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Abstract. In this paper we are interested in the “fast path” fracture and we aim to use global-
in-time, nonoverlapping domain decomposition methods to model flow and transport problems in
a porous medium containing such a fracture. We consider a reduced model in which the fracture
is treated as an interface between the two subdomains. Two domain decomposition methods are
considered: one uses the time-dependent Steklov—Poincaré operator and the other uses optimized
Schwarz waveform relaxation (OSWR) based on Ventcell transmission conditions. For each method,
a mixed formulation of an interface problem on the space-time interface is derived, and different
time grids are employed to adapt to different time scales in the subdomains and in the fracture.
Demonstrations of the well-posedness of the Ventcell subdomain problems is given for the mixed
formulation. An analysis for the convergence factor of the OSWR algorithm is given in the case with
fractures to compute the optimized parameters. Numerical results for two-dimensional problems
with strong heterogeneities are presented to illustrate the performance of the two methods.
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1. Introduction. In many simulations of time-dependent physical phenomena,
the domain of calculation is a union of domains with different physical properties and
in which the lengths of the domains and the time scales may be very different. In
particular, this is the case for a domain where there exist fractures and faults. In
such a case, the fluid flows rapidly through these paths while it moves much more
slowly through the rock matrix. As a result, the contaminants present in the porous
medium that travel with the fluid are transported faster than in the case when there is
no fracture. Thus the time scales in the fractures and in the surrounding medium are
very different, and in the context of simulation, one might want to use much smaller
time steps in the fractures than in the rock matrix. For simplicity we consider the
case in which the domain is separated into two matrix subdomains by a fracture. The
permeability in the fracture can be larger or smaller than that in the surrounding
medium. A large permeability fracture corresponds to a fast pathway and a small
permeability fracture corresponds to a geological barrier. Here we are interested in
the “fast path” fracture. Modeling flow in porous media with fractures is challenging
and requires a multiscale approach: first, the fractures represent strong heterogeneities
as they have much higher or much lower permeability than that in the surrounding
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medium; second, the fracture width is much smaller than any reasonable parameter of
spatial discretization. Thus, to tackle the problem, one might need to refine the mesh
locally around the fractures. However, this is well-known to be very computationally
costly and is not useful at the macroscopic scale (i.e., when the fractures can be
modeled individually). One possible approach is to treat the fractures as domains
of co-dimension one, i.e., interfaces between subdomains (see [1, 3, 5, 16, 17, 40,
43, 42, 48] and the references therein) so that one can avoid refining locally around
the fractures. We point out that in these reduced fracture models, unlike in some
discrete fracture models, interaction between the fractures and the surrounding porous
medium is taken into account.

We are concerned with algorithms for modeling flow and transport in porous
media containing such fractures. In particular, in this paper we investigate two space-
time domain decomposition methods, well-suited to nonmatching time grids. We use
mixed finite elements [11, 45] as they are mass conservative and they handle well
heterogeneous and anisotropic diffusion tensors.

The first method is a global-in-time preconditioned Schur method (GTP-Schur)
which uses a Steklov—Poincaré-type operator. For stationary problems, this kind of
method (see [41, 44, 47]) is known to be efficient for problems with strong hetero-
geneity. It uses the so-called balancing domain decomposition (BDD) preconditioner
introduced and analyzed in [37, 38], and in [13] for mixed finite elements. It involves
at each iteration the solution of local problems with Dirichlet and Neumann data and
a coarse grid problem to propagate information globally and to ensure the consis-
tency of the Neumann subdomain problems. An extension to the case of unsteady
problems with the construction of the time-dependent Steklov—Poincaré operator was
introduced in [28, 29], where an interface problem on the space-time interfaces be-
tween subdomains is derived. However, for the time-dependent Neumann—Neumann
problems there are no difficulties concerning consistency, and we are dealing with only
a small number of subdomains, so we consider only a Neumann—Neumann type pre-
conditioner, an extension to the nonsteady case of the method of [35]. A Richardson
iteration for the primal formulation was independently introduced in [18, 34], and
its convergence was analyzed. In the case of elliptic problems with fractures, a local
preconditioner [2] significantly improves the convergence of the method.

The second method is a global-in-time optimized Schwarz method (GTO-Schwarz)
and uses the optimized Schwarz waveform relaxation (OSWR) approach. The OSWR
and GTP-Schur methods are iterative methods that compute in the subdomains over
the whole time interval, exchanging space-time boundary data through transmission
conditions on the space-time interfaces. The OSWR algorithm uses more general
(Robin or Ventcell) transmission operators in which coefficients can be optimized
to improve convergence rates; see [21, 32, 39]. The optimization of the Robin (or
Ventcell) parameters was analyzed in [6] and the optimization method was extended
to the case of discontinuous coefficients in [7, 8, 9, 10, 20, 28, 29]. Generalizations
to heterogeneous problems with nonmatching time grids were introduced in [7, 8, 10,
20, 24, 25, 26, 27, 28, 29]. More precisely, in [10, 26, 27|, a discontinuous Galerkin
(DG) method for the time discretization of the OSWR algorithm was introduced and
analyzed for the case of nonconforming time grids. A suitable time projection between
subdomains is defined using an optimal projection algorithm as in [22, 23] with no
additional grid. The classical Schwarz algorithm for stationary problems with mixed
finite elements was analyzed in [15]. An OSWR method with Robin transmission
conditions for a mixed formulation was proposed and analyzed in [28, 29], where a
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mixed form of an interface problem on the space-time interfaces between subdomains
was derived. In [30], an optimized Schwarz method with Ventcell conditions in the
context of mixed formulations was proposed. This method is not obtained in such a
straightforward manner as in the case of primal formulations as Lagrange multipliers
have to be introduced on the interfaces to handle tangential derivatives involved in
the Ventcell conditions.

In this work, we define both a GTP-Schur and a GTO-Schwarz algorithm for a
problem modeling flow of a single phase, compressible fluid in a porous medium with
a fracture. A straightforward application of [29] would be to consider the fracture as a
third subdomain and to take smaller time steps there. We consider instead a reduced
model in which the fracture is treated as an interface between two subdomains.

The definition of the GTP-Schur method is a straightforward extension of that
in [29]. However, to define the GTO-Schwarz method, something more is needed: a
linear combination between the pressure continuity equation and the fracture problem
is used as a transmission condition (which leads naturally to Ventcell conditions), and
a free parameter is used to accelerate the convergence rate. The well-posedness of the
subdomain problems involved in the first approach was addressed in [12, 29, 36], using
Galerkin’s method and suitable a priori estimates. In this paper, the proof of well-
posedness of both the coupled model and the Ventcell subdomain problems involved
in the GTO-Schwarz approach is shown to follow from a more general theorem that
covers the two cases.

Note that more general reduced models that can handle both large and small
permeability fractures [40] introduce more complicated transmission conditions on the
fracture-interface (in the form of Robin type conditions, where the Robin coefficient
has a physical origin), and it is not yet clear how to formulate an associated domain
decomposition problem with a parameter that can be optimized.

This paper is organized as follows: in the remainder of the introduction (sub-
section 1.1), we state an abstract existence and uniqueness theorem for evolution
problems in mixed form, the proof being deferred to Appendix A. In section 2 we con-
sider a reduced model with a highly permeable fracture and prove its well-posedness.
Then in section 3 we consider the GTP-Schur approach, based on physical transmis-
sion conditions, for solving the resulting problem. Different preconditioners for this
method are proposed. In section 4 we consider the GTO-Schwarz method, based on
more general (e.g., Ventcell) transmission conditions, for solving the resulting prob-
lem. We prove the well-posedness of the subdomain problems with Ventcell boundary
conditions. In section 5 we consider the semidiscrete problems in time using different
time grids in the subdomains. Finally, in section 6, results of two-dimensional (2D)
numerical experiments comparing the different methods are discussed.

