(︀
𝑝ℓ

𝑖(𝑡)− ⟨𝑝ℓ
𝑖(𝑡)⟩Ω𝑖 + 𝑋𝑖(𝑡)

)︀
is the right approximation to calculate at each iteration since

it tends to 𝑝𝑖(𝑡). However, we do not know how to calculate it because 𝑋𝑖 is not known. A similar question
was raised in the thesis of Lissoni Theorem IV.3.9 from [34] at the discrete level, within a Schwarz algorithm
applied at each time step of a time marching scheme for the numerical approximation of the incompressible
Navier-Stokes equations.

We introduce below a new quantity 𝑌 ℓ
𝑖 (𝑡), fully computable at any given iteration ℓ, that tends to 𝑋𝑖(𝑡) when

ℓ tends to infinity, from which we will define the modified pressure 𝑝ℓ
𝑖 .

To ease the presentation, we shall set |Γ𝑖𝑗 | = 0, 𝛼𝑖𝑗 = 0 and 𝑔ℓ−1
𝑖𝑗 = 0 if 𝑗 ̸∈ ℐ𝑖. Moreover, we introduce the

constant matrix

𝐴 = (𝑎𝑖𝑗)1≤𝑖,𝑗≤𝑀 , with 𝑎𝑖𝑖 =
𝑀∑︁

𝑗=1,𝑗 ̸=𝑖

|Γ𝑖𝑗 |𝛼𝑖𝑗 , and 𝑎𝑖𝑗 = −|Γ𝑗𝑖|𝛼𝑗𝑖 if 𝑗 ̸= 𝑖
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together with the constant vector 𝐶 = (|Ω1|, |Ω2|, . . . , |Ω𝑀 |) and the sequence of vectors (𝑏ℓ)ℓ, with 𝑏ℓ =
(𝑏ℓ

1, 𝑏
ℓ
2, . . . , 𝑏

ℓ
𝑀 )𝑡 defined as

𝑏ℓ
𝑖 =

𝑀∑︁
𝑗=1

|Γ𝑖𝑗 |
[︀
⟨𝑔ℓ−1

𝑖𝑗 ⟩Γ𝑖𝑗
+ 𝛼𝑖𝑗⟨𝑝ℓ

𝑖⟩Ω𝑖

]︀
−

𝑀∑︁
𝑗=1

|Γ𝑗𝑖|
[︀
⟨𝑔ℓ−1

𝑗𝑖 ⟩Γ𝑗𝑖
+ 𝛼𝑗𝑖⟨𝑝ℓ

𝑗⟩Ω𝑗

]︀
.

Theorem 7.3. Assume that 𝛼𝑖𝑗 = 𝛼𝑗𝑖, ∀(𝑖, 𝑗). We have the following properties

(i) For all ℓ, the following system

𝐴𝑌 ℓ = 𝑏ℓ,

𝐶𝑌 ℓ = 0,
(38)

has a unique solution 𝑌 ℓ ∈ R𝑀 .
(ii) Moreover, we have 𝑌 ℓ → 𝑋 := (𝑋1, 𝑋2, · · · , 𝑋𝑀 ) in R𝑀 , and we get for all 𝑡: ‖𝑝ℓ

𝑖 − 𝑝𝑖‖𝐿2(Ω𝑖) −→ 0 when
ℓ →∞, with 𝑝ℓ

𝑖(𝑡) := 𝑝ℓ
𝑖(𝑡)− ⟨𝑝ℓ

𝑖(𝑡)⟩Ω𝑖
+ 𝑌 ℓ

𝑖 (𝑡).

Proof of (i). The proof of Theorem 7.3–(i) relies on two main steps:

(a) Existence of solutions to the system 𝐴𝑌 ℓ = 𝑏ℓ,
(b) Existence and uniqueness of a solution to system (38) thanks to the additional constraint 𝐶𝑌 ℓ = 0.

Let us start with (a). Because 𝛼𝑖𝑗 = 𝛼𝑗𝑖, it holds that 𝐴 is symmetric and then existence of at least one
solution to the system 𝐴𝑌 ℓ = 𝑏ℓ is equivalent to proving that 𝑏ℓ ∈ Im(𝐴) = (Ker(𝐴))⊥. Thus, we start with the
determination of Ker(𝐴).

Let 𝑌 = (𝑌1, 𝑌2, . . . , 𝑌𝑀 )𝑡 ∈ Ker(𝐴). Then, we have
∑︀𝑀

𝑗=1 𝑎𝑖𝑗𝑌𝑗 = 0, ∀𝑖 ∈ J1, 𝑀K. As 𝛼𝑖𝑗 = 𝛼𝑗𝑖, we have
𝑎𝑖𝑖 = −

∑︀𝑀
𝑗=1,𝑗 ̸=𝑖 𝑎𝑖𝑗 , which implies

0 =
𝑀∑︁

𝑗=1

𝑎𝑖𝑗𝑌𝑗𝑌𝑖 =

⎛⎝ 𝑀∑︁
𝑗=1,𝑗 ̸=𝑖

𝑎𝑖𝑗𝑌𝑗𝑌𝑖

⎞⎠ + 𝑎𝑖𝑖𝑌
2
𝑖 =

𝑀∑︁
𝑗=1,𝑗 ̸=𝑖

𝑎𝑖𝑗(𝑌𝑗𝑌𝑖 − 𝑌 2
𝑖 ).

Summing the above expression in 𝑖, and using that 𝑎𝑖𝑗 = 𝑎𝑗𝑖, we obtain

𝑀∑︁
𝑖=1

𝑀∑︁
𝑗=1,𝑗 ̸=𝑖

𝑎𝑖𝑗(𝑌𝑗𝑌𝑖 − 𝑌 2
𝑖 ) = −

∑︁
𝑖<𝑗

𝑎𝑖𝑗(𝑌𝑖 − 𝑌𝑗)2 = 0.

As 𝑎𝑖𝑗 ≤ 0 for all (𝑖, 𝑗) with 𝑖 ̸= 𝑗, and 𝑎𝑖𝑗 < 0 as soon as subdomains 𝑖 and 𝑗 are neighbours, this implies that
𝑌𝑖 = 𝑌𝑗 for any pair of neighbouring subdomains 𝑖 and 𝑗. Since Ω is connected, this finally implies that all 𝑌𝑖 are
equal i.e. Ker(𝐴) = span(e) with e = (1, 1, . . . , 1, 1). Then, 𝑏ℓ ∈ (Ker(𝐴))⊥ is equivalent to 𝑏ℓ ·e =

∑︀𝑀
𝑖=1 𝑏ℓ

𝑖 = 0.
The latter property is proved in the following way:

𝑀∑︁
𝑖=1

𝑏ℓ
𝑖 =

𝑀∑︁
𝑖=1

⎡⎣ 𝑀∑︁
𝑗=1

|Γ𝑖𝑗 |
(︀
⟨𝑔ℓ−1

𝑖𝑗 ⟩Γ𝑖𝑗
+ 𝛼𝑖𝑗⟨𝑝ℓ

𝑖⟩Ω𝑖

)︀
−

𝑀∑︁
𝑗=1

|Γ𝑗𝑖|
(︀
⟨𝑔ℓ−1

𝑗𝑖 ⟩Γ𝑗𝑖
+ 𝛼𝑗𝑖⟨𝑝ℓ

𝑗⟩Ω𝑗

)︀⎤⎦ .

