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Abstract

Robin interface conditions in domain decomposition methods enable

the use of non overlapping subdomains and a speed up in the convergence.

Non conforming grids make the grid generation much easier and faster

since it is then a parallel task. The goal of this paper is to propose and

analyze a new discretization scheme which allows to combine the use of

Robin interface conditions with non-matching grids. We consider both a

symmetric definite positive operator and the convection-diffusion equation

discretized by finite volume schemes. Numerical results are shown.

1 Introduction

The goal of our project is to design a general domain decomposition method that
allows to combine the use of optimized interface conditions with non-matching
grids. In this paper, we consider the convection-diffusion equation

ηu + div(au) − ν∆(u) = f in Ω ⊂ R
d

discretized by a finite volume method where η and ν are positive but arbitrarily
small and a is a vector field. In a joint paper, the case of a finite element
discretization is analyzed.

The original Schwarz algorithm is based on a decomposition of the domain
Ω into overlapping subdomains and on solving Dirichlet boundary value prob-
lems in each subdomain. It has been proposed in [28], [11] to use more general
boundary conditions for the subproblems in order to use a non-overlapping de-
composition of the domain. By using optimized interface condition (see [24],
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[8], [25]), the convergence speed is also increased dramatically.

When the grids are matched at the boundaries of the subdomains, the im-
plementation of such interface conditions on the discretized problem is not too
difficult. On the other hand, using non-matching grids is very appealing. In-
deed, it is possible in a decoupled fashion to build complex meshes which are
nevertheless locally structured. The advantages are numerous:

1. the generation of the mesh is then much easier and faster since it can be
done mostly in parallel.

2. The structured local mesh enables the use of fast solvers in the subdo-
mains.

3. adaptive procedures are much easier to implement.

The mortar element method, first introduced in [3], enables the use of non-
conforming grids. It is also well suited to the use of the so-called ”Dirichlet-
Neumann” (see [4], [16]) or ”Neumann-Neumann” (see [6], [14]) preconditioned
conjugate gradient method applied to the Schur complement matrix, see [26].
However, it seems that the original mortar element method cannot be used easily
with optimized interface conditions in the framework of Schwarz type methods
(also called two-field methods, see [15]).

The goal of our work is to design and study a domain decomposition method
which allows for the use of Robin interface conditions ( ∂

∂n +α) for the convection-
diffusion problem above. We focus here on the error analysis. We do not consider
the convergence of the Schwarz method for non-matching grids, although it can
be easily derived by using techniques developed here and in [31]. Moreover,
usually the additive Schwarz method is replaced by much more efficient Krylov
type methods and in addition, the small enough problems can also be solved by
a direct method.
To our knowledge, only a few papers address the error analysis of domain de-
composition methods with non-matching grids and Robin interface conditions
for finite volume or mixed finite element methods. In [2], a non consistent
discretization of the fluxes is proposed at interfaces, and an error analysis is
performed for the discrete L2 norm.
In [1], this question has been addressed for the convection-diffusion equation dis-
cretized by a mixed finite element method under the assumption that ∃γ∗ > 0
such that ∀w ∈ L2(Ω), ∀v ∈ L2(Ω)d, we have

γ∗{‖w‖2
L2(Ω) + ‖v‖2

(L2(Ω))d} ≤ η‖w‖2
L2(Ω) +

1

ν
‖v‖2

(L2(Ω))d − 1

ν
(a.v, w)L2×L2 .

As an example, if a is a positive constant and d = 1 the above condition is

equivalent to a2

ν2 − 4 η
ν < 0. The convection cannot be dominant. In the present

work, we do not need such an assumption but we have geometric assumptions
on the grids.
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We first introduce our new matching scheme in the symmetric definite pos-
itive case (a = 0) and then extend it to the convective case (a 6= 0) studied
in § 7. More precisely, in § 2 the domain decomposition method is defined
at the continuous level, in § 3 the finite volume scheme is defined along with
the treatment of the interface conditions, in § 4 the non-conforming domain
decomposition method is proved to be well-posed under no extra assumption
compared with the original finite volume scheme (cf. [23]), and the error anal-
ysis is performed in § 5. At the expense of some extra assumptions on the
geometry of the interface cells and if α = O(1), we have the same error esti-
mate as for the original finite volume. In § 6, we explain how it is possible to
relax these assumptions and replace them by weaker geometric assumptions. In
§ 7, the convective term is taken into account and no extra assumption is made
compared with the symmetric positive definite case. In § 8, numerical results
are given.

2 Domain Decomposition at the continuous level

Let Ω be a bounded domain in R
d for d ≥ 2 and η > 0. We consider the

following problem:
find u such that

(−∆ + η)(u) = f in Ω, (1)

u = 0 on ∂Ω.

The domain Ω is decomposed into N non-overlapping subdomains, Ω̄ = ∪1≤i≤N Ω̄i.
Given α > 0, the above problem is reformulated as a domain decomposition
problem:

Find (ui)1≤i≤N such that

(−∆ + η)(ui) = f in Ωi (2)

ui = 0 on ∂Ω ∩ ∂Ωi (3)

∂ui

∂ni
+ αui = −∂uj

∂nj
+ αuj on ∂Ωj ∩ ∂Ωi (4)

A simple iterative method for solving the above domain decomposition method
is:

(−∆ + η)(un+1
i ) = f in Ωi,

un+1
i = 0 on ∂Ω ∩ ∂Ωi, (5)

∂un+1
i

∂ni
+ αun+1

i = −
∂un

j

∂nj
+ αun

j on ∂Ωj ∩ ∂Ωi.

The well-posedness and convergence of the above problems and algorithm have
been studied in [28]. It is also possible to use (5) as a preconditioner for Krylov
type methods, see for example [10], [30] and [25]. We are interested in the
discretization of (2) by a finite volume scheme with non matching grids on the
interface between the subdomains.
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3 Finite volume discretization

The scheme is taken from [23]. We choose this scheme as an example but the
interface matching conditions that we propose would work with other schemes,
see § 6. Associated with each domain Ωi, let Ti be a set of closed polygonal
subsets of Ωi such that Ω̄i = ∪K∈Ti

K and EΩi
be the set of faces associated with

Ti, i.e. a set of closed subsets of dimension d such that for any (K, K ′) ∈ T 2
i

with K 6= K ′, one has either

• K ∩ K ′ ∈ EΩi
. In this case, ∂K ∩ ∂K ′ is denoted by [K, K ′].