1.1. Abstract evolution problems in mixed form. The goal of this section
is to give an existence and uniqueness result for evolution problems posed in mixed
form, in the spirit of the well-known theorem for weak parabolic problems (see, for
example, [14, vol. 5]).

We consider two Hilbert spaces, ¥ and M (M will be identified with its dual),
and assume we have continuous bilinear forms

a:3x 3N —R, b: Y x M — R, c:MxM-—R
and a continuous linear form

L:M—R
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We study here an abstract version of a parabolic problem in mixed form:

Find p € H(0,T; M) and u € L?(0,T;X) such that

a(u,v) —bv,p) = 0 Yv € X,
(1.1) (O, ) + c(p; p) + b(u, p) = L(p) Ype M,
p(0) = po

for some py € M.
We make the following hypotheses on the data.
e The bilinear form a is positive definite on X:

(H1) a(u,u) >0 Yu e, u#0,

so that a defines a norm on Y, and we denote by ¥, the space ¥ with the
norm induced by the bilinear form a. Note, however, that this norm will not
necessarily be equivalent to the initial norm on 3.

e The bilinear form c is positive semidefinite on M:

(H2) c(p,p) >0  Vpe€ M.

e The bilinear forms a and b satisfy the following compatibility condition: there
exists 8 > 0 such that

b 2
(H3) Yu €X, sup (u, 'L;)
ped ullas

+ullz, = Bllul-

e There exists a subspace W C M (with continuous embedding) on which the
bilinear form b satisfies the stronger continuity property: there exists Cj, > 0
such that

(H4) b(u, 1) < Cyllulls, |pllw  Vu € X and Vi e W.

In most cases, the application of hypothesis (H3) will appear in a more natural
form if it is written using the operator B : W — M associated with the bilinear
form b, that is such that

Yue W, pe M, blu,p)=(Bu,p)m.

Then, hypothesis (H3) can be written in the equivalent form: there exists § > 0 such
that

(H3) Vu €N, [|Bulli, +[lul%, > Bllul;

see the following remark.

Remark 1.1. Hypothesis (H3) is not equivalent to the inf-sup condition. The inf-
sup condition expresses the surjectivity of BT, whereas here we need the ellipticity of
B with respect to the norm defined by a. This also implies a form of compatibility
between a and B. This implies that a is elliptic on the kernel of B, i.e., if Bu = 0,
alu,u) > Blul3.

The basic existence and uniqueness result for problem (1.1) is the following.

THEOREM 1.2. Let M and X be Hilbert spaces, and let a, b, and c be continuous,
bilinear forms satisfying (H1) through (H3). Then, if L is a continuous linear form
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on M and pg € W, where W C M satisfies (H4), then problem (1.1) has a unique
solution, for which the following estimate holds:

(1.2) Nlullz200,755) + 1Pl 20, 7500) + 1062 20, 7500) < C (HLH%%O,T;M) + ||p0||%/v) .

The proof of the theorem will be given in Appendix A.

Remark 1.3. The case ¢ = 0 is allowed, and is actually the most common case
(cf. Theorem 2.1).

Remark 1.4. This result is a generalization to the abstract setting of Lemma 3.1
in [36]. This problem has also been considered by Boffi and Gastaldi [12], but the
estimates given there (without proof) are different: they dispense with the regularity
requirement py € W, at the expense of introducing weighted estimates in time to
cope with the possibility of a singularity at the initial time. A proof in a more general
setting is given in [4]. However, this proof uses semigroup theory (see Theorem 4.1
of [4]), while the one we propose in this paper is with a priori estimates, in the same
spirit as in [36].

We give a simple application of Theorem 1.2 (other applications will be given in
Theorems 2.1 and 4.1).

We consider the heat equation with Dirichlet boundary conditions in mixed form.
For a domain Q C R? (d = 2 or 3) and T > 0, we look for p : Q x [0,7] — R, the
solution of

9 _

o Ap=f in Q x [0,7],

p=0 on 99 x [0,T7,
p(z,0) =po(x) in L

To obtain the mixed form of (1.3), we define the spaces ¥ = H(div ,Q) and
M = L?(Q), the bilinear forms a, b (here we will take ¢ = 0), and the linear form L

(1.3)

(1.4) a:XxX—R, a(u,v):/u-v,
Q
(1.5) b: Y x M — R, b(u,u):/udivu,
Q
(1.6) L:M — R, L(,u):/f,u.
Q

To apply Theorem 1.2, we check hypothesis (H1) to (H4). This is trivial for (H1)
and (H2). To check (H3), we use the equivalent form (H3’). Operator B is simply
the divergence, so that

| Buld, + ull?, = /Q divul]? + /Q 2 = [lull%,

and (H3) is valid with 8 = 1. Last, we check that (H4) is also valid with W = Hg(Q).
Using Green’s formula, we obtain

b(u, ) :/ pdivu = —/u-Vu,
Q Q
from which (H4) follows.
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2. A reduced fracture model. For a bounded domain € of R? (d = 2, 3) with
Lipschitz boundary 92 and some fixed time T" > 0, we consider the problem of flow
of a single phase, compressible fluid written in mixed form as follows:

sOp+divu =q in Q x (0,7),
(2.1) U =—-KVp inQx(0,7),
' P =0 on 90 x (0,7T),
p(+,0) = Do in Q,

where p is the pressure, u the velocity, ¢ the source term, s the storage coefficient,
and K a symmetric, time independent, hydraulic, conductivity tensor (see, e.g., [28]).
For simplicity we have imposed a homogeneous Dirichlet condition on the boundary.

We suppose that the fracture 25 is a subdomain of 2, of thickness ¢, that separates
Q into two connected subdomains (see Figure 1, left, where for visualization purposes
the size of § is depicted as being relatively much larger than it is in reality),

Q\Qr =0 UQs, Q1 NQ=0.

Also, for simplicity, we assume that Q¢ consists of the intersection with {2 of a line

or plane v (depending on whether d = 2 or 3), together with the points £ =z, + sn
where 2, € v, s € (—3,3) and n is a unit vector normal to . We denote by ; the

part of the boundary of {2; shared with the boundary of the fracture {2;:

'yi:((?Qiﬂaﬂf)ﬂQ, 1=1,2,

ny

a! 72
Ql Qf Qg Q1

ny

FiG. 1. Left: The domain 2 with the fracture Q1y. Right: The domain ) with the interface-
fracture .

and we denote by n; the unit, outward pointing, normal vector field on 02;. We use
the convention that for any scalar, vector, or tensor valued function ¢ defined on €2,
¢; denotes the restriction of ¢ to ;,i = 1,2, f. We rewrite problem (2.1) as the
following transmission problem:

s$iOp; +divu; =q; in ; x (O,T), 1=1,2, f,

Uu; = _szpz in Ql X (O,T), 1= 1, 2,f,

(2 2) Di =0 on (an N 8(2) X (O,T), 1= 1, Z,f,
’ i =py on~y; x (0,7, 1=1,2,
Uu; -n; =ur-n; on%x(O,T), 1=1,2,

pi(+,0) = Po,i in Q;, i=1,2,f.
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In the reduced fracture model, the fracture 0y is treated as a simple interface
v between subdomains ; and €9 (see Figure 1, right). We use the notation V.,
(respectively, div,) for the tangential gradient (respectively, tangential divergence)
operators along the fracture v. We denote by s, and K, the storage coefficient and
the permeability tensor in the (d — 1)-dimensional fracture 7. The reduced model
that we consider was derived in [1, 40]. It may be obtained by averaging across the
transversal cross sections of the d-dimensional fracture €2;. It consists of equations in
the subdomains,

siOp; +divu; =q; in Q; x (0, T),
u; = —K1sz in Ql X (O,T),
(2.3) Di =0 on (0Q; NON) x (0,7T) fori=1,2,
i =py on~vy x (0,7),
pi(-,0) = Dpo,i in €,

and equations in the interface fracture,

Sy0ipy +divy uy = (w1 gy +uz -ngp,) iny x (0,7),
(24) UV = _K’Y(SV-,—pry in ¥ X (O,T),
Dy =0 on dvy x (0,7,
py(-,0) = Po,y n-7.

