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COUPLING PARAREAL WITH OPTIMIZED SCHWARZ
WAVEFORM RELAXATION FOR PARABOLIC PROBLEMS\ast 

DUC QUANG BUI\dagger , CAROLINE JAPHET\dagger , YVON MADAY\ddagger , AND PASCAL OMNES\S \dagger 

Abstract. We propose and analyze a new parallel paradigm that uses both the time and the
space directions. The original approach couples the Parareal algorithm with incomplete optimized
Schwarz waveform relaxation (OSWR) iterations. The analysis of this coupled method is presented
for a one-dimensional advection-reaction-diffusion equation. We also prove a general convergence
result for this method via energy estimates. Numerical results for two-dimensional advection-diffusion
problems and for a diffusion equation with strong heterogeneities are presented to illustrate the
performance of the coupled Parareal-OSWR algorithm.
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1. Introduction. The Parareal algorithm is a time-parallel method that was
proposed by Lions, Maday, and Turinici [28] to solve evolutionary problems in parallel.
The algorithm is constructed using two solvers: the coarse solver, which is fast but
not very accurate, and the fine solver, which is slower but more accurate. The long
time interval is divided into smaller windows, and the fine solver is performed on
each window, using some input initial conditions. The outputs are then corrected
by the coarse solver and used as the inputs for the next iteration. In the most
simplified convergence analysis, the initial value problem was considered to be an
ordinary differential equation (ODE), the fine solver was exact, and the coarse solver
was the Backward Euler method; in that analysis the outputs were computed exactly
and so was the error. More complex analyses of the performance of Parareal were
also achieved: for nonexact fine solvers for ODEs [5, 4], for linear ordinary and partial
differential equations [18]; for the nonlinear case [11]; for improvement of the parallel
efficiency [32].

In the construction of Parareal, one may choose suitable coarse and fine solvers
to accelerate the process, for example by using an iterative method like, e.g., the
Schwarz waveform relaxation (SWR) method [17]. As Parareal itself is also an iterative
method, the overall process would then be composed of outer iterations (Parareal)
and inner iterations corresponding to the coarse and fine solvers. In order to save
CPU resources, we might think of stopping the inner iterative solvers after a small
number of iterations, well before convergence, and hope that the overall convergence
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could be carried through Parareal iterations. This idea was first raised in [33] for
general iterative methods; it was then developed for some iterative methods: for the
Jacobi method (see [36]), for SWR methods (see [20, 15]). In this contribution, we
are more interested in the latter, which will be recalled next.

SWR algorithms are based on a spatial domain decomposition. The spatial do-
main is decomposed into overlapping or nonoverlapping subdomains; then the original
problem is transformed into multidomain space-time subproblems. Starting from ini-
tial fluxes on the space-time interfaces, each subproblem can then be solved in parallel
over the whole time range; then the data are exchanged through the interfaces to cre-
ate better fluxes. The transmission conditions for the fluxes play an important role
in the convergence process (especially for advection-reaction-diffusion problems) and
several possibilities can be used, e.g., Dirichlet [19], Robin [34, 35], [12], or Ventcell
[27, 21]. The last two types of conditions can be optimized [24, 26, 10], and in that
case the corresponding SWR method is called optimized Schwarz waveform relaxation
(OSWR). The OSWR method was introduced in [14] and analyzed and extended to
linear advection-reaction-diffusion problems in [34, 35]. While in the classical Schwarz
method, spatial fluxes are exchanged at each time step [10], the space-time fluxes in
the SWR or OSWR methods leave a wide range of choices for the discretization
method in the time direction in each subproblem, which is quite useful in practice
(see, e.g., [21, 22, 23]).

We now explain the suitability of the SWR method. On the one hand, the analy-
sis of this method, as well as its optimization, can be carried out directly at the
(continuous) PDE level, which yields insight which is completely independent from
the actual discretization that is used in practice. On the other hand, it can be run
in parallel (one processor for each subdomain), and this allows a two-level paral-
lelization process: one level in Parareal iterations, and the other in the SWR (or
OSWR) iterations. In addition, as we do not run the solvers until convergence, we
shall need to keep additional intermediate outputs from the solvers during Parareal
iterations: these outputs are fluxes on the interface. Coupling Parareal with SWR
with a Dirichlet transmission condition was proposed in [20, 15], and in [38] for the
Dirichlet--Neumann/Neumann--Neumann waveform relaxation method.