• dim(K ∩ K ′) < d − 1

• K ∩ K ′ = ∅

We also assume that no face intersects both ∂Ωi\∂Ω and ∂Ωi ∩ ∂Ω.

Remark 3.1 As a result, ∂Ωi ∩∂Ω can be written as an union of (whole) faces
and the same holds for ∂Ωi\∂Ω.

We shall use the following notations

• Let ǫi be a face of EΩi
located on the boundary of Ωi, K(ǫi) denotes the

control cell K ∈ Ti such that ǫi ∈ K.

• EiD is the set of faces such that ∂Ω ∩ ∂Ωi = ∪ǫ∈EiD
ǫ. Let us recall that a

Dirichlet boundary condition is imposed on ∂Ω ∩ ∂Ωi.

• Ei is the set of faces such that ∂Ωi\∂Ω = ∪ǫ∈Ei
ǫ. Let us recall that a

Robin interface condition is imposed on ∂Ωi\∂Ω.

• E(K) denotes the set of the faces of K ∈ Ti.

• EiD(K) = E(K) ∩ EiD is the set of the faces of K ∈ Ti which are on
∂Ω ∩ ∂Ωi.

• Ei(K) = E(K) ∩ Ei is the set of the faces of K ∈ Ti which are on ∂Ωi\∂Ω.

• Ni(K) is the set of the control cells adjacent to K: Ni(K) = {K ′ ∈ Ti :
K ∩ K ′ ∈ EΩi

}

We make the following

Assumption 3.2 We assume that there exist points (yǫ)ǫ∈EΩi
on the faces (yǫ ∈

ǫ) and points (xK)K∈Ti
inside the control cells such that

• For any adjacent control cells, K and K ′, the straight line [xK , xK′ ] is
perpendicular to the face [K, K ′] and [xK , xK′ ] ∩ [K, K ′] = {y[K,K′]}.

• For any face ǫ ∈ Ei ∪EiD, the straight line [xK(ǫ), yǫ] is perpendicular to ǫ.
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xK
yεK'x

pε uε

Geometric assumption

It is then possible to write a finite volume scheme for the equation (2). We
shall use the primary unknowns (uK)K∈T which aim at being approximations
to u(xK). The scheme is obtained by integrating (2) over each control volume
K:

∫

K

ηu −
∫

∂K

∂u

∂n
=

∫

K

f.

This relation is discretized by

η meas(K)uK −
∑

K′∈Ni(K)

pK,K′meas([K, K ′]) −
∑

ǫ∈EiD(K)

pǫmeas(ǫ)

−
∑

ǫ∈Ei(K)

pǫmeas(ǫ) = FK (6)

where meas([K, K ′]) is the measure of [K, K ′], FK is an approximation to
∫

K
f

such that

SK =

∫

K

f − FK = meas(K)O(diam(K)) (7)

and pǫ is a discretization (defined below) of the normal derivative ∂u/∂nK on
the face [K, K ′].
For an face [K, K ′] common to two control volumes K and K ′,

pK,K′ =
uK′ − uK

d(xK′ , xK)
(8)

We have the useful property that pK,K′ = −pK′,K . For an face ǫ on the bound-
ary ∂Ω, the homogeneous Dirichlet boundary condition (3) is taken into account
by

pǫ =
0 − uK

d(yǫ, xK)
(9)

When there is no domain decomposition, this scheme has been analyzed in [23]
in the more general case of discontinuous coefficients and it is proved to be of
order one for a discrete H1-norm.
In the next subsection, a scheme is written for the discretization of the interface
condition (4).
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3.1 Discretization of the interface conditions

On each interface face ǫ ∈ Ei of a control volume K = K(ǫ) , we introduce pǫ

and uǫ related by the relation

pǫ =
uǫ − uK

d(yǫ, xK)
(10)

Then, the interface condition (4) on an interface face ǫ ∈ Ei of a control volume
K = K(ǫ) is discretized by

meas(ǫ)(pǫ + αuǫ) =
∑

j 6=i

∑

ǫj∈Ej

meas(ǫ ∩ ǫj)(−pǫj
+ αuǫj

) (11)

It will be useful in the error analysis to interpret (11) as a L2 projection. Indeed,
let P 0(∂Ωi\∂Ω) be the set of functions from ∂Ωi\∂Ω into R which are piecewise
constant on the interface faces. To any discrete values (vǫ)ǫ∈Ei

, we associate its
natural piecewise constant extrapolation πi((vǫ)ǫ∈Ei

) ∈ P 0(∂Ωi\∂Ω) :

πi((vǫ)ǫ∈Ei
) : ∂Ωi\∂Ω → R

x 7→ vǫ if x ∈ ǫ

The L2 projection on P 0(∂Ωi\∂Ω) is denoted by Pi. With these notations, (11)
is equivalent to

πi((pǫ + αuǫ)ǫ∈Ei
) = Pi(

∑

j 6=i

πj((−pǫ + αuǫ)ǫ∈Ej
) 1[∂Ωi∩∂Ωj ]) (12)

For simplicity, (12) will (sometimes) be denoted

pi + αui = Pi(
∑

j 6=i

(−pj + αuj)1[∂Ωi∩∂Ωj ]) (13)

4 Well posedness

The finite volume scheme on the non matching grids is well posed:

Theorem 4.1 For α > 0, the finite volume discretization defined by (6)-(8)-(9)
-(10)-(11) is well-posed.

The proof is based on

Lemma 4.2 In each subdomain Ωi, 1 ≤ i ≤ N , let (u, p) satisfy the equations
(6)-(8)-(9) -(10). Then the following estimate holds:

− 1

4α

∑

ǫ∈Ei

[(pǫ + αuǫ)
2 − (−pǫ + αuǫ)

2] meas(ǫ)

+
∑

ǫ∈EiD

u2
K(ǫ)

d(yǫ, xK(ǫ))
meas(ǫ) +

∑

ǫ∈Ei

d(xK(ǫ), yǫ)p
2
ǫmeas(ǫ)
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+
1

2

∑

K∈Ti

∑

K′∈Ni(K)

(
uK − uK′

d(xK , xK′)
)2d(xK , xK′)meas([K, K ′])

+
∑

K∈Ti

ηu2
Kmeas(K) =

∑

K∈Ti

FKuK .

Proof The summation over K ∈ Ti of the equation (6) multiplied by uK yields

∑

K∈Ti



ηu2
Kmeas(K) +

∑

K′∈Ni(K)

−pKK′uKmeas([K, K ′])

−
∑

ǫ∈EiD(K)∪Ei(K)

pǫuKmeas(ǫ)



 =
∑

K∈Ti

FKuK .