These equations are the mass conservation equation and the Darcy equation in the
subdomain together with the lower dimensional mass conservation and Darcy equa-
tions in the fracture of co-dimension 1. These two systems are coupled: the fracture
sees the subdomain through the source term in the conservation equation in the frac-
ture which represents the difference between the fluid entering the fracture from one
subdomain and that exiting through the other subdomain. Each subdomain sees the
fracture through the Dirichlet boundary condition imposed on the part of its bound-
ary common with the fracture. We make the hypothesis of the following compatibility
conditions: pg; = po,, on v, for i = 1,2. For a general mathematical treatment of
this type of problem in the stationary case, see [31].

To prove the well-posedness of problem (2.3)—(2.4), we shall use the abstract
framework of subsection 1.1 and apply Theorem 1.2. We first write the weak formu-
lation for problem (2.3)—(2.4), and define the appropriate function spaces, and the
forms on these spaces. We use the convention that if V' is a space of functions, then
V is a space of vector functions having each component in V. For an arbitrary do-
main O, we denote by (-, -)o the inner product in L?(©) or L?(O) and by and || - ||o
the L2(0)-norm or L2(0)-norm. To write the weak formulation of (2.3)(2.4), we
define the following Hilbert spaces:

M = {# = (1, p2s fivy) € L3(Q1) x L*(Qg) x LQ(W)},

Y= {’U = (vl,'vg,'vv) S Lz(Ql) X L2(Qg) X Lz(’y) : divo; € Lz(Ql),l =1,2,

2
and div, v, — Z'vi LS L2(7)}7
i=1
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equipped with the norms

2
el = lmilld, + layl12,
=1
2 2
wll% =" (Ilvilld, + [divil|3,) + oyl + [Idive vy — > vi-ng, 2.
i=1 i=1

We define the following bilinear forms:

a: YxY — R

2
(u,v) — Z (K; uz,'vZ + ((K40)~ u”’m)v’
=1
b: YxM — R

(w, 1) = blu,p) =

o8

=1 =1

2
(div 'u,l-,,ul-)qu + <divT Uy — Zu,z 'nilwﬂv> ,
¥
cs: MxM — R

M

(o) = () = ) (sini i), + (47195 11y

i=1
and the linear form

Ly: M — R

pooo= Le(p) =) (gis pi)g,

'Mw

=1

With these spaces and forms, the weak form of (2.3)-(2.4) can be written as follows:

Find p € H*(0,T; M) and u € L*(0,T; ) such that
a(u,v) — b(v,p)= 0, Vo e X,

2.5

(25) cs(Op, 1) + b(u, )= Lq(‘u) Ve M,
together with the initial conditions

(2.6) pi(0)=po; inQy, i=1,2,

p’Y(VO):pO,V in v
for po,; € L?($%), i = 1,2, and py ., € L*(y). We also define the space

H! = {u= (1, p2,p1,) € H(Q1) x H () x H(7) : p; = 0 on 9; N 9L,
and p; — iy =0onvy, i=1,2},

equipped with the norm

2
lialZry = Ialls + D IV killg, + 1V 13-
i=1

The well-posedness of problem (2.5)—(2.6) is given by the following theorem.
THEOREM 2.1. Assume that there exist four positive constants s— and sy, K_,
and K such that

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/14/18 to 194.254.165.1. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

296 T. T. P. HOANG, C. JAPHET, M. KERN, AND J. E. ROBERTS

_ < si(x) < sy forae xeQ;, i =1,2,

os_<s.y( ) < s4 for a.e. x €7,

o K (x)s > K_||?, and |Ki(x)s| < Ki[s|, for a.e. x € Q; Vs € R, i =1,2,

o 0" (K (2)8)"'n = K_|n|* and |(K(x)0)~'n| < Kyln| for a.e. x € Vne R
If q is in L*(0,T; M) and po = (po,1,Po,2: Po,y) in H}, then problem (2.5)~(2.6) has a
unique solution (p,u) € HY(0,T; M) x L*(0,T;%).

Proof. First, notice that under the assumptions on s; and s stated in the previous
theorem, cs defines an inner product on M x M, and that the associated norm is
equivalent to the original norm on M.

We will apply Theorem 1.2, in the case ¢ = 0. The bilinear forms a and b are
obviously continuous, and, with the hypotheses concerning K; and K, a is positive
definite on X.

We now check hypothesis (H3). This is easiest to do using the operator form (H3’),
where for this problem B is defined by

2
Yu € X, Bu = <div uy, div uy, div,; u, — z:uZ ""’iv) .
i=1

The result follows from the hypothesis on K; and K, and the definition of the norm
on .

Last, to check hypothesis (H4), we can take W = H}, and use Green’s formula,
to see that foru e ¥ and p e W

2

2
blu, p) = (div w;, pi)g, + (divT Uy — Zui '"iwvﬂv>
1 i=1 -

i=

[
Mw

2
( uu V,U”L (uz ' niha ,uz),y) - ('U"ya T,u'y Z u; - nzha ,u’y
=1 =1

2
= - Z (us, Vﬂi)gi — (uy, vﬂ‘v%

i=1

because (i, = p. To conclude, we bound the terms of the right-hand side:

(ui, Vi), < il 1 (02,)s

(y, Vi), < Eop g [5]] 1y 11 ()

from which hypothesis (H4) easily follows. d

It is natural to use domain decomposition methods for obtaining a numerical
solution of problem (2.2) or problem (2.3)-(2.4), especially as these methods make
it possible to take different time steps in the subdomains and in the fracture. For
problem (2.2), it would be a straightforward application of the methods introduced
in [29] while for problem (2.3)—(2.4), we need to derive a different formulation. In the
following, we present two global-in-time domain decomposition methods for solving
(2.3)—(2.4) based on different transmission conditions. A space-time interface problem,
which will be solved iteratively, is derived for each approach.

3. Global-in-time preconditioned Schur (GTP-Schur): Using the time-
dependent Steklov—Poincaré operator. The global-in-time preconditioned Schur
(GTP-Schur) method is directly derived from the formulation of problem (2.3)-(2.4).
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To obtain the interface problem for this method, we need to introduce some notation.
For a bounded domain O € R? (d = 2, 3) with Lipschitz boundary O containing an
open subset v C 00, we define the space

Hj’,y((’)) ={peH(O): p=0 on (00\)}.
Then we define the following Dirichlet-to-Neumann operators SP*N, i = 1, 2:
i
SPN L H (0,75 Hig(7)) % L2(0,T5 L3(90)) x B, (@) — 12(0.75 (Hio (1) ),
SZDtN(A7q7p0) = U 'ni|'y7

where (p;,u;), i = 1,2, is the solution of the problem

$iOp; +divu; =q in Q; x (0, T),
u;, = —Kini in Qi X (O,T),
(3.1) pi =0 on (89 NAQ) x (0,T),
pi = A on~vy x (0,7),
pi(+,0) = po in ;.