Denoting ∆𝑖𝑗 := |Γ𝑖𝑗 |
(︀
⟨𝑔ℓ−1

𝑖𝑗 ⟩Γ𝑖𝑗
+ 𝛼𝑖𝑗⟨𝑝ℓ

𝑖⟩Ω𝑖

)︀
, we obtain

𝑀∑︁
𝑖=1

𝑏ℓ
𝑖 =

𝑀∑︁
𝑖=1

𝑀∑︁
𝑗=1

∆𝑖𝑗 −
𝑀∑︁
𝑖=1

𝑀∑︁
𝑗=1

∆𝑗𝑖 = 0,
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which proves that 𝑏ℓ · e = 0, which concludes the proof of (a).
Let us now turn to (b). From (a), we know that there exists at least a solution to 𝐴𝑌 = 𝑏; we let 𝑌 * be such a
solution. All other solutions may be written as 𝑌 = 𝑌 *+ 𝜇e, with 𝜇 ∈ R. Existence of a solution to (38) follows
from the fact that 𝐶e = |Ω| ≠ 0: Choosing 𝜇 = − 1

|Ω|𝐶𝑌 * leads to 𝐶𝑌 = 𝐶𝑌 * + 𝜇𝐶e = 0 and then 𝑌 solves
(38). As far as uniqueness is concerned, let 𝑌1 and 𝑌2 be two solutions of (38); since (𝑌1 − 𝑌2) ∈ Ker(𝐴), then
(𝑌1 − 𝑌2) = 𝜏e, with 𝜏 ∈ R. Since 𝜏 |Ω| = 𝜏𝐶e = 𝐶(𝑌1 − 𝑌2) = 0 it follows that 𝜏 = 0 and 𝑌1 = 𝑌2. This ends
the proof of Theorem 7.3–(i). �

Proof of Theorem 7.3–(ii). It relies on the two main results:

(c) 𝑏ℓ → 𝐴𝑋 in R𝑀 ,
(d) 𝐶𝑋 = 0.

Let us prove (c): from the divergence-free property of u𝑖, we have

0 =
∫︁

Ω𝑖

∇·u𝑖 =
∫︁

𝜕Ω𝑖

u𝑖 · n𝜕Ω𝑖
=

∑︁
𝑗∈ℐ𝑖

∫︁
Γ𝑖𝑗

u𝑖 · n𝑖𝑗 . (39)

Moreover, from the definition of 𝑔𝑖𝑗 in (25a) and the physical transmission conditions (4), we have

|Γ𝑖𝑗 |⟨𝑔𝑖𝑗⟩Γ𝑖𝑗 − |Γ𝑗𝑖|⟨𝑔𝑗𝑖⟩Γ𝑗𝑖 =
∫︁

Γ𝑖𝑗

(𝑔𝑖𝑗 − 𝑔𝑗𝑖) = 2
∫︁

Γ𝑖𝑗

u𝑖 · n𝑖𝑗 . (40)

Hence, from (39) and (40) we get ∑︁
𝑗∈ℐ𝑖

|Γ𝑖𝑗 |⟨𝑔𝑖𝑗⟩Γ𝑖𝑗
=

∑︁
𝑗∈ℐ𝑖

|Γ𝑗𝑖|⟨𝑔𝑗𝑖⟩Γ𝑗𝑖
. (41)

Expression (36) is equivalent to

⟨𝑔ℓ−1
𝑖𝑗 ⟩Γ𝑖𝑗

+ 𝛼𝑖𝑗⟨𝑝ℓ
𝑖 − 𝑝𝑖⟩Γ𝑖𝑗

−→ ⟨𝑔𝑖𝑗⟩Γ𝑖𝑗
. (42)

From (35), we may replace ⟨𝑝ℓ
𝑖 − 𝑝𝑖⟩Γ𝑖𝑗

by ⟨𝑝ℓ
𝑖 − 𝑝𝑖⟩Ω𝑖

in (42), then multiply by |Γ𝑖𝑗 | and sum over 𝑗 ∈ ℐ𝑖 for a
given 𝑖 to obtain ∑︁

𝑗∈ℐ𝑖

|Γ𝑖𝑗 |
[︀
⟨𝑔ℓ−1

𝑖𝑗 ⟩Γ𝑖𝑗
+ 𝛼𝑖𝑗⟨𝑝ℓ

𝑖 − 𝑝𝑖⟩Ω𝑖

]︀
−→

∑︁
𝑗∈ℐ𝑖

|Γ𝑖𝑗 |⟨𝑔𝑖𝑗⟩Γ𝑖𝑗
. (43)

In exactly the same way, we also obtain∑︁
𝑗∈ℐ𝑖

|Γ𝑗𝑖|
[︀
⟨𝑔ℓ−1

𝑗𝑖 ⟩Γ𝑗𝑖
+ 𝛼𝑗𝑖⟨𝑝ℓ

𝑗 − 𝑝𝑗⟩Ω𝑗

]︀
−→

∑︁
𝑗∈ℐ𝑖

|Γ𝑗𝑖|⟨𝑔𝑗𝑖⟩Γ𝑗𝑖
. (44)

Using (43), (44) and (41), we obtain∑︁
𝑗∈ℐ𝑖

|Γ𝑖𝑗 |
[︀
⟨𝑔ℓ−1

𝑖𝑗 ⟩Γ𝑖𝑗
+ 𝛼𝑖𝑗⟨𝑝ℓ

𝑖⟩Ω𝑖
− 𝛼𝑖𝑗⟨𝑝𝑖⟩Ω𝑖

]︀
−

∑︁
𝑗∈ℐ𝑖

|Γ𝑗𝑖|
[︀
⟨𝑔ℓ−1

𝑗𝑖 ⟩Γ𝑗𝑖 + 𝛼𝑗𝑖⟨𝑝ℓ
𝑗⟩Ω𝑗 − 𝛼𝑗𝑖⟨𝑝𝑗⟩Ω𝑗

]︀
−→ 0,

or equivalently ∑︁
𝑗∈ℐ𝑖

|Γ𝑖𝑗 |
[︀
⟨𝑔ℓ−1

𝑖𝑗 ⟩Γ𝑖𝑗 + 𝛼𝑖𝑗⟨𝑝ℓ
𝑖⟩Ω𝑖

]︀
−

∑︁
𝑗∈ℐ𝑖

|Γ𝑗𝑖|
[︀
⟨𝑔ℓ−1

𝑗𝑖 ⟩Γ𝑗𝑖 + 𝛼𝑗𝑖⟨𝑝ℓ
𝑗⟩Ω𝑗

]︀
−→

∑︁
𝑗∈ℐ𝑖

|Γ𝑖𝑗 |𝛼𝑖𝑗⟨𝑝𝑖⟩Ω𝑖
−

∑︁
𝑗∈ℐ𝑖

|Γ𝑗𝑖|𝛼𝑗𝑖⟨𝑝𝑗⟩Ω𝑗
.
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This is exactly 𝑏ℓ −→ 𝐴𝑋.
Let us now prove (d): We have ∫︁

Ω

𝑝𝑖 =
𝑀∑︁
𝑖=1

∫︁
Ω𝑖

𝑝𝑖 =
𝑀∑︁
𝑖=1

|Ω𝑖|⟨𝑝𝑖⟩Ω𝑖
= 0,

i.e. 𝐶𝑋 = 0.
We now prove Theorem 7.3–(ii): From the solution 𝑌 ℓ of (38) given by Theorem 7.3–(i), and from (c) and

(d), we have 𝐴(𝑌 ℓ −𝑋) −→ 0 and 𝐶(𝑌 ℓ −𝑋) = 0. Uniqueness of a solution to 𝐴𝑍 = 𝐵 and 𝐶𝑍 = 0 as soon
as 𝐵 is in Im(𝐴) and finite dimension now imply that (𝑌 ℓ −𝑋) −→ 0 when ℓ → ∞. Then, using (37), with a
triangle inequality, ends the proof of Theorem 7.3–(ii). �

Remark 7.4. In the general case of 𝑀 subdomains, the calculation of 𝑝ℓ
𝑖 can be done only once, at the last

OSWR iteration. It involves solving the coarse problem (38) when 𝑀 > 2, and is given by an explicit formula
when 𝑀 = 2 (see Cor. 7.6), thus the cost of calculating the modified pressure is negligible. In practice, if the
stopping criterion of the OSWR method is based on the jumps of the Robin data at the subdomain interfaces,
then additional calculations of the pressure correction may be needed at intermediate iterations; the associated
additional computational cost is expected to remain small since problems (38) are of size 𝑀 .