We distinguish between the interface faces and the internal faces and use the
relations (8) and (9),

∑

ǫ∈EiD

u2
K

d(yǫ, xK(ǫ))
meas(ǫ) −

∑

ǫ∈Ei

pǫmeas(ǫ)uK(ǫ)

+
∑

K∈Ti





∑

K′∈Ni(K)

uK − uK′

d(xK , xK′)
meas([K, K ′])uK + ηu2

Kmeas(K)





=
∑

K∈Ti

FKuK .

By using (10) and rewriting the second term, we get

∑

ǫ∈EiD

u2
K

d(yǫ, xK(ǫ))
meas(ǫ) +

∑

ǫ∈Ei

−pǫmeas(ǫ)uǫ + d(yǫ, xK(ǫ))p
2
ǫmeas(ǫ)

+
1

2

∑

K∈Ti

∑

K′∈Ni(K)

(
uK − uK′

d(xK , xK′)
)2d(xK , xK′)meas([K, K ′])

+
∑

K∈Ti

ηu2
Kmeas(K) =

∑

K∈Ti

FKuK .

and lemma 4.2 follows by noticing that

−pǫuǫ = − 1

4α
[(pǫ + αuǫ)

2 − (−pǫ + αuǫ)
2]. (14)

�

Proof of Theorem 4.1 The linear system arising from the finite volume
discretization and the interface condition (11) is square so it suffices to prove
that the solution is zero for FK = 0. By using the notations of § 3.1, the estimate
of Lemma (4.2) reads

− 1

4α

∫

∂Ωi

(pi + αui)
2 − (−pi + αui)

2
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+
∑

ǫ∈EiD

u2
K(ǫ)

d(yǫ, xK(ǫ))
meas(ǫ) +

∑

ǫ∈Ei

d(xK(ǫ), yǫ)p
2
ǫmeas(ǫ)

+
1

2

∑

K∈Ti

∑

K′∈Ni(K)

(
uK − uK′

d(xK , xK′)
)2d(xK , xK′)meas([K, K ′])

+
∑

K∈Ti

ηu2
Kmeas(K) = 0.

By using (13) and the fact that the L2 projection Pi is a contraction, we get

− 1

4α

∑

j 6=i

∫

∂Ωi∩∂Ωj

(−pj + αuj)
2 − (−pi + αui)

2

+
∑

ǫ∈EiD

u2
K(ǫ)

d(yǫ, xK(ǫ))
meas(ǫ) +

∑

ǫ∈Ei

d(xK(ǫ), yǫ)p
2
ǫmeas(ǫ)

+
1

2

∑

K∈Ti

∑

K′∈Ni(K)

(
uK − uK′

d(xK , xK′)
)2d(xK , xK′)meas([K, K ′])

+
∑

K∈Ti

ηu2
Kmeas(K) ≤ 0.

These equations are summed up over i. The terms

− 1

4α

∫

∂Ωi∩∂Ωj

(−pǫj
+ αuǫj

)2 − (−pǫi
+ αuǫi

)2

cancel out and the following sum of positive terms satisfies :

∑

ǫ∈EiD

u2
K(ǫ)

d(yǫ, xK(ǫ))
meas(ǫ) +

∑

i

∑

ǫ∈Ei

d(xK(ǫ), yǫ)p
2
ǫmeas(ǫ)

+
∑

i

1

2

∑

K∈Ti

∑

K′∈Ni(K)

(
uK − uK′

d(xK , xK′)
)2d(xK , xK′)meas([K, K ′])

+
∑

i

∑

K∈Ti

ηu2
Kmeas(K) ≤ 0.

This proves that uK = 0 for any K ∈ Ti and any i, and that pǫ = 0 for any face
ǫ ∈ Ei and any i. From relation (9) we have uǫ = 0, ∀ǫ ∈ Ei. �

5 Error analysis (part I)

For the error analysis, we need the following additional assumption on the in-
terface faces:

Assumption 5.1 a) For any i and any ǫ ∈ Ei, yǫ is the barycenter of ǫ.
b) For any i, j, ∂Ωi ∩ ∂Ωj = ∪{ǫ:ǫ∈Ei,ǫ⊂∂Ωj}ǫ, i.e. ∂Ωi ∩ ∂Ωj can be written as
the union of faces of Ei and of Ej.
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Remark 5.2 The above assumption 5.1a) is relaxed in § 6.

Let ũi
K = u(xK) for any control cell K in T (Ωi) and for any ǫ ∈ EiD, let

ũi
ǫ = u(yǫ) = 0 and p̃i

ǫ = ∂u
∂ni

(yǫ). For any interface face ǫ ∈ Ei, let p̃i
ǫ (resp. ũi

ǫ)

be the mean value of ∂u
∂ni

(resp. u) on ǫ. With the notations of § 3.1, this can
be rewritten as

πi((p̃
i
ǫ)ǫ∈Ei

) = Pi(
∂u

∂ni
)

and
πi((ũ

i
ǫ)ǫ∈Ei

) = Pi(u).

The solution of the finite volume discretization with FK as a right hand-side is
denoted by ui

K for any control cell K in T (Ωi) and pi
ǫ on any face ǫ ∈ Ei ∪ EiD

and ui
ǫ for any face ǫ ∈ Ei. We shall estimate the discrete errors ei

K = ui
K − ũi

K ,
ei

ǫ = ui
ǫ − ũi

ǫ and qi
ǫ = pi

ǫ − p̃i
ǫ.

Theorem 5.3 We assume that the solution u of (1) is in C2(Ω̄). Let us con-
sider a family of admissible meshes T1≤i≤N which satisfy Assumption 5.1 and:

∃C′ > 0 s.t. ∀i, ∀ǫ ∈ Ei (15)

d(yǫ, xK(ǫ)) ≥ C′ diam(ǫ)2. (16)

We take α =
C′

maxǫ ∈ Ei, 1 ≤ i ≤ N diam(ǫ)
γ with C′ > 0 and γ ≥ 0. Then, ∃C

s.t.

∑

ǫ∈EiD

e2
K(ǫ)

d(yǫ, xK(ǫ))
meas(ǫ) +

∑

i

∑

ǫ∈Ei

d(yǫ, xK(ǫ))
1

2
q2
ǫ meas(ǫ) (17)

+
∑

i

1

2

∑

K∈Ti

∑

K′∈Ni(K)

(
eK − eK′

d(xK , xK′)
)2d(xK , xK′)meas([K, K ′]) (18)

+
∑

i

∑

Ki∈Ti

ηe2
Kmeas(Ki) ≤ Ch2−γ (19)

where h = sup1≤i≤N{diam(K), K ∈ Ti}.