Remark 3.1. A straightforward application of Theorem 1.2 shows the well-
posedness of subdomain problem (3.1). See also [28, 36] for a direct proof.
Problem (2.4) is reduced to an interface problem with unknowns A and w.:

S'yat)\ + diVT 'Uw = Z?:l SlDtN(/\’ qiapO,i) in v X (07 T)7
0,7)

(3.2) uy, = —K, 0V, invy x (0,7,
' A=0 on 9y x (0,7,
A(-0) =poy in 7,
or equivalently
(3.3)
SyOA + divy uy — 2?21 SPN(),0,0) = E?:l SP™N(0, gi,pos) iny x (0,7),
uy, = —K 6V, A iny x (0,7T),
A=0 on 9y x (0,7,
A(,O) :p07’y in v,

or in compact form (space-time),

S("/:7>:X'

This problem is solved using an iterative solver such as GMRES since due to the time
derivative the system is nonsymmetric.

To improve the convergence of the iterative algorithm, we will consider two pre-
conditioners. The first, introduced in [2], arises from the observation that the interface
problem is dominated by the second order operator (div, (K~dV;)) since the Steklov—
Poincaré operator is of lower order (first order). This is even more the case when the
permeability in the fracture is much larger than that in the surrounding domain. Thus
one choice for a preconditioner is Plzi defined by taking the discrete counterpart of
the operator (div, (K,YcSVT))_l. We have

P LP(y) = L2(7),

loc
gy ]577
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where (py, %) is the solution of the problem

div, u, = g, in 7,
u, = —K ,0V.:p, inv~,
py =0 on 0.

This preconditioner was introduced for elliptic problems, and it was shown numeri-
cally [2] that it significantly improves the convergence of the algorithm, especially, as
mentioned before, for high permeability in the fracture.

A second possibility is to use the Neumann—Neumann preconditioner as was done
in [28, 29] for ordinary domain decomposition algorithms (i.e., without fractures).
The preconditioned problem is then

Piny = X
with
Py = (0u(SPN) 7+ o287 7Y,
where o; : v X (0,T) — [0,1] is such that o1 + 09 = 1. If K; = &,I and &; is constant
in each subdomain, then

_ R
R+ R

The operator (SP*N)~!, i = 1,2, is the inverse of the operator SP*N := SPN(..0,0),
and is defined by

(SPN)=1: L2(0,T5 L3 (7)) — H' (0, T3 L3(v)) ,
(SPN) T (9) = pifys

where (p;,u;), i = 1,2, is the solution of the problem

gj

Siatpi +divu; =0 in €; x (0, T),
u; = —szpl in Ql X (O,T),
(3.4) pi=0 on (9 N Q) x (0,T),
—u;-n; = ¢ ony x (0,T),
pi(',O) =0 in Qi.

In section 6, we will carry out numerical experiments and compare the performance
of these two preconditioners.

4. Global-in-time optimized Schwarz (GTO-Schwarz): Using optimized
Schwarz waveform relaxation. While the extension of the GTP-Schur method
to handle the fracture model is straightforward, the extension of the GTO-Schwarz
method to the fracture problem needs something more. Indeed, instead of imposing
Dirichlet boundary conditions on v x (0,7) when solving the fracture problem as
was done for the GTP-Schur method, for the GTO-Schwarz approach one uses opti-
mized Robin transmission conditions. Thus, we introduce new transmission conditions
that combine the equation for continuity of the pressure across the fracture with the
flow equations (2.4) in the fracture. These new transmission conditions contain a
free parameter, which is used to accelerate the convergence. This is an extension of
the OSWR method with optimized Robin parameters studied in [28, 29] in which
Robin-to-Robin transmission conditions are considered in mixed form. Here, how-
ever, because of the fracture problem, we obtain what we will call Ventcell-to-Robin
transmission conditions as described below.
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4.1. Ventcell-to-Robin transmission conditions. The new transmission con-
ditions are derived by introducing Lagrange multipliers p; ., ¢ = 1,2, with p; , repre-
senting the trace on the interface v of the pressure p; in the subdomain €2;. As the
pressure is continuous across the interface, one has

(4.1) Piy =D2~y=py on~yx(0,T).
We then rewrite the Darcy equation in the fracture associated with each p; - as
;= —K, 6V.p;i, onyx(0,T),i=1,2.

We have used the notation . ;, i = 1,2, instead of u; , to insist on the fact that u. ;
is not the tangential component of a trace of u; on . In fact, u, 4, @ = 1,2, represents
the tangential velocity in the fracture associated with the pressure p; so that

Uy =Uy2=u, onvyx(0,T),i=12.

With the notation introduced above, the flow equation (2.4) in the fracture can be
rewritten, for ¢ = 1,2, and j = (3 — 1), as

—U; N + 5,0Pi + dive Uy = —u; -y on~vy x (0,7),
(4.2) Uy; = —K,0V.p;, on~yx(0,T),
piy =0 on 9 x (0,7),
pi,’y('a 0) = Po,y in -

In the context of domain decomposition, (4.1) and (4.2) are the coupling conditions
between the subdomains. As in the case without a fracture we take a linear com-
bination of these conditions (for a parameter o > 0), but here we obtain equivalent
Ventcell-to-Robin transmission conditions (instead of Robin-to-Robin):

—u1 N1+ apyy + 5,0ip14 +dive Uy = —up -ny + apa
4.3 on~yx(0,T),
(43) s = —KofTrpr 7%(0.7)
—Us - Ny + « + 5,0 +div: Uy 0 = —u1 -nNo +
(4'4) 2 M2 P2,~ vOtP2,~ v,2 1 M2 P1,y on X (O, T).

Uyo = —K\0Vrpy
Using these transmission conditions together with the boundary and initial conditions
Diy = D2,y =0 on dvy x (0,7,
P14(5,0) = p24(-,0) =po, inv,

the subdomain problem is obtained by imposing Ventcell boundary conditions on
vx(0,T),i=1,2,j=3—1:
(4.6)

(4.5)

$iOp; +divu; =q in £; x (0, T

u;, = —Kini in Ql X O,T

—U; -N; +ap; 4+ S,Yatpi’V + div, Uy ; = —Uj - N; + QPj~ ON7Y X (0, T),
Uy i = —K»Y5V7-pi’,y in Yy X (O,T),

);
)

)

pPi = 0 on (891 n 89) X (O,T),
piy =0 on 9y x (0,7,
pi(-,0) = po in §;,
Piny(-0) = poy in 7,

where the quantity on the right-hand side of the third equation will be known in the
context of an iterative method for solving (2.3)—(2.4). In the next subsection we prove
that problem (4.6) is well-posed.
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4.2. Well-posedness of the subdomain problem with Ventcell boundary
conditions. For a bounded domain © C R? (d = 2, 3) with Lipschitz boundary 0O
containing an open subset v C 00, consider the following time-dependent problem
written in mixed form with Dirichlet and Ventcell boundary conditions:

soOpo +divup =q in O x (0,7),
uop = —KOVpo in O x (O,T),
—uo N+ apy + 5,0;py + divy uy = 0, on~y x (0,7,
(4.7) uy = —K,6V,p, inyx(0,T),
' po =0 on (00 \ v) x (0,T),
py =0 on 9y x (0,7T),
po(-0) =po.o in Q;,
py(+,0) = po,y in 7,

where 6., is a function defined on v x (0,T'), and a € R, « > 0. In order to write the
weak formulation of (4.7), we need to define the following Hilbert spaces:

Mo = {1 = (no.py) € L*(0) x L*(7)},

Yo = {'v = (vo,v,) € L*(0) x L*(v) : divwe € H(div ,0)

and (div; vy —vo 'm},) € L2(7)},
equipped with the norms

lise = llrolld + lluyll3,
2156 = llvollo + divvolld + [loy[I3 + ldive vy —vo - ny, 13

Then define the bilinear forms

aw: YoxXo — R, ao(u,v) (K(;luo,vo)o + ((Kyé)*luy,vy)w,

bo : Yox Mo — R, bo(u,u) = (div UO,MO)O + (diVT Uy — UO -nh,uv)v,
co: MoxMo — R, co(np) = (any,py),,

cs0: MoxMo — R, cso(np) = (sono,no)o + (Sy7y: 1y,

and the linear form
Lyo: Mo — R, Lgo(p) = (q,10)o + (0, 11y), -
With these spaces and forms, the weak form of (4.7) can be written as follows.
For a.e. t € (0,7, find p(t) € Mo and u(t) € Lo such that
ao(u,v) —bo(v,p) =0 Yo € Yo,

¢s,0(0p, 1) + co(p, ) +bo(u, p) = Lgo(p) Vi€ Mo,
together with the initial conditions

pO(',O) = Po,0 in Oa
4.9 ’ .
(4.9) py(-,0) =po, In7.

(4.8)

We will also make use of
HN0,7) = H,_(0) x Hy(7).

The well-posedness of problem (4.8)-(4.9) is given by the following theorem.
THEOREM 4.1. Assume that there exist positive constants s_, sy, K_, K, with

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/14/18 to 194.254.165.1. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SPACE-TIME DD FOR REDUCED FRACTURE MODELS 301

s— < sp(x) < sy forae xzeO,
s— < sy(x) < sy forae xer,
TK ' (2)s > K_|s|?, and |K;(z)s| < K4s|, for a.e. € O Vs € RY,

n" KN (x)on > K_|n* and (K~ (x)0)"'n| < Ky for a.e. x €y Vne R4,

If g is in L*(0,T; Mo), po = (po,0,Po~) in Hi’l(O,”y) and 6, in L*(0,T; L*(v)), then
problem (4.8)—(4.9) has a unique solution (p,u) € H'(0,T; Mp) x L*(0,T;X0).
Proof. As in the case with Dirichlet boundary conditions, we apply Theorem 1.2.
Again notice that, under the hypotheses on sp and s, ¢s,0 defines an inner product
on M, equivalent to its usual inner product.
e It is clear that a, b, and ¢ are all continuous forms, that a is positive definite
(due to the hypotheses on K and K ), and that co is positive (since a > 0), so that
hypotheses (H1) and (H2) in Theorem 1.2 hold.

e To verify hypothesis (H3), we define the operator B by

and it follows easily that

Bu = (div up, div; 4y —uo -0, ),

| Bu||3; + ao(u,u) = ||divue||5 + ||div, Uy — UO -anz

+ (K51u07“0)o + ((K,Y(S)_lu.y,u,,)v > BH’U'H%

for some 3 > 0, again because of the lower bounds on Ko and K.
e Last, to check (H4), we proceed as in Theorem 2.1, and use Green’s formula for

weX and pe H(O,7).

bo(u, 1) = (div uo, 110) o + (divs uy —uo 1y, 15)

=—(vo, Vio)o + (UO 'nl'w/“?)nY - (uvvvfﬂv)y - ("(9 'n\vvﬂv)w

from which the proof of the theorem follows. d

4.3. The interface problem. As for the GTP-Schur method, we derive an
interface problem which in this case is associated with Ventcell-to-Robin transmission

conditions (4.3)—(4.4).

Towards this end, we define the following Ventcell-to-Robin

operator S*®, which depends on the parameter «, for i = 1,2; j = (3 — i):

SV L0, T5 L2(y)) x L2(0,T5 L2(S%)) x Hy () x Hy(7)

SZ‘VtR(a’ya q,Po, qu)

—  L*(0,T; L*(v)),
= —U; "My + QDj ~,s

where (pi, %;, Pi v, Uy,;) is the solution of the subdomain problem with Ventcell bound-

ary conditions
(4.10)

—U; -N; + ap;y + Syatpiﬁ + div, Uy,i = HV

$iOp; +divu; =q in Q; x (0,7,
u;, = —Kini m Ql X (O,T),

on~y x (0,7,

Uy, = —K 0V,p;, invyx(0,T),

pi=0 on (8(21ﬁ8 )X(O,T),
Diy =0 on 0y x (0,7,
pi(-,0) = po in €,
Piy(0) = poy in 7.
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The interface problem with two Lagrange multipliers is then

97,1 — S;/tR(quZa q2, p0727p0,v)7

(4.11)
0y0 =SV ™®(0,.1,q1,P0,1,P0,~)

on~vy x (0,7),

or equivalently

9771 - S;/tR(a’y,Qa 07 07 0) = S;/tR(Oa (]27]70,%19077);

(4.12)
9%2 - SYtR(a'y,la 07 07 O) = SYtR(Oa (]17]90,1ap077)

on~y x (0,7).

The discrete counterpart of this problem can be solved iteratively using Jacobi iter-
ations or GMRES. The former choice yields an algorithm equivalent to the OSWR
algorithm for the reduced fracture model (2.3)-(2.4) and is written as follows: starting

with an initial guess Hg’j, j=3—1,on~vyx(0,T) for the first iteration,
—ul -n; +a p% + svatp?ﬁ + div, ugﬂ. = 9273"
then at the kth iteration, k = 1,..., solve in each subdomain the time-dependent
problem, for ¢ = 1,2; j = (3 — 1),
(4.13)
Siatpf + div uf = q; in Ql X (0, T),
uf = —K,Vp? in Q; x (0,7),
—uf -n; +apf ., + s,0ipf ., + dive ub ;= 957}1 on~y x (0,T),
u,’jl = —KfJ(SVTpﬁ on vy x (0,7),
Pt =0 on (0Q; NON) x (0,T),
Py, =0 on dy x (0,T),
P (- 0) = po in €,
P (50) = posy in 7,
with 05;1 = —'u,?_l -n; + ozp?;l on v x (0,7).

The convergence of algorithm (4.13) depends on the choice of the parameter «.
Thus we extend the analysis for the convergence factor of the OSWR algorithm derived
in the case without fractures [6, 19, 32] to this algorithm, and from that one can
calculate the optimal or optimized values of the parameter «.

4.4. Convergence factor formula for computing the optimized param-
eter. In this section, we extend the two domain analysis [6, 25, 28, 32, 39] to derive
the convergence factor of the OSWR algorithm introduced in section 4.3 for a reduced
fracture model for compressible flow. Towards this end, we consider the two half-space
decomposition _ =R~ xR, O, = RT x R and write the OSWR algorithm, applied
to the fractured model, in the primal formulation: at the kth Jacobi iteration, solve
(4.14)

s_dipk + div (~K_Vpk) = ¢ in Q- (0,7),
op* k k . k 3plffl ol
~ o TPt + 5,0t + dive (—Kpr0Vpl) = Ky ——+apl;
on~y x (0,7),
PE(,0) =po in Q-
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and
(4.15)
s+ Ok +div (-K_Vpk) = ¢ in Q4 x (0,7),
opl; k k : k opt! k—1
K+% +apy + 5,0p +div, (—K;:0V.pl) = K_ o, +ap™
on~y x (0,7,
Ph(,0) =po in Qy,

where v = {& = 0} is the fracture. We assume that the permeability is isotropic:
Kpm = ﬁiI and Kf;,— = ﬁf,

where I is the 2D identity matrix, and that the solution of the problem decays at
infinity. As the problem is linear, we only consider ¢ = 0 and py = 0, and analyze
the convergence of (4.14)-(4.15) to the zero solution. We use a Fourier transform
in time and in the y direction with parameters w and 7, respectively, to obtain the
Fourier functions p% in time ¢ and y of p%, as the solutions to the ordinary differential
equation in x

9%p

—ﬁ@ + (siw + &n*) p = 0.
Thus
p=Am.w)e” "+ Bg,w)e" ",
where 7% are the roots of the characteristic equation
—Rr? + (siw + ﬁnQ) =0,
SO
rE = :l:\2/—§, A = 48 (siw + An?) .