Remark 7.5. Recovering the correct pressure could also be performed from the fact that ∇(𝑝ℓ
𝑖 − 𝑝𝑖) tends to

zero when ℓ →∞. Indeed, for a given Ω𝑖, choosing first an arbitrary point x𝑖 ∈ Ω𝑖, then one may write

𝑝𝑖(x) = 𝑝𝑖(x𝑖) + (x− x𝑖) ·
∫︁ 1

0

∇𝑝𝑖 (x𝑖 + 𝑡(x− x𝑖)) 𝑑𝑡 , ∀x ∈ Ω𝑖.

Then, one could replace ∇𝑝𝑖 by ∇𝑝ℓ
𝑖 to obtain approximate values of the pressure at each point x. However, this

formula holds on a given subdomain Ω𝑖. In order to relate values of the pressures in Ω𝑖 to those in a neighboring
subdomain Ω𝑗 through this kind of formula, one needs to choose a point on the boundary Γ𝑖𝑗 that will serve
as the point x𝑗 in the subdomain Ω𝑗 , and so on. At the discrete level, there are several drawbacks to that:
this requires further communications between subdomains, the pressure gradient at the boundaries may not be
easy to define (e.g. when the pressure is defined as a piecewise constant field like in the Crouzeix-Raviart finite
element), and finally there are many ways to go from one cell to another in the mesh, and, due to round-off
errors, this may lead to different evaluations of the pressure at a given cell in particular in very large scale
computations.

In the two-subdomain case, we use the same notation as in Section 5. Then the calculation of 𝑝ℓ
𝑖 can be done

by the following explicit formula.

Corollary 7.6. Let 𝑀 = 2, 𝛼 = 𝛼1 = 𝛼2, and define, for 𝑖 = 1, 2 and 𝑗 = 3− 𝑖,

𝑝ℓ
𝑖 = 𝑝ℓ

𝑖 +
|Ω𝑗 |
|Ω|

[︂
1
𝛼

(⟨𝑔ℓ−1
𝑖 ⟩Γ − ⟨𝑔ℓ−1

𝑗 ⟩Γ)
]︂
− |Ω𝑖|
|Ω|

⟨𝑝ℓ
𝑖⟩Ω𝑖

− |Ω𝑗 |
|Ω|

⟨𝑝ℓ
𝑗⟩Ω𝑗

.

Then 𝑝ℓ
𝑖 tends to 𝑝𝑖 in 𝐿2(Ω𝑖), when ℓ tends to infinity, for 𝑖 = 1, 2.

Proof. For 𝑀 = 2 we have

𝑏ℓ
1 = −𝑏ℓ

2 = |𝛤 |
[︀
⟨𝑔ℓ−1

1 ⟩𝛤 + 𝛼⟨𝑝ℓ
1⟩𝛺1

]︀
− |𝛤 |

[︀
⟨𝑔ℓ−1

2 ⟩𝛤 + 𝛼⟨𝑝ℓ
2⟩𝛺2

]︀
,

A =
[︂

𝛼|Γ| −𝛼|Γ|
−𝛼|Γ| 𝛼|Γ|

]︂
,

𝐶 = [|Ω1| |Ω2|].
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System (38) for 𝑀 = 2 has a unique solution given by

𝑌 ℓ
1 =

|Ω2|
|Ω|

[︂
1
𝛼

(⟨𝑔ℓ−1
1 ⟩Γ − ⟨𝑔ℓ−1

2 ⟩Γ) + (⟨𝑝ℓ
1⟩Ω1 − ⟨𝑝ℓ

2⟩Ω2)
]︂

,

𝑌 ℓ
2 =

|Ω1|
|Ω|

[︂
1
𝛼

(⟨𝑔ℓ−1
2 ⟩Γ − ⟨𝑔ℓ−1

1 ⟩Γ) + (⟨𝑝ℓ
2⟩Ω2 − ⟨𝑝ℓ

1⟩Ω1)
]︂

.

Thus we directly obtain, for 𝑖 = 1, 2, 𝑗 = 3− 𝑖,

𝑝ℓ
𝑖 − ⟨𝑝ℓ

𝑖⟩Ω𝑖 + 𝑌 ℓ
𝑖 = 𝑝ℓ

𝑖 .

Then, using Theorem 7.3 (ii), we get 𝑝ℓ
𝑖 → 𝑝𝑖 in 𝐿2(Ω𝑖), for 𝑖 = 1, 2, which ends the proof of Corollary 7.6. �

8. Convergence factor via Fourier transform

The aim of this section is to find a way to conveniently choose the parameters (𝛼, 𝛽) that play an important
role in the actual rate of convergence in numerical experiments.
Let Ω = R2. We consider two subdomains Ω1 = (−∞, 0)×R and Ω2 = (0, +∞)×R, as commonly done for the
analysis of OSWR methods. To simplify notation, we set Γ := Γ12 = Γ21 = {𝑥 = 0} × R, and denote 𝛼12 and
𝛼21 by 𝛼1 and 𝛼2, respectively. We denote u = (𝑢, 𝑣) the two components of the velocity and set f = (𝑓𝑥, 𝑓𝑦).
Recall here the Stokes problem

𝜕𝑡𝑢− 𝜈∆𝑢 + 𝜕𝑥𝑝 = 𝑓𝑥

, in Ω× (0, 𝑇 )𝜕𝑡𝑣 − 𝜈∆𝑣 + 𝜕𝑦𝑝 = 𝑓𝑦

𝜕𝑥𝑢 + 𝜕𝑦𝑣 = 0
𝑢(., 𝑡 = 0) = 𝑢0 , in Ω
𝑣(., 𝑡 = 0) = 𝑣0

𝑢, 𝑣 → 0 , when |(𝑥, 𝑦)| → +∞.