Proof By Taylor expansions, it is easy to check that for all i, 1 ≤ i ≤ N and
for all K ∈ Ti

−
∑

ǫ∈Ei(K)∪EiD(K)

qi
ǫ meas(ǫ) −

∑

K′∈Ni(K)

eK′ − eK

d(xK′ , xK)
meas([K, K ′])

+ηeKmeas(K) =
∑

ǫ∈EiD(K)

Rǫ +
∑

K′∈Ni(K)

RK,K′ + SK . (20)

where Rǫ = meas(ǫ)O(h), SK = meas(K)O(h), RK,K′ = meas([K, K ′])O(h)
and RK,K′ = −RK′,K .
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Lemma 4.2 cannot be applied directly to the discrete errors because equation
(10) is not satisfied by ei

K(ǫ), ei
ǫ and qi

ǫ, ǫ ∈ Ei. From Assumption 5.1 it can be
checked by using Taylor expansions that for any face ǫ ∈ Ei

qǫ =
eǫ − eK(ǫ)

d(yǫ, xK(ǫ))
+ O(h) + O(

diam(ǫ)2

d(yǫ, xK(ǫ))
). (21)

Indeed, let

T = p̃ǫ −
ũǫ − ũK(ǫ)

d(yǫ, xK(ǫ))
.

By a Taylor expansion, ũK = u(yǫ) − ∂u
∂n (yǫ)d(yǫ, xK(ǫ)) + O(d(yǫ, xK(ǫ))

2).
Hence,

T = [
1

meas(ǫ)

∫

ǫ

∂u

∂n
− ∂u

∂n
(yǫ)] −

1

d(yǫ, xK(ǫ))
[

1

meas(ǫ)

∫

ǫ

u − u(yǫ)]

+O(d(yǫ, xK(ǫ)).

Since yǫ is located at the barycenter of the face ǫ, the first two terms in brackets
are O(diam(ǫ)2).

We proceed now as for Lemma 4.2 by multiplying (20) by eK . The only
modification compared to that lemma is the interface term. Hence we get,

−
∑

ǫ∈Ei

qǫeK(ǫ)meas(ǫ) −
∑

ǫ∈EiD

qǫeK(ǫ)meas(ǫ) (22)

+
1

2

∑

K∈Ti

∑

K′∈Ni(K)

(
eK − eK′

d(xK , xK′

)2d(xK , xK′)meas([K, K ′])

+
∑

K∈T (Ω)

ηe2
Kmeas(K) =

∑

K∈Ti

(
∑

ǫ∈EiD(K)

Rǫ +
∑

K′∈Ni(K)

RK,K′ + SK) eK .

Using RK,K′ = −RK′,K , the right-hand side may be rewritten as

∑

ǫ∈EiD

RǫeK(ǫ) +
∑

K∈Ti

SK eK +
1

2

∑

K∈Ti

∑

K′∈Ni(K)

RK,K′d(xK , xK′)
eK − eK′

d(xK , xK′)
.

(23)
By using (21), the first term of (22) can be estimated:

−
∑

ǫ∈Ei

qǫeK(ǫ)meas(ǫ)

= −
∑

ǫ∈Ei

qǫ

[

eǫ − d(yǫ, xK(ǫ))

[

qǫ + O(h) + O(
diam(ǫ)2

d(yǫ, xK(ǫ))
)

]]

meas(ǫ)

By using (16) and ab ≤ C
2 a2 + 1

2C b2, we have

−
∑

ǫ∈Ei

qǫeK(ǫ)meas(ǫ) ≥ − 1

4α

∑

ǫ∈Ei

[(qǫ + αeǫ)
2 − (−qǫ + αeǫ)

2]meas(ǫ)

+
∑

ǫ∈Ei

d(yǫ, xK(ǫ))
1

2
q2
ǫ meas(ǫ) − O(h2) (24)
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As for the second term of (22), we have by using eǫ = 0 for ǫ ∈ EiD that

qǫ =
0 − eK(ǫ)

d(xK(ǫ), ǫ)
+ O(h). (25)

Hence, we have

−
∑

ǫ∈EiD

qǫeK(ǫ)meas(ǫ) =
∑

ǫ∈EiD

(q2
ǫ d(xK(ǫ), ǫ) + qǫd(xK(ǫ), ǫ)O(h))meas(ǫ)

≥
∑

ǫ∈EiD

q2
ǫ d(xK(ǫ), ǫ)meas(ǫ) − O(h2). (26)

By using (23), (24) and (26) in (22), we get

− 1

4α

∑

ǫ∈Ei

[(qǫ + αeǫ)
2 − (−qǫ + αeǫ)

2]meas(ǫ) (27)

+
∑

ǫ∈Ei

d(yǫ, xK(ǫ))
1

2
q2
ǫ meas(ǫ) +

∑

ǫ∈EiD

q2
ǫ

2
d(xK(ǫ), ǫ)meas(ǫ)

+
1

2

∑

K∈Ti

∑

K′∈Ni(K)

(
eK − eK′

d(xK , xK′

)2d(xK , xK′)meas([K, K ′])

+
∑

K∈T (Ω)

ηe2
Kmeas(K)

≤
∑

ǫ∈EiD

RǫeK(ǫ) +
∑

K∈Ti

SK eK

+
1

2

∑

K∈Ti

∑

K′∈Ni(K)

RK,K′d(xK , xK′)
eK − eK′

d(xK , xK′)
+ O(h2). (28)

We now have to work on the term (27) in order to prove the error estimate.
On the interface ∂Ωi ∩ ∂Ωj, we introduce a new grid Eij composed of the union
of the grids Ei and Ej :

Eij = {ǫi ∩ ǫj : ǫi ∈ Ei, ǫj ∈ Ej}.