Here and throughout this paper, we use the square root symbol Vv to denote the
complex square root with positive real part. In order to work with at least square
integrable functions in time and space, we look for solutions which do not increase
exponentially in z. Since ®*r*t > 0 and Rr~ < 0, we obtain

= Ak (g w)er” -
f)+ — Bk(n’w)erf(s+,ﬁ+,n,w)z.

Substituting these formulas into the transmission conditions on the interface v x (0,T)
(i.e., the second equations of (4.14) and (4.15)), we find
(4.16)

(RorT(s—, R, n,w) + a+ syiw + Keon?)  pF(0,n,w)

= (ﬁ+7"_ (S+7 R-i-v , OJ) + Oé) ﬁiﬁl(oa nvw)v
(_R-i-r_ (S+a ﬁ-’—a m, LU) +a+ S’)’iw + j/%f5772) ﬁﬁ— (07 , OJ)
= (_ﬁ*TJr(S*? ﬁ*? 7, OJ) + a) ﬁﬁil(oa 7, OJ).
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From (4.16) using induction and using ¢ to denote s-iw + £7n?, we obtain

2k} 0 ) ? 7 2k—1 0
7 ) )

_( R-l-r (S+7R+an7w)+a ) < _R—T+(S—aﬁ—anvw)+a )
a - rJr(S* ﬁfvnaw)—’—a—’_c _ﬁ+r7(s+aﬁ+7naw)+a+<

PF2(0,m,0)
:pfpf(oanvw)v

where

_( R+7"_(3+7ﬁ+a777w)+04 ) < _R—T+(S—aﬁ—anvw)+a )
e ﬁ*r+(877ﬁ77n7w)+a+< _ﬁ+r7(s+aﬁ+7naw)+a+<)

is the convergence factor of the algorithm (4.14)—(4.15). Similarly, we obtain

2k k0

p+ (07 , w) = pfp+ (07 7, OJ).
Thus, we can calculate the parameter « in such a way as to minimize this continuous
convergence factor:

(4.17) min < max ‘pf(s+,ﬁ+, s,ﬁ,a,n,w)‘) ,
>0 \ Inle[ £, 7] lwle[F. %]

where L is the length of the fracture, h is the spatial mesh size, T is the final time,

and At is the maximum time step of the discretization in time.

Remark 4.2. One could make use of the two-sided Robin as in [29]. In this
paper, the optimized one-sided Robin parameter works well since in the test case
we considered, the two subdomains €; and 5 (representing the rock matrix) have
similar physical properties (though a comparison of the performance of the one-sided
and two-sided Robin might be considered).

In our applications, the fracture is assumed to have much larger permeability
than the surrounding domain, which suggests that the time step inside the fracture
should be small compared with that of the surrounding matrix subdomains. As both
of the methods derived in sections 3 and 4 are global in time, i.e., the subdomain
problem is solved over the whole time interval before the information is exchanged
on the space-time interface, we can use different time steps in the fracture and in the
rock matrix. In the next section, we consider the semidiscrete problem in time with
nonconforming time grids.

5. Nonconforming discretization in time. Let 77,73, and 75 be three dif-

ferent partitions of the time interval (0,7 into subintervals J! = (tjn 1, te] for
m=1,...,M;, and i = 1,2, (see Figure 2). For simplicity, we consider uniform

partitions only, and denote by At;, i = 1,2,~ the corresponding time steps. Assume
that At, < At;, i = 1,2. We use the lowest order discontinuous Galerkin method
[10, 26, 46], which is a modified backward Euler method. The same idea can be
generalized to higher order methods.

We denote by Py(T;, L?(v)) the space of functions piecewise constant in time on
grid 7; with values in L2( ):

Py(Ti, L*(7)) = {¢: (0,T) — L?(7), % is constant on J V.J € T;}.

In order to exchange data on the space-time interface between different time grids,
we use, for i,j in {1,2,~}, the L? projection II;; from Po('ﬁ, Lz(v)) to Po(T;, L*(7)):
for v € Py(Ti, L*()), ILjivp| ;s is the average value of ¢ on J7,, for m =1,..., M;.

m.’
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Atl Af/g T = ]\/[1 Atl = A‘IZAZLZ = MyAtV

Ql Y Qg

F1G. 2. Nonconforming time grids in the rock matriz and in the fracture.

For the GTP-Schur method. The unknown A\ on the interface represents
the fracture pressure, thus A is piecewise constant in time on grid 75. In order to
obtain Dirichlet boundary data for solving subdomain problem (3.1), we project A
into Py(T;, L2(7)), for i = 1,2:

pi =1Ly (A) onvy, i=1,2.

The semidiscrete counterpart of the interface problem (3.2) is obtained by weakly
enforcing the fracture problem over each time subinterval of 7T, as follows:

et et 2
S’Y ()\erl — /\m) + /tm diVT ’U,Z),nJrl = /tm <Z H»ﬂ' (SZDtN (HZ’Y(/\)v qi,po,i)) ),
¥ o' =1
ul't = —K. 6V in v,
(5.1) At =0 on 9,
A0 = poy in 7,

where A" = Ajy, for m=0,..., M, — 1.
For a function piecewise constant in time ¢ on the fine grid 75, the semidiscrete
Neumann—Neumann preconditioner (still denoted by P;V%\,) is defined by

2
(5.2) PRl =Y il ((SP™) 7 (1, (9))
=1

where we have solved the subdomain problem with Neumann—Neumann data pro-
jected from 7, onto T;, i = 1,2, then extracted the pressure trace on the interface
and projected backward from 7; onto 7,. Thus the interface problem is defined on
the fracture time grid.

Remark 5.1. In the nonconforming semidiscrete (in time) case, we see from (5.2)
that Pziv%v is not strictly a preconditioner and may affect the accuracy of the scheme
due the projection operators used to define it. This is indeed what we observed in the
numerical experiments in section 6.

For the GTO-Schwarz method. In the GTO-Schwarz method, there are two
interface unknowns representing the linear combination of the fracture pressure and
some terms from the fracture problem. Thus we let 6, ; € Py(7, L*(7)), for j = 1,2.
In order to obtain Ventcell boundary data for solving the subdomain problem (4.7),
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we project 6, ; onto the 7;, for i =1,2; j =3 —1:
—u; - + ap; + 5,0:p; + divy uy =11;4(60, ;) onvy, i=1,2.

Remark 5.2. This setting is different from the case of usual domain decomposition
(without fractures) analyzed in [28, 29], where the two interface unknowns represent
the Robin data in each subdomain and thus are chosen to be constant on the associated
subdomain’s time grid, i.e., 6,; € Py(T;, L*(v)), for i = 1,2.