We write the algorithm for the errors using the same notation (𝑢, 𝑣, 𝑝), which means that, by linearity, we set
𝑓𝑥 = 𝑓𝑦 = 0 and 𝑢0 = 𝑣0 = 0. To avoid additional notation for the Robin terms, we write the OSWR algorithm
as follows: starting with 𝑢0

𝑖 , 𝑣
0
𝑖 , 𝑝0

𝑖 , at step ℓ ≥ 1 and provided 𝑢ℓ−1
𝑖 , 𝑣ℓ−1

𝑖 , 𝑝ℓ−1
𝑖 we solve

𝜕𝑡𝑢
ℓ
𝑖 − 𝜈∆𝑢ℓ

𝑖 + 𝜕𝑥𝑝ℓ
𝑖 = 0

, in Ω𝑖 × (0, 𝑇 )𝜕𝑡𝑣
ℓ
𝑖 − 𝜈∆𝑣ℓ

𝑖 + 𝜕𝑦𝑝ℓ
𝑖 = 0

𝜕𝑥𝑢ℓ
𝑖 + 𝜕𝑦𝑣ℓ

𝑖 = 0
𝑢ℓ

𝑖(., 𝑡 = 0) = 0 , in Ω𝑖𝑣ℓ
𝑖 (., 𝑡 = 0) = 0

𝑢ℓ
𝑖 , 𝑣

ℓ
𝑖 → 0 when |(𝑥, 𝑦)| → +∞

together with transmission condition on Γ× (0, 𝑇 ), for 𝑖 = 1, 2 and 𝑗 = 3− 𝑖 :

𝛼𝑖(𝜈𝜕𝑥𝑢ℓ
𝑖 − 𝑝ℓ

𝑖) + (−1)𝑖+1𝑢ℓ
𝑖 = 𝛼𝑖(𝜈𝜕𝑥𝑢ℓ−1

𝑗 − 𝑝ℓ−1
𝑗 ) + (−1)𝑖+1𝑢ℓ−1

𝑗

𝜈𝛽𝑖𝜕𝑥𝑣ℓ
𝑖 + (−1)𝑖+1𝑣ℓ

𝑖 = 𝜈𝛽𝑖𝜕𝑥𝑣ℓ−1
𝑗 + (−1)𝑖+1𝑣ℓ−1

𝑗

Let us consider the system in Ω1, and let ℓ ≥ 1. Taking the Fourier transform in time and in 𝑦-direction with
time frequency 𝜔 and space frequency 𝑘 ̸= 0, and, for the sake of simplicity, keeping notation 𝑢, 𝑣 instead of
𝑢̂, 𝑣, we get

𝑖𝜔𝑢ℓ
1 − 𝜈𝜕𝑥𝑥𝑢ℓ

1 + 𝜈𝑘2𝑢ℓ
1 + 𝜕𝑥𝑝ℓ

1 =0, (45a)

𝑖𝜔𝑣ℓ
1 − 𝜈𝜕𝑥𝑥𝑣ℓ

1 + 𝜈𝑘2𝑣ℓ
1 + 𝑖𝑘𝑝ℓ

1 =0, (45b)

𝜕𝑥𝑢ℓ
1 + 𝑖𝑘𝑣ℓ

1 =0. (45c)
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By differentiating equation (45b) with respect to 𝑥, multiplying (45a) by (−𝑖𝑘), and summing the resulting
equations, and denoting 𝑤ℓ

1 := 𝜕𝑥𝑣ℓ
1 − 𝑖𝑘𝑢ℓ

1 the vorticity, we get the vorticity equation

𝑖𝜔𝑤ℓ
1 − 𝜈𝜕𝑥𝑥𝑤ℓ

1 + 𝜈𝑘2𝑤ℓ
1 = 0. (46)

Denote by 𝜆 =

√︂
𝑘2 +

𝑖𝜔

𝜈
with positive real part. As 𝑤1 vanishes at −∞, one gets

𝑤ℓ
1 = 𝐸ℓ exp(𝜆𝑥). (47)

Using the definition of 𝑤1 and differentiating (45c), we get, for 𝑢1

𝜕𝑥𝑥𝑢ℓ
1 − 𝑘2𝑢ℓ

1 = −𝑖𝑘𝑤ℓ
1. (48)

The homogeneous equation associated to (48) has characteristic roots ±|𝑘|. As 𝑢1 and 𝑣1 vanish at −∞, we
only retain the root |𝑘|. Given the form (47) of the right-hand side of (48), its solution can be written under
the form

𝑢ℓ
1 = 𝐴ℓ exp(|𝑘|𝑥) + 𝐵ℓ exp(𝜆𝑥),

with 𝐴ℓ, 𝐵ℓ ∈ C. Then, using (45c) and (45b), we get

𝑣ℓ
1 = 𝐴ℓ 𝑖|𝑘|

𝑘
exp(|𝑘|𝑥) + 𝐵ℓ 𝑖𝜆

𝑘
exp(𝜆𝑥),

𝑝ℓ
1 = −𝐴ℓ 𝑖𝜔

|𝑘|
exp(|𝑘|𝑥).

Similarly, for domain Ω2, there exist 𝐶ℓ, 𝐷ℓ ∈ C such that

𝑢ℓ
2 = 𝐶ℓ exp(−|𝑘|𝑥) + 𝐷ℓ exp(−𝜆𝑥)

𝑣ℓ
2 = −𝐶ℓ 𝑖|𝑘|

𝑘
exp(−|𝑘|𝑥)−𝐷ℓ 𝑖𝜆

𝑘
exp(−𝜆𝑥)

𝑝ℓ
2 = 𝐶ℓ 𝑖𝜔

|𝑘|
exp(−|𝑘|𝑥)

Replacing the above expressions in the transmission conditions, we obtain

𝛼1(𝜈|𝑘|𝐴ℓ + 𝜈𝜆𝐵ℓ +
𝑖𝜔

|𝑘|
𝐴ℓ) + 𝐴ℓ + 𝐵ℓ =

𝛼1(−𝜈|𝑘|𝐶ℓ−1 − 𝜈𝜆𝐷ℓ−1 − 𝑖𝜔

|𝑘|
𝐶ℓ−1) + 𝐶ℓ−1 + 𝐷ℓ−1,

𝜈𝛽1(𝑖𝑘𝐴ℓ +
𝑖𝜆2

𝑘
𝐵ℓ) +

𝑖|𝑘|
𝑘

𝐴ℓ +
𝑖𝜆

𝑘
𝐵ℓ =

𝜈𝛽1(𝑖𝑘𝐶ℓ−1 +
𝑖𝜆2

𝑘
𝐷ℓ−1)− 𝑖|𝑘|

𝑘
𝐶ℓ − 𝑖𝜆

𝑘
𝐷ℓ−1

and

𝛼2(−𝜈|𝑘|𝐶ℓ − 𝜈𝜆𝐷ℓ − 𝑖𝜔

|𝑘|
𝐶ℓ)− 𝐶ℓ −𝐷ℓ =

𝛼2(𝜈|𝑘|𝐴ℓ−1 + 𝜈𝜆𝐵ℓ−1 +
𝑖𝜔

|𝑘|
𝐴ℓ−1)−𝐴ℓ−1 −𝐵ℓ−1,

𝜈𝛽2(𝑖𝑘𝐶ℓ +
𝑖𝜆2

𝑘
𝐷ℓ) +

𝑖|𝑘|
𝑘

𝐶ℓ +
𝑖𝜆

𝑘
𝐷ℓ =

𝜈𝛽2(𝑖𝑘𝐴ℓ−1 +
𝑖𝜆2

𝑘
𝐵ℓ−1)− 𝑖|𝑘|

𝑘
𝐴ℓ − 𝑖𝜆

𝑘
𝐵ℓ−1.