The L2 projection on piecewise constant functions on Eij is denoted by Pij .
Since the grid Eij is finer than the grids Ei and Ej , we have

PiPij = PijPi = Pi and PjPij = PijPj = Pj . (29)

On this grid, we introduce four discrete auxiliary unknowns pi
ij , p

j
ij and ui

ij , u
j
ij

(see Lemma 5.4) defined by

ui
ij = uj

ij =
1

2α
Pij(−pi − pj + α(ui + uj)) (30)

pi
ij = −pj

ij =
1

2
Pij(−pi + pj + α(ui − uj)) (31)

11



Lemma 5.4 The quantities defined by (30)-(31) satisfy

pi + αui = Pi(−pi
ij + αui

ij) (32)

pi
ij + αui

ij = Pij(−pi + αui) (33)

pj + αuj = Pj(−pj
ij + αuj

ij) (34)

pj
ij + αuj

ij = Pij(−pj + αuj) (35)

pi
ij = −pj

ij , ui
ij = uj

ij (36)

Proof It is obvious that (33), (35) and (36) are satisfied. Let us check (32).
Assumption 5.1.b) enables a localization of (13) on every interface ∂Ωi ∩ ∂Ωj .
Hence,

Pi(−pi
ij + αui

ij) = Pi(p
j
ij + αuj

ij),

= PiPij(−pj + αuj) = Pi(−pj + αuj),

= pi + αui

Equation (34) can be checked in the same manner.

Let p̃i
ij = −p̃j

ij = Pij(− ∂u
∂ni

) and ũi
ij = ũj

ij = Pij(u) on ∂Ωi ∩∂Ωj . Similarly,

we introduce qi
ij = pi

ij − p̃i
ij , qj

ij = pj
ij − p̃j

ij , ei
ij = ui

ij − ũi
ij and ej

ij = uj
ij − ũj

ij .
Let us notice that

qj
ij = −qi

ij and ej
ij = ei

ij (37)

On the interface ∂Ωi ∩ ∂Ωj , we have by using Assumption 5.1

(qi + αei) = (pi + αui) − (p̃i + αũi)

= Pi((−pi
ij + αui

ij) − Pi(
∂u

∂ni
+ αu)

= Pi(−pi
ij + αui

ij) − Pi(Pij(
∂u

∂ni
+ αu))

= Pi(−qi
ij + αei

ij). (38)

Similarly, we have

qj
ij + αej

ij = pj
ij + αuj

ij − Pij(
∂u

∂nj
+ αu)

= Pij(−pj + αuj) − PijPj(
∂u

∂nj
+ αu) (39)

+(PijPj − Pij)(
∂u

∂nj
+ αu)

= (−qj + αej) + Pij(Pj − Id)(
∂u

∂nj
+ αu) (40)

12



The contribution of (27) on ∂Ωi ∩ ∂Ωj can be rewritten as

− 1

4α

∫

∂Ωi∩∂Ωj

[

(qi + αei)
2 − (−qi

ij + αei
ij)

2

+(−qi
ij + αei

ij)
2 − (qj

ij + αej
ij)

2 (41)

+(qj
ij + αej

ij)
2 − (−qi + αei)

2
]

By (37), the contribution of (41) is in fact null. By using (38) and (40), the
contribution of (27) on ∂Ωi ∩ ∂Ωj can be rewritten as

− 1

4α

∫

∂Ωi∩∂Ωj

[

(Pi(−qi
ij + αei

ij))
2 − (−qi

ij + αei
ij)

2

+(Pij(−qj + αej) + Pij(Pj − Id)(
∂u

∂nj
+ αuj))

2 − (−qi + αei)
2

]

.

By expanding the square terms, and using the definitions of the projectors
Pi, j or ij and noticing that −qj + αej = Pj(−qj + αej),

− 1

4α

∫

∂Ωi∩∂Ωj

[

[

Pi(−qi
ij + αei

ij)
]2 − (−qi

ij + αei
ij)

2 + (−qj + αej)
2

+2(−qj + αej)PjPij(Pj − Id)(
∂u

∂nj
+ αu))

+(Pij(Pj − Id)(
∂u

∂nj
+ αu))2 − (−qi + αei)

2

]

By (29), we have PjPij(Pj − Id) = P 2
j − Pj = 0. Moreover, since ‖Pj −

Id‖H1→L2 = O(h) and Pi is a contraction, the contribution of (27) on ∂Ωi∩∂Ωj

can be estimated:

− 1

4α

∫

∂Ωi∩∂Ωj

(qi + αei)
2 − (−qi + αei)

2

≥ − 1

4α

(

∫

∂Ωi∩∂Ωj

(−qj + αej)
2 − (−qi + αei)

2

)

− O(h2−γ)

Hence, the estimate (27)-(28) becomes

− 1

4α

∑

j 6=i

∫

∂Ωi∩∂Ωj

(−qj + αej)
2 − (−qi + αei)

2

+
∑

ǫ∈Ei∪EiD

d(yǫ, xK(ǫ))
1

2
q2
ǫ meas(ǫ)

+
1

2

∑

K∈Ti

∑

K′∈Ni(K)

(
eK − eK′

d(xK , xK′)
)2d(xK , xK′)meas([K, K ′])

13



+
∑

K∈T (Ωi)

ηe2
Kmeas(K) ≤

∑

ǫ∈EiD

RǫeK(ǫ) +
∑

K∈Ti

SK eK

+
1

2

∑

K∈Ti

∑

K′∈Ni(K)

(RK,K′d(xK , xK′)
eK − eK′

d(xK , xK′)
+ C h2 + C h2−γ .

By summing up over i the above estimate, the terms
∫

∂Ωi∩∂Ωj
(−qj + αej)

2 −
(−qi + αei)

2 cancel. Since Rǫ = meas(ǫ)O(h), SK = meas(K)O(h) and
RK,K′ = meas([K, K ′])O(h), we get by using (25)

∑

i

∑

ǫ⊂∂Ωi

d(yǫ, xK(ǫ))
1

2
q2
ǫ meas(ǫ)

+
∑

i

1

2

∑

K∈Ti

∑

K′∈Ni(K)

(
eK − eK′

d(xK , xK′)
)2d(xK , xK′)meas([K, K ′])

+
∑

i

∑

K∈T (Ωi)

ηe2
Kmeas(K) ≤ C h2−γ

�

6 Error Estimate (Part II): Relaxing assump-
tion 5.1

The assumptions 3.2 and 5.1:a) are verified if triangles with acute angles or
rectangles are used. However, they are not satisfied by very simple and usual
examples. Even with triangles, such a condition is too strong if one wants to
generalize the method to an elliptic equation of the type

−∇.A∇u = f.

The scheme FV9 has been proposed (see e.g. [13]) to cope with more general
meshes inside each subdomain. At the level of the interfaces, we introduce now
a slight modification of the scheme inspired from the same ideas, and allowing
for somewhat weaker geometrical assumption. We give it as an example but we
are conscious that it could also be formulated in many other ways. The analysis
inside each subdomain is performed in [23]- [13] so we focus our attention on
the modification at the interface. We assume that Assumption 3.2 holds but
only Assumption 5.1:a) is relaxed and replaced by Assumption 6.1 below.