The semidiscrete-in-time counterpart of (4.11) is weakly enforced over each time

subinterval of the fracture time grid as follows: for all m =0, ..., M, — 1,
gt gt
/ 7 9%1 = / 7 o (S;[tR(HZV(HMZ)a QZ,pompo,v)) )
(5.3) = = on 7.

m+1 m+1
ty t

Oy = / ’ L,y (SY™ (14 (04,1), 41, P01, Po,))
tm tm

Remark 5.3. We point out that with the GTO-Schwarz method as with the
GTP-Schur method preconditioned by a Neumann—Neumann preconditioner (cf. Re-
mark 5.1), we cannot hope to gain in accuracy in the fracture by using a finer grid
in the fracture only since the fracture problem is actually solved on the coarser time
grids of the two subdomains. We will see this in the numerical experiments.

6. Numerical results. In all of the numerical experiments, for the spatial
discretization we use mixed finite elements with the lowest order Raviart—Thomas
spaces on rectangles [11, 45]. All errors given are global space-time errors in the
L?(0,T; L?(X))-norm, where the space X is either €;, i = 1,2 or 7.

Remark 6.1. The subdomain problem of the GTO-Schwarz method corresponding
to Ventcell boundary conditions is somewhat more complicated than that of GTP-
Schur method (problem (3.1)). Consequently, for solving problem (4.6), one needs
to introduce Lagrange multipliers (see, e.g., [11, 45]) on the interface to handle the
Ventcell conditions (representing the fracture problem).

We carry out some preliminary experiments to investigate the numerical perfor-
mance of the two methods proposed above. We consider the test case pictured in
Figure 3 where the domain is a rectangle of dimension 2 x 1 and is divided into
two equally sized subdomains by a fracture of width 6 = 0.001 parallel to the y
axis. The permeability tensors in the subdomains and in the fracture are isotropic:
K =8I, i=1,2, f, and K; is assumed to be constant. Here we choose £ = R; =1
and Ry = 103 (so that &76 = 1). A pressure drop of 1 from the bottom to the top
of the fracture is imposed. On the external boundaries of the subdomains a no flow
boundary condition is imposed except on the lower fifth (length 0.2) of both lateral
boundaries where a Dirichlet condition is imposed: p = 1 on the right and p = 0 on
the left. See Figure 3.

We consider a uniform rectangular mesh with size h = 1/100. In time, we fix
T = 0.5 and use uniform time partitions in the subdomains with time step At;,i = 1, 2,
and in the fracture with varying time step At,. We first consider the case with the
same time step throughout the domain, At; = Aty = At, = At =T/300.

In Figure 4, snapshots at different times of the pressure field and of the flow field
(on a coarse grid for visualization) are shown. The length of each arrow is proportional
to the magnitude of the velocity it represents and the red arrows represent the flow
in the fracture. We see that the flow field is a combination of flow in the fracture and
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Fic. 3. Geometry of the test case where the fracture is considered as an interface.

flow going from right to left in the rest of the porous medium and there is interaction
between them as some fluid flows out of the fracture (near the bottom) and some
flows into it (near the top at later times). Since £f > K;,7 = 1,2, the velocity is
much larger in the fracture than in the surrounding medium.

Next, in order to analyze the convergence behavior of both methods, we con-
sider the problem with homogeneous Dirichlet boundary conditions (i.e., the solu-
tion converges to zero). We start with a random initial guess on the space-time
interface-fracture and use GMRES as an iterative solver and compute the error in
the L?(0,T; L?(£2))-norm for the pressure p and for the velocity u. We stop the it-
eration when the relative error is less than 1075, We consider four algorithms: the
GTP-Schur method with no preconditioner, the GTP-Schur method with the local
preconditioner, the GTP-Schur method with the Neumann—Neumann preconditioner,
and the GTO-Schwarz method with the optimized Robin parameter. We compare
the convergence behavior of these four algorithms in terms of the number of itera-
tions. Note, however, that for the GTP-Schur method with the Neumann-Neumann
preconditioner the cost per iteration is roughly twice as large as that of the other
methods.

In Figure 5, the error curves versus the number of iterations are shown: the error
in p (on the left) and in w (on the right). We see that the GTP-Schur method with
no preconditioner (the blue curves) converges extremely slowly (after 500 iterations,
the error, both in p and in u, is about 10~1). The performance of the GTP-Schur
method with the local preconditioner (the green curves) is better but still quite slow:
it requires about 350 iterations to reach an error reduction of 10~%. The Neumann—
Neumann preconditioner (the cyan curves) further improves the convergence rate and
about 150 iterations are needed to obtain a similar error reduction. The GTO-Schwarz
method needs only six iterations to reduce the error to 10~% and thus the convergence
of the GTO-Schwarz method is much faster than that of the other algorithms (at least
by a factor of 25). This is due to the use of the optimized parameter a.. In Figure 6,
we show the error in u (in logarithmic scale) after ten Jacobi iterations for various
values of a. We see that the optimized Robin parameter (the red star) is located
close to those giving the smallest error after the same number of iterations. Also we
observe that the convergence can be significantly slower if « is not chosen well.

Next, we study the behavior of three of the algorithms when nonconforming
time grids are used. For this we again use the nonhomogeneous boundary conditions
depicted in Figure 3. In all cases, we consider equal time steps for the subdomains as
they have the same permeability: Aty = Aty = At,,. We examine three time grids
as follows:

e Time grid 1 (conforming coarse): At,, = Aty = T/100.
e Time grid 2 (nonconforming): At,, = 7/100 and Aty = T'/500.
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Fic. 4. Snapshots of the pressure field (left) and flow field (right) at t = T/300, t = T/4,
t="T/2, and t =T, respectively (from top to bottom,).
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Fic. 5. Convergence curves for the compressible flow: errors in p (on the left) and in u (on
the right); GTP-Schur method with no preconditioner (blue), with local preconditioner (green) and
with Neumann—Neumann preconditioner (cyan) and GTO-Schwarz method (red).
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FiG. 6. L2 welocity error (in logarithmic scale) after ten Jacobi iterations for various values
of the Robin parameter. The red star shows the optimized parameters computed by numerically
minimizing the continuous convergence factor.

e Time grid 3 (conforming fine): At,, = Aty = T'/500.

We start with a zero initial guess on the space-time interface and stop the GMRES
iterations when the relative residual is less than 107%. In Figure 7 we show the relative
residual versus the number of iterations for three schemes: the GTP-Schur method
with the local preconditioner, the GTP-Schur method with the Neumann—Neumann
preconditioner, and the GTO-Schwarz method with an optimized Robin parameter.
We see that the GTO-Schwarz method still performs better than the GTP-Schur
method, and the GTP-Schur method with the Neumann-Neumann preconditioner
still converges faster than with the local preconditioner. The convergence rate of both
the GTP-Schur method with the Neumann—Neumann preconditioner and the GTO-
Schwarz method are almost independent of the time grid (the number of iterations
does not change with the time grid) while that of the local preconditioner significantly
depends on the temporal grid in the fracture. We also notice that the behavior of
all three methods in the cases of nonconforming and conforming fine grids are very
similar.
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Fia. 7. Relative residual with GMRES for different time grids: GTP-Schur method with the lo-
cal preconditioner (green), GTP-Schur method with the Neumann—Neumann preconditioner (cyan),
and GTO-Schwarz method (red).

Now we analyze the error (in time) of the three algorithms for each of the three
time grids. A reference solution is obtained by solving problem (2.3)—(2.4) directly on
a very fine time grid At = 7/2000. The L? — L? error of the difference between the
multidomain and the reference solutions at each iteration is computed. We distinguish
two different errors: error in the rock matrix L2(0,T; L2(€;)),i = 1,2, and error in the
fracture L?(0,T; L*(7y)). Figures 8 and 9 show the pressure error in the subdomains
and in the fracture, respectively.