OPTIMIZED SCHWARZ WAVEFORM RELAXATION METHOD FOR THE INCOMPRESSIBLE STOKES PROBLEM 1249

These transmission conditions can be written in matrix form as follows :

ℳ(𝛼1, 𝛽1)
(︂

𝐴ℓ

𝐵ℓ

)︂
= 𝒩 (𝛼1, 𝛽1)

(︂
𝐶ℓ−1

𝐷ℓ−1

)︂
and ℳ(𝛼2, 𝛽2)

(︂
𝐶ℓ

𝐷ℓ

)︂
= 𝒩 (𝛼2, 𝛽2)

(︂
𝐴ℓ−1

𝐵ℓ−1

)︂
where

ℳ(𝛼, 𝛽) :=

⎡⎢⎣1 +
𝜈𝛼𝜆2

|𝑘|
1 + 𝛼𝜈𝜆

𝜈𝛽𝑘 +
|𝑘|
𝑘

𝜈𝛽𝜆2

𝑘
+

𝜆

𝑘

⎤⎥⎦ , 𝒩 (𝛼, 𝛽) :=

⎡⎢⎣1− 𝜈𝛼𝜆2

|𝑘|
1− 𝛼𝜈𝜆

𝜈𝛽𝑘 − |𝑘|
𝑘

𝜈𝛽𝜆2

𝑘
− 𝜆

𝑘

⎤⎥⎦ . (49)

This leads to the following recurrent formulation(︂
𝐴ℓ

𝐵ℓ

)︂
= ℛ(𝛼1, 𝛼2, 𝛽1, 𝛽2)

(︂
𝐴ℓ−2

𝐵ℓ−2

)︂
, ∀ℓ ≥ 2, (50)

where
ℛ(𝛼1, 𝛼2, 𝛽1, 𝛽2) = ℳ−1(𝛼1, 𝛽1)𝒩 (𝛼1, 𝛽1)ℳ−1(𝛼2, 𝛽2)𝒩 (𝛼2, 𝛽2). (51)

In view of (50), the convergence properties of the OSWR algorithm, and in particular its rate, will depend on
the spectral radius of the matrix ℛ defined in (51).

Remark 8.1. If one sets 𝛼̃ := 𝜈𝛼 and 𝛽 := 𝜈𝛽, as well as 𝜔̃ := 𝜔
𝜈 , then matrices ℳ and 𝒩 (defined in (49)),

depend only on 𝛼̃, 𝛽, on 𝜔̃ and on 𝑘.
Thus, when 𝜈 varies, the convergence rate remains unchanged if 𝛼̃ and 𝛽 are kept constant and if the range

in which 𝜔̃ is considered does not change. As will be seen in Section 9, this is the case if 𝜈∆𝑡 and 𝜈𝑇 are kept
unchanged. This observation is in line with the fact that the non-dimensional form of the Stokes equations is
not modified when 𝜈𝑇 is kept constant for a fixed domain size1.

Remark 8.2. When 𝑘 tends to 0, the spectral radius of the matrix ℛ tends to 1. This is coherent with what
was observed in Section 5 and in Remarks 4.2 and 6.4, which led us to the pressure correction described in
Section 7.

Remark 8.3. When 𝑘 and 𝜔 tend to +∞, the spectral radius of the matrix ℛ tends to 1. This implies
that analysing the iteration matrix does not help to prove the general convergence (for all frequencies) of the
algorithm, and that one always needs the energy estimate technique of Section 6 (for another example, see [11]).

Remark 8.4. In practical experiments, all equations are discretized in space and time. As far as space dis-
cretization is concerned, the solution of the discrete version of (46) remains close to (47) if the space discretization
parameter is small enough with respect to

√︀
𝜈
𝜔 ; since 𝜔 is in practice bounded by 𝜋

Δ𝑡 , we expect that the above
Fourier analysis may remain close to practical experiments if the term

√
𝜈∆𝑡 is large enough compared to the

space discretization parameter. This has indeed recently been observed for the heat equation in [2]. As far as
time discretization is concerned, the inclusion of its effect in the convergence analysis of OSWR methods is a
current topic of research, and is for example addressed in [16] where a 𝑍− transform is used and in [2], where
a discrete-time analysis of the OSWR method is proposed. This issue is also addressed in Section 9.2.

9. Optimized Robin parameters

One can choose 𝛼1, 𝛼2, 𝛽1, 𝛽2 to minimize the convergence factor of the continuous OSWR algorithm, defined
in the above section. Such parameters are called continuous optimized parameters. However, for the incompress-
ible Stokes problem, we will see in the numerical experiments of Section 10 that better results can be obtained
by minimizing the discrete-time counterpart of this convergence factor. The corresponding parameters are then
called discrete-time optimized parameters. Both of these optimization procedures are described below.

1Starting from (1) and performing a simple multiplicative change of variables 𝑡 = 𝑇𝑡′,x = 𝐿x′,u = 𝑈u′, 𝑝 = 𝑈𝐿
𝑇

𝑝′ with non-

dimensional prime variables, then these prime variables verify a system similar to (1) in which 𝜈 is replaced by 𝜈𝑇
𝐿2 , which shows

that for a fixed 𝐿, the Stokes equations are unchanged if 𝜈𝑇 is kept constant.
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9.1. Continuous optimized parameters

From Section 8, the convergence factor is 𝜚(ℛ(𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑘, 𝜔)), where ℛ is defined in (51), and 𝜚(ℛ)
denotes the spectral radius of ℛ. While we have max

(𝑘,𝜔)∈R2
𝜚(ℛ(𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑘, 𝜔)) = 1 (see Rem. 8.3), we can

use this convergence factor to calculate Robin parameters for numerical computations, for which the frequencies
𝑘 and 𝜔 are bounded (by frequencies relevant to the global space-time domain and the ones supported by the
numerical grid). Thus, we set

𝜌𝑐(𝛼1, 𝛼2, 𝛽1, 𝛽2) := max
𝜋
𝐿≤𝑘≤ 𝜋

ℎΓ
, 𝜋

𝑇 ≤𝜔≤ 𝜋
Δ𝑡

𝜚
(︀
ℛ(𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑘, 𝜔)

)︀
,

where 𝐿 is a characteristic size of the computational domain and ℎΓ is a measure of the mesh step size on the
interface (typically the mean-value of the segment lengths).

Let us consider the one-sided Robin case 𝛼 := 𝛼1 = 𝛼2 = 𝛽1 = 𝛽2, and set 𝜌𝑐(𝛼) := 𝜌𝑐(𝛼, 𝛼, 𝛼, 𝛼). Then, the
continuous optimized Robin parameter 𝛼𝑐 is defined as a solution of the following minimization problem :

𝜌𝑐(𝛼𝑐) = min
𝛼>0

𝜌𝑐(𝛼). (52)

9.2. Discrete-time optimized parameters

One can also consider the semi-discrete in time counterpart of the continuous convergence factor to better
capture the discrete-time frequencies, i.e. replace in the expression of ℛ the term 𝑖𝜔 by its discrete counterpart
using the implicit Euler scheme, that is we replace 𝑖𝜔 by 1−𝑒−𝑖𝜔Δ𝑡

Δ𝑡 . Equivalently, we replace in the expression

of ℛ (in (51)) the term 𝜔 by 𝜔 := −𝑖
(︁

1−𝑒−𝑖𝜔Δ𝑡

Δ𝑡

)︁
, and set ℛΔ𝑡(𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑘, 𝜔) := ℛ(𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑘, 𝜔).

Then, as above, we define

𝜌(𝛼1, 𝛼2, 𝛽1, 𝛽2) := max
𝜋
𝐿≤𝑘≤ 𝜋

ℎΓ
, 𝜋

𝑇 ≤𝜔≤ 𝜋
Δ𝑡

𝜚
(︀
ℛΔ𝑡(𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝑘, 𝜔)

)︀
.