In order to simplify the explanation, we consider a 2D situation where each
inner vertex is associated to exactly 4 quadrangles. We keep the model equa-
tion (1). We replace the assumption 5.1:a) by the following:

Assumption 6.1 For a face ǫ ∈ Ei, (see Figure 1), we call yǫ the barycenter of
ǫ. We call ǫ′ and ǫ′′ if it exists, the neighboring faces in Ei aligned with ǫ. We
take the straight lines (one or two) issued from x(K(ǫ)) and joining xK(ǫ′) and
possibly xK(ǫ′′). We assume that they intersect the straight line containing yǫ

14
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Figure 1: Construction of xǫ

and perpendicular to ǫ at points denoted by z(ǫ′) (and possibly z(ǫ′′)). We call
xǫ one of these points. We shall moreover assume that there exists β < 2 such
that ∀ǫ ∈ Ei, and xǫ defined for example with the choice xǫ = z(ǫ′),

meas(ǫ)

d(xK(ǫ), xK(ǫ′))

d2(xK(ǫ), xǫ)

d(yǫ, xǫ)meas[K(ǫ), K(ǫ′)]
≤ β (42)

Now the only change in the scheme is the new definition of pǫ, for ǫ ∈ Ei:
assume that we have made the choice xǫ = z(ǫ′), we introduce pǫ and uǫ related
by the relation

pǫ =
uǫ − ūǫ

d(yǫ, xǫ)
, (43)

where ūǫ is given by the interpolation

ūǫ = uK(ǫ) +
uK(ǫ′) − uK(ǫ)

d(x(K(ǫ)), x(K(ǫ′)))
d(x(K(ǫ)), xǫ). (44)

6.1 Well posedness

As in the § 4, the existence and the uniqueness for (6)-(8)-(9) -(43)-(44)-(11)
follows from the contracting properties of the L2 projectors in the transmission
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conditions and from the following stability result valid for each subdomain.

Lemma 6.2 If assumption 6.1 is satisfied and if the solution of (6)-(8)-(9)
-(43)-(44)-(11) exists, then we have in domain Ωi, 1 ≤ i ≤ N

− 1

4α

∑

ǫ∈Ei

[(pǫ + αuǫ)
2 − (−pǫ + αuǫ)

2]meas(ǫ)

+
∑

ǫ∈EiD

u2
K(ǫ)

d(yǫ, xK(ǫ))
meas(ǫ) +

∑

ǫ∈EiD

d(xK(ǫ), yǫ)p
2
ǫmeas(ǫ)

+
2 − β

4

∑

ǫ∈Ei

d(xǫ, yǫ)p
2
ǫmeas(ǫ)

+
2 − β

2(β + 2)

∑

K∈Ti

∑

K′∈N (K)

(
uK − uK′

d(xK , xK′)
)2d(xK , xK′)meas([K, K ′])

+
∑

K∈Ti

ηu2
Kmeas(K) ≤

∑

K∈Ti

FKuK .

Proof

We proceed as in § 4. The only change lies in estimating the term

T = −
∑

ǫ∈Ei

pǫmeas(ǫ)uK(ǫ)

Thanks to (43)-(44), we write it as

T =

−
∑

ǫ∈Ei

pǫmeas(ǫ)

(

uǫ − d(yǫ, xǫ)pǫ − d(x(K(ǫ)), xǫ)
uK(ǫ′) − uK(ǫ)

d(x(K(ǫ)), x(K(ǫ′)))

)

= −
∑

ǫ∈Ei

meas(ǫ)uǫpǫ +
∑

ǫ∈Ei

meas(ǫ)d(yǫ, xǫ)p
2
ǫ

+
∑

ǫ∈Ei
meas(ǫ)d(x(K(ǫ)), xǫ)pǫ

uK(ǫ′) − uK(ǫ)

d(x(K(ǫ)), x(K(ǫ′)))
(45)

The first term is taken care of exactly as in (14). We just have to estimate the
third term. By the Cauchy-Schwarz inequality, we have

∑

ǫ∈Ei

meas(ǫ)d(x(K(ǫ)), xǫ)pǫ

uK(ǫ′) − uK(ǫ)

d(x(K(ǫ)), x(K(ǫ′)))

≤ γ
∑

ǫ∈Ei

meas(ǫ)d(yǫ, xǫ)p
2
ǫ

+
1

4γ

∑

ǫ∈Ei

meas(ǫ)
d2(x(K(ǫ)), xǫ)

d(yǫ, xǫ)

(uK(ǫ′) − uK(ǫ))
2

d2(x(K(ǫ)), x(K(ǫ′)))
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But thanks to (42),

1

4γ

∑

ǫ∈Ei

meas(ǫ)
d2(x(K(ǫ)), xǫ)

d(yǫ, xǫ)

(uK(ǫ′) − uK(ǫ))
2

d2(x(K(ǫ)), x(K(ǫ′)))

≤ β
4γ

∑

K∈Ti

∑

K′∈N (K)(
uK−uK′

d(xK ,xK′)
)2d(xK , xK′)meas([K, K ′]).

We conclude the proof by choosing γ = β+2
4 .

6.2 Error Estimate

The error estimate is done exactly as in section § 5, and the only difference is
the estimate of qǫ, see (21) for ǫ ∈ Ei. A Taylor expansion shows that qǫ is

of order O(h + diam(ǫ)2

d(xǫ,yǫ
), so we have an analogous result as in Theorem 5.3,

provided assumption 6.1 is satisfied.

7 Advection-diffusion problems

We consider now the advection diffusion problem with a continuous velocity
field a and a viscosity ν :

ηu + a.∇u − ν∆u = f in Ω,
u = 0 on ∂Ω,

(46)

Equation (8) is changed in

pK,K′ = ν
uK′ − uK

d(xK′ , xK)
, (47)

(9) in

pǫ,D = ν
0 − uK

d(yǫ, xK)
(48)

and (10) in

pǫ = ν
uǫ − uK

d(yǫ, xK)
. (49)

For simplicity we restrict ourselves to the case

∇ · a = 0,

which implies the identity ∇·(ua) = a.∇u. We could also handle the case where
‖∇ · a‖∞ < η.