We first observe that the error in the subdomains after convergence (Figure 8) in
the nonconforming case (Time grid 2) is equal to that in the conforming coarse case
(Time grid 1) for all three algorithms. This is as expected as we use the same time
step At,, = T/100 in the matrix for both of these grids. However, as already pointed
out in Remark 5.3, though one might hope that the error in the fracture (Figure 9) in
the nonconforming case is close to that in the conforming fine grid case (Time grid 3),
this can only be the case for the GTP-Schur method with the local preconditioner.
Only for this case do we actually solve the fracture problem on the fine grid. For
the other algorithms, the fracture error of the nonconforming case is equal to that of
the conforming coarse grid instead (see Remark 5.1). However, none of the methods
deteriorates the accuracy because of nonconforming time grids.

Remark 6.2. While the GTO-Schwarz method does not make it particularly useful
to use a finer time grid in the fracture, it does give a rather remarkable convergence
speed. For the advection-diffusion problem with an explicit time scheme for advection,
one of the main advantages of using smaller time steps in the fracture is to avoid
imposing a time step in the two subdomains dictated by the CFL number of the
equation in the fracture. Thus we are hopeful that this algorithm will be useful when
coupled with the advection equation simply for the convergence speed that it gives.
We add, however, that we are still pursuing some ideas for modifying this scheme to
obtain an algorithm that can take advantage of smaller time steps in the fracture for
the diffusion equation.

Conclusion. We consider two domain decomposition methods for modeling the
compressible flow in fractured porous media in which the fractures are assumed to
be much more permeable than the surrounding medium. Two space-time interface
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F1G. 9. L? pressure error in the fracture: Time grid 1 (blue), Time grid 2 (magenta), Time
grid 3 (black).

problems are formulated using the time-dependent Dirichlet-to-Neumann and the
Ventcell-to-Robin operators, respectively, so that different time discretizations in the
subdomains and in the fracture can be adapted. For the GTP-Schur method, two dif-
ferent preconditioners—the local and the Neumann-Neumann preconditioners—are
considered and are first validated for a simple test case with one fracture. For the
GTO-Schwarz method, the optimized parameter is used to accelerate the convergence
of the associated iterative algorithm. Preliminary numerical experiments show that
the GTO-Schwarz method converges much faster than the GTP-Schur method (with
either preconditioner) in terms of the number of iterations. The Neumann-Neumann
preconditioner works better than the local preconditioner in the sense that its conver-
gence is faster and is only weakly dependent on the mesh size of the discretizations.
The GTO-Schwarz method also has a weak dependence on the mesh size. When non-
conforming time steps are used, only the local preconditioner preserves the accuracy
in time: the L? error in the fracture of the nonconforming time grid is close to that
of the conforming fine grid. For the other algorithms, the L? error in the fracture of
the nonconforming time grid is close to that of the conforming coarse grid instead.
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However, for the GTO-Schwarz method, this weak point when different time steps are
used is compensated by the fast convergence of the algorithm.

The GTP-Schur and GTO-Schwarz methods extend readily to the case of many
nonintersecting fractures corresponding to a decomposition of the domain into strips
(each strip being a subdomain). In the case of more complex configurations, with
intersections between fractures, the Steklov—Poincaré method has been studied in
[2] for stationary problems, and such an approach extends easily to a global-in-time
method. For the GTO-Schwarz method, the situation is more complex: corners at
the intersection of two or more fractures make solving the local Ventcell problems
less obvious. We plan to look at techniques such as the NICEM method of [33] for
handling this case.

Appendix A. Proof of Theorem 1.2. We now give the proof of Theorem 1.2.
The proof of the theorem is based on the Galerkin method, and its main steps will be
given after the following lemma, which states the main energy estimates.

Remark A.1. The proof of Lemma A.2 is given in the infinite dimensional setting
but some technical points (those involving u at time ¢ = 0) can only be defined using
their finite dimensional Galerkin approximations (as was done in detail for Dirichlet
and Robin boundary conditions in [28]). The results presented below have to be
understood in that sense.

LEMMA A.2. Under assumptions (H1), (H2), and (H4) above, the following a
priori estimates hold:

1217 0,700y < C (1L 200701y + D0l 31

( )
(A1) ||'U'HL2(OTE ) < ELLz(OTM) + Ilpol%, %

Hatp||L2(0 oy < C ||LHL2(0 7)) T Dol
| Bul3=o.zar) < C (1L 20,70 + Ip0ll )

where we recall that ¥, denotes the space ¥ with the norm induced by the bilinear
form a.

Proof. As usual we proceed by estimating successively p, u, and Op.

e First, to derive an estimate for p, we take p(t) € M and u(t) € ¥ as the test
functions in (1.1) and add the two equations to obtain

a(u,u) +c(p,p) + (O, p)m = L(p).
Using the Cauchy—Schwarz inequality, we see that

1d
2dt

Now integrating (A.2) over (0,¢) for t € (0,7, we find

(A.2) =PIl + e(pp) + lul%, < (IILH?w+ lIp3) -

t t t
Hp(t)l\?w+2/ C(p,p)+2/ lull%, < lIpolls + I1L11 200,750 +/ D113
0 0 0

Then we use the nonnegativity of ¢ and apply Gronwall’s lemma to obtain the first
two estimates in (A.1)

P13 < 0.0y < € (IPoli3s + 1 L1320, 700) )
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and
(A.3) ull320, 75,y < C (1Pl + IL132 00700 -

e Next, to estimate d;p, we differentiate the first equation of (1.1) with respect to ¢
and take u as a test function. This yields

(A4) a(Owu,u) — b(u, Orp) = 0.
Then taking d;p as a test function in the second equation of (1.1), we see that
(A.5) (Orp, Oip)as + c(p, Oip) + b(u, yp) = L(Ovp).
Now adding (A.4) and (A.5), we obtain
a(Owu,u) + (Owp, Orp) M + c(p, Orp) = L(Owp)

or

1d 1d 1 1
A. 2 - - 2 < Z\ILI2 - 2
(A.6) 19epllas + 5 7e(p,p) + 5 llulls, < UL + S0l

Integrating this inequality over (0,t) for ¢ € (0,7, we have

t
(A7) /0 10:pl13s + c(p(t), (1)) + lu()II5, < ILIZ2 0z + Cellpollir + [u(O)%,,

where C. is the constant of continuity of the bilinear form ¢. There remains to bound
the term |lu(0)||3, . Toward this end, we use the first equation of (1.1) with v = u
and for t = 0:

a(u(0),u(0)) = b(u(0), po).
The (regularity) assumption that pg € W enables us to write
[w(0)lls. < Cyllpollw,

and, as ¢(p(t),p(t)) > 0, this gives the third inequality in (A.1).

e We now derive the last estimate. For this, we take p = Bu as the test function
in the second equation of (1.1),

(Osp, Bu)nr + c(p, Bu) + b(u, Bu) = (L, Bu) v,
which we rewrite as
1
|Bull3; = (L — 9p, Bu)yr — c(p, Bu) < C (|| L||3; + 19ep]13, + Ipll3s) + §HBUH?\47

and the fourth inequality then follows by integrating in time and using the previous
inequalities, which completes the proof of the lemma. O

We now give the proof of the theorem.

Proof. We first prove an estimate for ||ul|s;, which follows easily from the second
and fourth inequalities in Lemma A.2 and hypothesis (H3):

T
(A8)  Blulfaors <C / (lulld, +1Buls) < € (1132070 + Ipoliy ) -
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Note that this is the only place in the proof where (H3’) was used. Lemma A.2 is
independent of this hypothesis.

With the a priori estimates from Lemma A.2 and (A.8), the proof is concluded

by using Galerkin’s method. d
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