Let us consider the one-sided Robin case 𝛼 := 𝛼1 = 𝛼2 = 𝛽1 = 𝛽2, and define 𝜌(𝛼) := 𝜌(𝛼, 𝛼, 𝛼, 𝛼). Then,
the Discrete-time (DT) optimized Robin parameter 𝛼* is defined as a solution of the following minimization
problem :

𝜌(𝛼*) = min
𝛼>0

𝜌(𝛼). (53)

Remark 9.1. On could also consider optimized Robin-2p parameters (𝛼, 𝛽) with 𝛼 := 𝛼1 = 𝛼2, 𝛽 := 𝛽1 = 𝛽2,
or 2-sided parameters (𝛾, 𝛿) with 𝛾 := 𝛼1 = 𝛽1, 𝛿 := 𝛼2 = 𝛽2, that optimize the continuous or discrete-time
convergence factors as done in [10]. Given their additional complexity, these more general cases will not be
considered here, and are the subject of a subsequent article.

Remark 9.2. In practice, 𝛼𝑐 and 𝛼* are computed by solving numerically problems (52) and (53) respectively,
using the fminsearch function of MATLAB [38].

10. Numerical results

In this section, we present numerical experiments that illustrate the performances of the OSWR method of
Section 4, with Freefem++ [28]. For the space discretization we use the nonconforming Crouzeix-Raviart Finite
Element method in 2D (i.e. piecewise linear elements continuous only at the midpoints of the edges of the mesh
for the velocity u = (𝑢𝑥, 𝑢𝑦), and piecewise constant P0 elements for the pressure 𝑝), and consider the backward
Euler method for the time discretization.

In what follows, the term ”monodomain solution” will refer to the fully discrete solution obtained on the
global mesh without domain decomposition.
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Figure 1. Example 1: mesh 1 (left) and mesh 2 (right).

In Sections 10.1 to 10.3, we set Ω =]0, 1[×]0, 1[, 𝑇 = 1, and consider the Stokes problem (1), where the value
of the diffusion coefficient 𝜈 will be specified in each of the examples below. From Remark 9.1, only one-sided
Robin parameter 𝛼 := 𝛼1 = 𝛼2 = 𝛽1 = 𝛽2 will be considered. In particular, we will use the theoretical optimized
values 𝛼𝑐 and 𝛼* defined in Section 9, see Remark 9.2. Random initial Robin data on the space-time interfaces
will be used, unless specified.

In Section 10.1 some results are shown on the convergence of the OSWR algorithm, without and with
modification of the pressure as in Section 7. In Section 10.2 we illustrate the influence of the Robin parameter
on the convergence of the algorithm, and then in Section 10.4 we present results on a more realistic test case.

10.1. Recovering the pressure: a rotating velocity example

The diffusion coefficient is 𝜈 = 0.1 and we choose the right-hand side f and the values of the boundary and
initial conditions so that the exact solution is given by

u(x, 𝑡) = (− cos(𝜋𝑦) sin(𝜋𝑥) cos(2𝜋𝑡), sin(𝜋𝑦) cos(𝜋𝑥) cos(2𝜋𝑡)),
𝑝(x, 𝑡) = cos(𝑡)(𝑥2 − 𝑦2), ∀x ∈ Ω, ∀𝑡 ∈ (0, 𝑇 ).

The domain Ω is decomposed into nine subdomains as in Figure 1, and two meshes will be considered (as
shown on Fig. 1), with mesh sizes ℎ = 0.0625 and ℎ = 0.0312 respectively. To each mesh, the associated time
step is ∆𝑡 = ℎ.

We choose 𝛼1 = 𝛼2 = 𝛽1 = 𝛽2 = 𝛼*, where 𝛼* is the DT-Optimized Robin parameter defined in Section 9.1,
whose value here is 𝛼* ≈ 3.0832× 10−1 for mesh 1 and 𝛼* ≈ 2.2719× 10−1 for mesh 2.

On Figure 2 we show the evolution of the relative errors, of 𝑝, 𝑢𝑥 and 𝑢𝑦, in the 𝐿∞(0, 𝑇 ; 𝐿2(Ω))-norm,
between the OSWR and monodomain solutions, as functions of the number of OSWR iterations, for mesh 1
(on the left) and mesh 2 (on the right). The top figures are with non-modified pressure, and the bottom figures
are with the modified pressure 𝑝ℓ

𝑖 , 𝑖 = 1, 2, at each iteration ℓ (defined in Sect. 7). We observe that, with the
non-modified pressure, the method converges for the velocity but not for the pressure, as expected from the
observations of Section 5 and Theorem 6.2. On the other hand, with the modified pressure, we see that the
method now converges both for the velocity and the pressure, accordingly to Theorem 7.3.

Remark 10.1. Even if we calculate a modified pressure at each iteration, we do not use it in the transmission
conditions of Algorithm 1, thus this does not change the velocity convergence, as shown on Figure 2.

Remark 10.2. Here and in what follows, the pressure is modified at each iteration to illustrate the convergence
of the multidomain solution to the monodomain one. A consequence of Remark 7.4 is that in practice one needs
only to modify the pressure at the last OSWR iteration, which makes the cost of the modification negligible.
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Figure 2. Example 1: relative errors for 𝑢𝑥, 𝑢𝑦 and 𝑝 (in logarithmic scale) versus iterations
with non-modified pressure (top), and modified pressure (bottom), for mesh 1 (left) and mesh
2 (right).

10.2. Optimized Robin parameters

The domain Ω is decomposed into two subdomains as in Figure 3, and we consider the three uniform meshes of
Figure 3, with mesh sizes on the interface and associated time steps equal to ℎΓ = ∆𝑡 = 1/12, ℎΓ = ∆𝑡 = 1/24,
and ℎΓ = ∆𝑡 = 1/48, respectively. In order to analyze the convergence behavior of the method, we simulate
the error equations (i.e. we take homogeneous initial and boundary conditions, and f = 0). Thus, the OSWR
solution converges to zero.

10.2.1. Case with a fixed mesh and different values of 𝜈

We consider mesh 2 (i.e. ℎΓ = ∆𝑡 = 1/24). In Figure 4, we plot the evolution of the continuous convergence
factor 𝜌𝑐 (on the left) and of the discrete-time convergence factor 𝜌 (on the right), as functions of the Robin
parameter 𝛼, for different values of 𝜈: 𝜈 = 1 (solid line), 𝜈 = 0.5 (dashed line), 𝜈 = 0.1 (dash-dotted line),
𝜈 = 0.05 (dotted line). The theoretical optimized values 𝛼𝑐 (blue circle) and 𝛼* (red star), are also shown. We
observe that both 𝛼𝑐 and 𝛼* increase when 𝜈 decreases. However, the values of 𝛼𝑐 and 𝛼* are very different,
and when 𝜈 decreases, 𝛼* increases faster than 𝛼𝑐, with an associated 𝜌(𝛼*) that increases slower than 𝜌𝑐(𝛼𝑐).

In Figure 5, we plot the evolution of the relative errors, of 𝑝, 𝑢𝑥 and 𝑢𝑦, in the 𝐿∞(0, 𝑇 ; 𝐿2(Ω))-norm, in
logarithmic scale, after twenty OSWR iterations, as functions of the Robin parameter 𝛼. We also show the values
of the errors obtained with optimized parameter 𝛼 = 𝛼𝑐 (blue circle) and DT-optimized parameter 𝛼 = 𝛼* (red
star). The figures correspond to 𝜈 = 1 (top left), 𝜈 = 0.5 (top right), 𝜈 = 0.1 (bottom left), 𝜈 = 0.05 (bottom
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Figure 3. Example 2: mesh 1 (left), mesh 2 (middle), and mesh 3 (right).