We are going to use a first order upwind scheme to deal with convection. For
that, we need the following notations in addition to those previously defined:

for a given control volume K(⊂ Ωi for example), we denote by N (K) the set
of all the control volumes neighboring K, i.e. the set of all the control volumes
L (not only in the subdomain Ωi ) such that meas(K ∩L) > 0. For L ∈ N (K),
we denote by [K, L] the piece of face [K, L] = K ∩ L.
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We also introduce for L ∈ N (K),

aKL =

∫

[K,L]

(a · nK)+, (50)

where f+ (resp. f−) stands for the positive (resp. negative) part of a function
f : f = f+ − f−, |f | = f+ + f−.

For ǫ ∈ EiD, we also denote by a+
ǫ,D and a−

ǫ,D the quantities

a+
ǫ,D =

∫

ǫ

(a · nK(ǫ))+, a−
ǫ,D =

∫

ǫ

(a · nK(ǫ))−. (51)

Since ∇.a = 0, it is easy to check that for a volume K such that K ⊂ Ω

∑

L∈N (K)

aKL − aLK = 0. (52)

and that, more generally, for a volume K ⊂ Ωi,

∑

L∈N (K)

aKL − aLK = −
∑

ǫ∈EiD(K)

∫

ǫ

(a · nK). (53)

We introduce the finite volume discretization of (46): for K a control volume
in Ωi,

ηmeas(K)uK −∑L∈Ni(K) meas([K, L])pK,L

−
∑

ǫ∈EiD(K)

meas(ǫ)pǫ,D −
∑

ǫ∈Ei(K)

meas(ǫ)pǫ

+
∑

L∈N (K)

aKLuK − aLKuL +
∑

ǫ∈EiD(K)

a+
ǫ,DuK = FK ,

(54)

where pK,L, pǫ,D and pǫ are respectively defined by (47), (48), (49) and satisfy
the transmission condition (11).

Remark 7.1 As one could expect, the discretization of the convection terms on
the interface is much more natural than that of the diffusion terms, because the
finite volume method was designed for that, see [17], [13].

7.1 Stability

Let us denote by X the space of the vectors U of the degrees of freedom

1. uK , K ∈ Ti, 1 ≤ i ≤ N ,

2. uǫ, ǫ ∈ Ei, 1 ≤ i ≤ N ,

(the unknowns pǫ can be readily computed from U), satisfying furthermore the
transmission conditions (11) at the interfaces of the subdomains. We denote by

18



A the bilinear form on X defined by

A(U, V ) =
N
∑

i=1

∑

K∈Ti

ηmeas(K)uKvK

−
N
∑

i=1

∑

K∈Ti

vK





∑

L∈Ni(K)

meas([K, L])pK,L −
∑

ǫ∈EiD(K)

meas(ǫ)pǫ,D





−
N
∑

i=1

∑

K∈Ti

vK



−
∑

ǫ∈Ei(K)

meas(ǫ)pǫ





+

N
∑

i=1

∑

K∈Ti





∑

L∈N (K)

(aKLuK − aLKuL)vK +
∑

ǫ∈EiD(K)

a+
ǫ,DuKvK



 .

(55)

In order to analyze this method, we need a stability estimate on A. When there
is no advection, this estimate has already been proved. Thus, we shall only dis-
cuss the modifications caused by the new convection terms. The new ingredients
in the stability proof are given in [13]. We repeat them for completeness.

Lemma 7.2 We have the estimate

A(U, U) ≥
N
∑

i=1

∑

ǫ∈EiD

u2
K(ǫ)

d(yǫ, xK(ǫ))
meas(ǫ)

+

N
∑

i=1

∑

ǫ∈Ei∪EiD

1

2
d(xK(ǫ), yǫ)p

2
ǫmeas(ǫ)

+
N
∑

i=1

1

2

∑

K∈Ti

∑

K′∈Ni(K)

ν(
uK − uK′

d(xK , xK′)
)2d(xK , xK′)meas([K, K ′])

+
N
∑

i=1

∑

K∈Ti

ηu2
Kmeas(K)

+
1

2

∑

K,L

1uK>uL
(aKL + aLK)(uK − uL)2 +

∑

K

∑

ǫ∈ED(K)

1

2
(a+

ǫD + a−
ǫD)u2

K .

Proof The stability is obtained by multiplying (54) by uK and by summing
over all the volumes. With respect to the stability analysis used in the proof of
Theorem 5.3 , the only new term is

T =
∑

K

∑

L∈N (K)

aKLu2
K − aLKuKuL +

∑

K

∑

ǫ∈ED(K)

a+
ǫDu2

K

Thanks to the identities (52) and (53), this sum may be rewritten

T = −
∑

K

∑

L∈N (K)

aLK(uKuL − u2
K) +

∑

K

∑

ǫ∈ED(K)

a−
ǫDu2

K ,
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or

T =
∑

K,L

1uK>uL

[

aKL(u2
L − uKuL) − aLK(uKuL − u2

K)
]

+
∑

K

∑

ǫ∈ED(K)

a−
ǫDu2

K .

One can check easily that

T = −1

2

∑

K,L

1uK>uL
(aKL − aLK)(u2

K − u2
L)

+
1

2

∑

K,L

1uK>uL
(aKL + aLK)(uK − uL)2 +

∑

K

∑

ǫ∈ED(K)

a−
ǫDu2

K .

But from (52)-(53),

∑

K,L

1uK>uL

1

2
(aKL − aLK)(u2

K − u2
L) =

1

2

∑

K

∑

L∈N (K)

(aKL − aLK)u2
K

= −
∑

K

∑

ǫ∈ED(K)

(a+
ǫD − a−

ǫD)u2
K .

Therefore

T =
1

2

∑

K,L

1uK>uL
(aKL + aLK)(uK − uL)2 +

∑

K

∑

ǫ∈ED(K)

1

2
(a+

ǫD + a−
ǫD)u2

K .

The stability result yields readily the existence and uniqueness of the solution
of the finite volume problem.