The purpose of this paper is to propose and analyze a coupled method, called a
Parareal-OSWR method [7, 8], that uses Parareal with incomplete OSWR iterations
(with optimized transmission conditions) for the fine propagator. We are not aware of
any convergence analysis of such method. While OSWR converges much faster than
Dirichlet SWR, it also amplifies the difficulties in the convergence analysis, which
cannot be performed using the same techniques as for Dirichlet SWR. We provide a
convergence analysis, based on energy estimates, for one-dimensional parabolic equa-
tions and Robin transmission conditions. Numerical experiments are shown in that
case, and also for two-dimensional parabolic equations, with Robin or Ventcel condi-
tions, and in the case where OSWR is accelerated by GMRES (see, e.g., [26, 9, 22, 2]).

Our paper is organized as follows. In section 2, we introduce the model problem
and state some stability and regularity properties of the solutions of this problem and
of the sub-space-time domain problems. In section 3 we recall the Parareal algorithm.
In section 4 we recall and extend some known results about the OSWR method,
which will be used for the analysis of the coupled method. In section 5, we introduce
the coupled Parareal-OSWR algorithm and prove a general convergence result for
the method via energy estimates in section 6. Finally, in section 8, one-dimensional
(1D) and two-dimensional (2D) numerical results, comparing the different methods
(OSWR, Parareal, and the coupled Parareal-OSWR algorithm), are discussed. In the
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1D case, a comparison is also given with the PSWR method introduced in [38].

2. Model problem. Denote \scrL u := \partial tu - \nu \partial xxu+a\partial xu+ bu, \Omega = \BbbR . For T > 0,
we consider the following problem:

\scrL (u) = f in \Omega \times (0, T ),(2.1a)

u(\cdot , 0) = u0 in \Omega ,(2.1b)

where \nu , a, and b are constants, with \nu > 0 and b \geq 0. The source term f and the
initial condition u0 will be specified in section 2.2.

2.1. Domain decomposition and notation. We consider a decomposition of
the domain \Omega into two nonoverlapping subdomains,

\Omega 1 = ( - \infty , 0), \Omega 2 = (0,+\infty ),

and introduce the Robin interface operator for i = 1, 2 as follows (see [30, 12]):

(2.2) \scrB 1 = \nu \partial x  - a

2
+

p

2
, \scrB 2 =  - \nu \partial x +

a

2
+

p

2
.

Then, problem (2.1) can be reformulated as the following equivalent multidomain
problem [31], with fi = f| \Omega i

, ui = u| \Omega i
, and u0,i = u0| \Omega i

, i = 1, 2:

\scrL ui = fi in \Omega i \times (0, T ),
ui(\cdot , 0) = u0,i in \Omega i,

(\scrB iui)(0, \cdot ) = \xi i on (0, T ),
i = 1, 2,(2.3)

with

(2.4) \xi i := (\scrB iuj)(0, \cdot ) on (0, T ), j = 3 - i, i = 1, 2.

In (2.3), the transmission condition involves the parameter p (through \scrB i defined
in (2.2)), which is a free parameter chosen such that (a) a Robin subdomain problem of
type (2.3) is well-posed, and (b) it leads to a fast converging algorithm (see section 4).
Both issues will be specified later.

In what follows we will use the notation \xi \xi \xi := (\xi 1, \xi 2) for the Robin data on (0, T )
associated with the solution u of (2.1).

2.2. Existence and regularity results. We introduce the spaces correspond-
ing to the subdomain problems,

\scrX i = H1(\Omega i), i = 1, 2, \scrY = H
1
4 (0, T ),

and the broken Sobolev space

\scrX := \{ u \in L2(\Omega ) : u| \Omega i
\in \scrX i\} ,

equipped with the norm \| u\| \scrX =
\bigl( \sum 

i \| u| \Omega i
\| 2\scrX i

\bigr) 1
2 .

With the Robin transmission conditions, we will need more regularity in our
analysis, in the anisotropic Sobolev spaces Hr,s(\Omega \times (0, T )) = L2(0, T ;Hr(\Omega )) \cap 
Hs(0, T ;L2(\Omega )) defined in [29].