Figure 4. Example 2: continuous (left) and discrete-time (right) convergence factors versus
𝛼, with 𝛼𝑐 (blue circle) and 𝛼* (red star), with ℎΓ = ∆𝑡 = 1/24; for 𝜈 = 1 (solid line), 𝜈 = 0.5
(dashed line), 𝜈 = 0.1 (dash-dotted line), 𝜈 = 0.05 (dotted line).

right). We see that 𝛼* is close to the numerical Robin value giving the smallest error after the same number of
iterations, while 𝛼𝑐 gives a larger error.

10.2.2. Case with 𝜈 fixed and different space-time meshes

Let us take 𝜈 = 0.1. In Figure 6, we plot the evolution of the continuous (on the left) and discrete-time
(on the right) convergence factors, versus 𝛼, for different space-time meshes with ℎΓ = ∆𝑡 = 1/12 (solid line),
ℎΓ = ∆𝑡 = 1/24 (dashed line), and ℎΓ = ∆𝑡 = 1/48 (dash-dotted line). The theoretical optimized values 𝛼𝑐

(blue circle) and 𝛼* (red star) are also shown. We observe that both 𝛼𝑐 and 𝛼* decrease when the space-time
mesh is refined. However, the values of 𝛼𝑐 and 𝛼* are again very different.

In Figure 7, we plot the relative errors, of 𝑝, 𝑢𝑥 and 𝑢𝑦, in the 𝐿∞(0, 𝑇 ; 𝐿2(Ω))-norm, after twenty OSWR
iterations, versus Robin parameter 𝛼, for mesh 1 (top left), mesh 2 (top right), and mesh 3 (bottom). We also
show the values of the errors obtained with 𝛼 = 𝛼𝑐 (blue circle) and 𝛼 = 𝛼* (red star). We observe that 𝛼* is
close to the numerial Robin value giving the smallest error after the same number of iterations, while 𝛼𝑐 gives
a larger error, for all space-time meshes considered.

10.3. Asymptotic behavior with respect to the discretization parameters

In this part, we assess the asymptotic performance of the OSWR method with respect to the mesh size ℎ
(with the choice ∆𝑡 = ℎ), with DT-optimized parameter 𝛼* by studying the evolution of the number of iterations
needed to reduce the initial error by a given factor.
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Figure 5. Example 2: Relative errors after 20 iterations, for 𝑢𝑥, 𝑢𝑦 and 𝑝 (in logarithmic scale)
versus 𝛼, with their values at 𝛼𝑐 (blue circles) and at 𝛼* (red stars), with ℎΓ = ∆𝑡 = 1/24; for
𝜈 = 1 (top left), 𝜈 = 0.5 (top right), 𝜈 = 0.1 (bottom left), 𝜈 = 0.05 (bottom right).

Figure 6. Example 2: continuous (left) and discrete-time (right) convergence factors versus
𝛼, with 𝛼𝑐 (blue circle) and 𝛼* (red star), with 𝜈 = 0.1; for ℎΓ = ∆𝑡 = 1/12 (solid line),
ℎΓ = ∆𝑡 = 1/24 (dashed line), ℎΓ = ∆𝑡 = 1/48 (dash-dotted line).
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Figure 7. Example 2: Relative errors after 20 iterations, for 𝑢𝑥, 𝑢𝑦 and 𝑝 (in logarithmic
scale) versus 𝛼, with their values at 𝛼𝑐 (blue circles) and at 𝛼* (red stars), with 𝜈 = 0.1; for
ℎΓ = ∆𝑡 = 1/12 (top left), ℎΓ = ∆𝑡 = 1/24 (top right), ℎΓ = ∆𝑡 = 1/48 (bottom).

We take 𝜈 = 0.1 and consider two subdomains with the interface located at 𝑥 = 1
2 . We consider different

meshes with ∆𝑡 = ℎ = 1
8 , 1

16 , 1
32 , 1

64 , 1
128 , respectively.

In Figure 8 we plot the number ℓ⋆ of iterations that it takes to reduce the relative 𝐿∞(0, 𝑇 ; 𝐿2(Ω))-error by
a factor 10−3, for u (left) and 𝑝 (right), as a function of ℎ, on a loglog plot. We observe that ℓ⋆ = 𝒪(ℎ−

1
2 ).

We notice that this corresponds to the asymptotic performance of the OSWR algorithm with optimized Robin
parameter for advection reaction diffusion equations in two dimensions proved in [5].

10.4. A more realistic test case

In this example we take 𝜈 = 1
ℛ𝑒 withℛ𝑒 = 200, and 𝑇 = 5. The initial condition is u0 = 000. The computational

domain is represented on Figure 9. The yellow part, denoted by Ω𝑓 , corresponds to the location where the source
term f in the Stokes equations does not vanish; we set :

f =
{︂

(−2 (sin(𝜋𝑡) + cos(4𝜋𝑡)) , 0) in Ω𝑓 ,
(0, 0) in Ω∖Ω𝑓 .

The domain is decomposed into nine nonoverlapping subdomains (i.e. 𝑀 = 9), with interfaces that are drawn
in magenta on Figure 9 (on the left). The subdomains are represented on Figure 9 (on the right), together with
their meshes, with a total of 46026 degrees of freedom. The time step is ∆𝑡 = 0.05.
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Figure 8. Example 3: Asymptotic behavior (log-log scale): number of iterations ℓ⋆ needed
to reduce the relative 𝐿∞(0, 𝑇 ; 𝐿2(Ω))-error by a factor 10−3, for u (left) and 𝑝 (right), as a
function of ℎ (with ∆𝑡 = ℎ), with DT-optimized parameter 𝛼*.

Figure 9. Example 4: Computational domain (with Ω𝑓 in yellow) and domain decomposition
with interfaces in magenta (left), and subdomains meshes (right).

In Figure 10, we plot the pressure 𝑝 (on the left) and the velocity field (𝑢𝑥, 𝑢𝑦) (on the right) at final time
𝑡 = 𝑇 . The fluid is moved from right to left in the central zone, then interacts with the vertical left boundary
and recirculates from left to right above and below the central zone.

In Figure 11, we plot the evolution of the continuous convergence factor 𝜌𝑐 (on the left) and discrete-time
convergence factor 𝜌 (on the right), as functions of the Robin parameter 𝛼. The theoretical optimized values
𝛼𝑐 (blue circle) and 𝛼* (red star) are also shown. Their numerical values, obtained following Remark 9.2 with
ℎΓ = 0.05 and 𝐿 = 4.252, are given by 𝛼𝑐 ≈ 3.2283 × 10−2 and 𝛼* ≈ 6.6063 × 10−1, and differ from about a
factor 20.

In order to initialize Algorithm 1, we first need to define initial Robin data 𝑔0
𝑖𝑗 and 𝜉0

𝑖𝑗 . Here, we consider and
compare two different ways of choosing these initial Robin data.

First, we choose them to be constant in time, equal to the Robin operator applied to an initial state (u0, 𝑝0).
Here the initial condition is u0 = 000, and, if we do not want to calculate an estimation of 𝑝(𝑡 = 0), we may

2Note that 𝐿 = max(4.25, 3), where 4.25 and 3 are the horizontal and vertical lengths of Ω, respectively.
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Figure 10. Example 4: pressure (left) and velocity field (right) at final time 𝑡 = 5.