7.2 Error analysis

Theorem 7.3 Under the same assumptions as in theorem 5.3, and provided
that a ∈ C(Ω̄) satisfies ∇ · a = 0, we have the error estimate

N
∑

i=1

∑

ǫ∈EiD

ν2
e2

K(ǫ)

d(yǫ, xK(ǫ))
meas(ǫ) +

N
∑

i=1

∑

ǫ∈Ei

1

2
d(xK(ǫ), yǫ)q

2
ǫ meas(ǫ)

+

N
∑

i=1

ν

2

∑

K∈Ti

∑

K′∈Ni(K)

(
eK − eK′

d(xK , xK′)
)2d(xK , xK′)meas([K, K ′])

+

N
∑

i=1

∑

K∈Ti

ηe2
Kmeas(K)

+
1

4

∑

K,L

1eK>eL
(aKL + aLK)(eK − eL)2 +

1

4

∑

K

∑

ǫ∈ED(K)

(a+
ǫD + a−

ǫD)e2
K

≤ C(h2−γ + h).
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Proof We proceed as in the proof of Theorem 5.3. The two new terms are

T1 =
∑

K,L

1eK>eL

(

∫

[K,L]

a.nKu − (aKLu(xK) − aLKu(xL))

)

(eK − eL)

=
∑

K,L

1eK>eL
(eK − eL)

(

∫

[K,L]

a.nK [1(a.nK > 0)(u − u(xK))]

)

+
∑

K,L

1eK>eL
(eK − eL)

(

∫

[K,L]

a.nK [1(a.nK < 0)(u − u(xL))]

)

,

and
T2 = −

∑

K

∑

ǫ∈ED(K)

a+
ǫ,Dux(K)eK .

Consider first T1, since |u− u(xK)| ≤ Cdiam(K) and |u− u(xL)| ≤ Cdiam(L),
we have

|(eK − eL)|
∣

∣

∣

∣

∣

∫

[K,L]

a.nK(1(a.nK > 0)(u − u(xK)) + 1(a.nK < 0)(u − u(xL)))

∣

∣

∣

∣

∣

≤ C(diam(L) + diam(K))(aKL + aLK)|eK − eL|.

Finally

T1 ≤ C(
∑

K,L

1eK>eL
(aKL + aLK)(eK − eL)2)

1

2

× (
∑

K,L

1eK>eL
(aKL + aLK)(diam(L) + diam(K))2)

1

2

≤ Ch
1

2 (
∑

K,L

1eK>eL
(aKL + aLK)(eK − eL)2)

1

2 .

As for T2, we have

T2 ≤
∑

K

∑

ǫ∈ED(K)

a+
ǫ,D(ux(K) − 0)2 +

1

4

∑

K

∑

ǫ∈ED(K)

a+
ǫ,De2

K .

The first term is O(h2) since u = 0 on Ω.

8 Numerical results

In order to illustrate the use of Robin interface conditions on non matching
grids, 2-D test problems were performed with the finite volume scheme analyzed
above. We solve the following problem:

cu + a.∇u − ν∆u = f in Ω = (0, 1) × (0, 1),

u = g on ∂Ω,
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with c and ν positive constants and g is a given function. The stopping crite-
rion of the algorithm is that the max norm of the jump of the Robin interface
condition is smaller than 10−8.
The numerical solution is compared to an exact solution. We choose u(x, y) =
x3 y2 + sin(xy). The right-hand side is obtained by applying the operator to u
and using an approximate integration formula, the Gauss quadrature rule with
four by four nodes per control volume. Thus the error due to inexact integration
will be small with respect to the scheme error. A decomposition into 2× 2 sub-
domains is considered. The L∞ and discrete H1

h (cf. Theorem 7.3) norms are
given for a decomposition into four subdomains and successively refined grids:

• Case 1: diffusive case c = 1, a = (0, 0), ν = 1. Initial grid: 9 × 9 - 8 × 8 -
7 × 7 - 6 × 6.

• Case 2: convective case c = 1, a = (y,−x), ν = 1e − 2. Initial grid: 9 × 9
- 8 × 8 - 7 × 7 - 6 × 6.

• Case 3: diffusive case with nested grids c = 1, a = (0, 0), ν = 1. Initial
grid: 8 × 8 - 4 × 4 - 8 × 8 - 4 × 4.

1/h ‖ ‖∞ ‖ ‖H1

h
H1

h error reduction

8 0.00429947 0.0104186

Case 1 16 0.00189652 0.0069332 1.50

α = 1 32 0.00081337 0.0042162 1.64

64 0.00032407 0.0022791 1.85

128 0.00011640 0.0010857 2,10

Table 1: Error vs. mesh refinement – No convection

1/h ‖ ‖∞ ‖ ‖H1

h
H1

h error reduction

8 0.00164963 0.00609823

Case 1 16 0.000828163 0.00389768 1.79

α = 1/h 32 0.0004912 0.00266351 1.46

64 0.000273028 0.00186123 1.43

128 0.000147225 0.00130971 1,42

Table 2: Error vs. mesh refinement – No convection

For case 1 and α = 1 (i.e. γ = 0, table 1), the first order in the discrete
H1

h norm as expected from the theory is attained only for rather fine meshes.
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1/h ‖ ‖∞ ‖ ‖H1

h
H1

h error reduction

8 0.0363194 0.0208039

Case 2 16 0.0192991 0.0103208 2.02

α = 1 32 0.0089670 0.0051218 2.02

64 0.0046442 0.0199572 1.96

128 0.0023960 0.0013520 1.92

Table 3: Error vs. mesh refinement – Convection

1/h ‖ ‖∞ ‖ ‖H1

h
H1

h error reduction

8 0.00461566 0.00986891

16 0.00136263 0.00341835 2.88

Case 3 32 0.000389296 0.00117091 2.92

α = 1 64 0.000109016 0.00040139 2.92

128 0.00003011 0.00013925 2.88

Table 4: Error vs. mesh refinement. Nested grids – No Convection

The error in the L∞ norm is also improved with mesh refinement and seems
better than O(h) since the error reduction factor between two successive levels
seems better than 2. For case 1 and α = 1/h (i.e. γ = 1, table 2), the error is
an O(h1/2) as expected since the error reduction factor between two successive
levels seems to converge to

√
2. In case 2 and α = 1 (i.e. γ = 0, table 3) the error

reduction factor between two successive levels deteriorates slightly and is close
to 2 as the mesh is refined. The error is better than the expected value O(h1/2).
In Case 3 (diffusive case with nested grids on the interface), the error seems
better than the theoretical value O(h) since the error reduction factor between
two successive levels is close to 3. This is related to the superconvergence of
the finite volume scheme on a regular mesh that does not seem to be lost when
using nested grids on the interface.
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above: Computed solution, bottom left : error for Case 1, bottom right: error for Case 2
Note the different scales

In the diffusive case (Case 1), note that the error is very small (roughly 0.2%)
but not smooth on the interface. It is about three times what would be obtained
with matching grids. In the convective case (Case 2), the error is smoother but
larger (roughly 2%).
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