Figure 11. Example 4: continuous (left) and discrete-time (right) convergence factors versus
𝛼, with corresponding theoretical optimized values 𝛼𝑐 (blue circle) and 𝛼* (red star).

simply set 𝑝0 = 0. Thus a first possible choice is

𝑔0
𝑖𝑗 = 𝜉0

𝑖𝑗 = 0, for 𝑖 = 1, . . . ,𝑀 and 𝑗 = 3− 𝑖. (54)

Secondly, we also consider another choice for 𝑔0
𝑖𝑗 and 𝜉0

𝑖𝑗 , that are non-constant in time, and computed as
follows : we solve, for 𝑘 = 0, . . . , 7, and 𝑡𝑘 = 𝑘

4 , the problems :

(∇𝑃𝑘,∇𝑞) = (f(𝑡𝑘),∇𝑞) , ∀𝑞 ∈ 𝐻1(𝛺)∫︁
Ω

𝑃𝑘 = 0.

Then using the time-periodicity of f , we set 𝑃𝑘 = 𝑃𝑘−8, for 𝑘 = 8, . . . , 20. Finally, using linear interpolation
between 𝑃𝑘 and 𝑃𝑘+1 on the subintervals [𝑡𝑘, 𝑡𝑘+1], for all 𝑘 = 0, . . . , 19, we obtain a non constant in time
function that we denote 𝑝⋆, and we set:

𝑔0
𝑖𝑗 = −𝛼𝑖𝑗𝑝

⋆
|Ω𝑗

, 𝜉0
𝑖𝑗 = 0, for 𝑖 = 1, . . . ,𝑀 and 𝑗 = 3− 𝑖. (55)

In Figure 12, we show the evolution of the relative errors, between the OSWR and monodomain solutions,
of u in 𝐿∞(0, 𝑇 ; 𝐻) and 𝐿2(0, 𝑇 ; 𝑉 ) norms3, and of 𝑝 in 𝐿∞(0, 𝑇 ; 𝐿2(Ω)) norm3, as a function of the number

3in the sense of broken norms.
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Figure 12. Example 4: Relative errors in 𝐿∞(0, 𝑇 ; 𝐻) and 𝐿2(0, 𝑇 ; 𝑉 ) norms for u, and in
𝐿∞(0, 𝑇 ; 𝐿2(Ω)) norm for 𝑝 (in logarithmic scale) versus iterations, with optimized Robin
parameters 𝛼𝑐 (blue circle, blue dashed and green diamond curves) and 𝛼* (solid magenta,
dashdot red, and dotted black curves), with initial Robin datum given by (54) (left) and by (55)
(right).

Figure 13. Example 4: Relative errors for u and 𝑝, in logarithmic scale, after 25 iterations
(left) and 50 iterations (right), versus 𝛼, with their values at 𝛼𝑐 (blue circles) and at 𝛼* (red
stars).

of iterations, with optimized Robin parameters 𝛼𝑐 (blue circle, blue dashed and green diamond curves) and 𝛼*

(solid magenta, dash-dotted red, and dotted black curves). On the left figure, the initial Robin datum is defined
by (54) and on the right figure, the initial Robin datum is given by (55). Clearly, using 𝛼* and starting from a
better initial guess for the Robin data significantly improves convergence.

When the initial Robin datum is given by (54) (left figure), for the curve of 𝑝, the convergence rate is faster
with 𝛼 = 𝛼𝑐 on the first iterations, and then with 𝛼 = 𝛼* after iteration 50. When the initial Robin datum is
given by (55) (right figure), the curves for 𝑝 have almost the same speed of convergence on the first iterations,
with 𝛼 = 𝛼* and 𝛼 = 𝛼𝑐, with a faster convergence rate with 𝛼 = 𝛼* after iteration 60. For the velocity u, in
both cases of initial Robin datum, we observe that convergence is much faster with 𝛼 = 𝛼* than with 𝛼 = 𝛼𝑐.



OPTIMIZED SCHWARZ WAVEFORM RELAXATION METHOD FOR THE INCOMPRESSIBLE STOKES PROBLEM 1259

This illustrates the importance of incorporating the actual numerical time marching scheme in the convergence
factor expression.

In Figure 13, we plot the evolution of the relative errors, in logarithmic scale, of u in the 𝐿∞(0, 𝑇 ; 𝐻) and
𝐿2(0, 𝑇 ; 𝑉 ) norms, and of 𝑝 in the 𝐿∞(0, 𝑇 ; 𝐿2(Ω))-norm, after twenty-five OSWR iterations (left), and fifty
iterations (right), as functions of the Robin parameter 𝛼. We also show the values of the errors obtained with
optimized parameter 𝛼 = 𝛼𝑐 (blue circles) and DT-optimized parameter 𝛼 = 𝛼* (red stars). We see that for the
velocity, 𝛼* is close to the numerical Robin value giving the smallest error after the same number of iterations
(25 or 50), while 𝛼𝑐 gives a larger error. For the pressure, the values of the error at 𝛼* and 𝛼𝑐 at iterations 25
and 50 are quite close. The fact that the optimum values of 𝛼 for the pressure and the velocities are different
is not yet understood.
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[39] D. Medková, Weak solutions of the Robin problem for the Oseen system. J. Elliptic Parabol. Equ. 5 (2019) 189–213.

[40] S. Monniaux and E.M. Ouhabaz, The incompressible Navier-Stokes system with time-dependent Robin-type bound-
ary conditions. J. Math. Fluid Mech. 17 (2015) 707–722.

[41] L. Müller and G. Lube, A nonoverlapping DDM for the nonstationary Navier-Stokes problem. Z. Angew. Math.
Mech. 81 (2001) 725–726.

[42] F.-C. Otto and G. Lube, Non-overlapping domain decomposition applied to incompressible flow problems. In:
Domain Decomposition Methods 10. The 10th International Conference, Boulder, CO, USA, August 10–14, 1997.
Providence, RI, AMS, American Mathematical Society (1998) 507–514.

[43] F.-C. Otto and G. Lube, A nonoverlapping domain decomposition method for the Oseen equations. Math. Models
Methods Appl. Sci. 8 (1998) 1091–1117.

https://fr.mathworks.com/help/matlab/ref/fminsearch.html
https://fr.mathworks.com/help/matlab/ref/fminsearch.html


OPTIMIZED SCHWARZ WAVEFORM RELAXATION METHOD FOR THE INCOMPRESSIBLE STOKES PROBLEM 1261

[44] F.C. Otto, G. Lube and L. Müller, An iterative substructuring method for div-stable finite element approximations
of the Oseen problem. Computing 67 (2001) 91–117.

[45] L.F. Pavarino and O.B. Widlund, Balancing Neumann-Neumann methods for incompressible Stokes equations.
Commun. Pure Appl. Math. 55 (2002) 302–335.

[46] R. Russo and A. Tartaglione, On the Robin problem for Stokes and Navier–Stokes systems. Math. Models Methods
Appl. Sci. 16 (2006) 701–716.

[47] J.C. Strikwerda and C.D. Scarbnick, A domain decomposition method for incompressible viscous flow. SIAM J. Sci.
Comput. 14 (1993) 49–67.

[48] A. Tartaglione and G. Starita, A note on the Robin problem for the Stokes system. Rend. Accad. Sci. Fis. Mat.
Napoli 68 (2001) 129–138.
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