We recall below some useful regularity properties from [30].



916 D. Q. BUI, C. JAPHET, Y. MADAY, AND P. OMNES

Lemma 2.1 (regularity of problem (2.1)).1 If u0 \in H1(\Omega ) and f \in L2(0, T ;L2(\Omega )),
problem (2.1) has a unique solution u in H2,1(\Omega \times (0, T )) and there exists a constant
C independent of u0 and f s.t.

\| u\| H2,1(\Omega \times (0,T )) \leq C(\| u0\| H1(\Omega ) + \| f\| L2(0,T ;L2(\Omega ))).(2.5)

Lemma 2.2 (regularity of problem (2.3)).2 Let i = 1 or i = 2. If u0,i \in \scrX i, \xi i \in \scrY ,
and fi \in L2(0, T ;L2(\Omega i)), problem (2.3) has a unique solution ui in H2,1(\Omega i \times (0, T ))
and there exists a constant C independent of u0, f , and \xi i s.t.

\| ui\| H2,1(\Omega i\times (0,T )) \leq C(\| u0,i\| \scrX i
+ \| fi\| L2(0,T ;L2(\Omega i)) + \| \xi i\| \scrY ).

Lemma 2.3 (trace theorem).3 If u \in H2,1(\Omega \times (0, T )), then u(\cdot , T ) \in \scrX , the
Robin traces verify (\scrB iu)(0, \cdot ) \in \scrY , i = 1, 2, and there exists a constant C s.t.4

\| (\scrB iu)(0, .)\| \scrY \leq C\| u\| H2,1(\Omega \times (0,T )), i = 1, 2.

Similar estimates hold by replacing \Omega by \Omega i, u by ui, and \scrX by \scrX i, for i = 1, 2.

3. Parareal method. The Parareal method introduced in [28] is a numerical
method designed to solve evolution problems in parallel. It is based on a decomposition
in time of (0, T ) into subintervals: (0, T ) = \cup N - 1

n=0 \scrI n, with \scrI n = (Tn, Tn+1), for
0 \leq n \leq N  - 1, and 0 = T0 < T1 < \cdot \cdot \cdot < TN - 1 < TN = T. Over each such interval
generically noted as \scrI := (t0, t1), it uses two propagation operators:

\bullet \scrG (\scrI , U0) that provides a rough approximation of u(\cdot , t1), where u is the solu-
tion of (2.1), with initial condition u(\cdot , t0) = U0.

\bullet \scrF (\scrI , U0) that provides a more accurate approximation of u(\cdot , t1).
For simplicity, we will consider a regular decomposition of (0, T ), i.e., such that,
\forall n \in J0, N  - 1K, Tn+1  - Tn = \Delta T . The plain Parareal algorithm [28] is as follows.

Algorithm 3.1 (Parareal).

Choose initial datum (U0
n)n\in J0,NK with U0

0 = u0 and U0
n an approximation of

u(\cdot , Tn), for example : U0
n := \scrG (\scrI n - 1, U

0
n - 1), for n = 1, 2, . . . , N .

for k = 0, 1, . . . (Parareal iterations) do
Set Uk+1

0 = u0 and perform the correction iterations

Uk+1
n+1 = \scrG (\scrI n, Uk+1

n ) + \scrF (\scrI n, Uk
n) - \scrG (\scrI n, Uk

n), n = 0, 1, . . . , N  - 1.(3.1)

end for

We denote by un the solution of the (sequential) fine propagator at time Tn:

un = \scrF ((0, Tn), u0), un = \scrF (\scrI n - 1, un - 1) \forall n \in J1, NK.

In practice, \scrF will be close to exact, and thus, for the analysis presented here, we
suppose that \scrF is the exact propagator, i.e., \scrF ((t0, t1), \~u0) = \^u(t1), where \^u is the
solution of (2.1a) with initial condition \~u0 at t = t0. In particular, we can identify un

with u(\cdot , Tn), where u is the solution of (2.1).

1See [30, Theorem 6.2] (extended to \BbbR in space), with m = 1 and r = 0.
2See [30, Theorem 6.2] (extended to \BbbR in space), with m = mj = 1 and r = 0.
3See [30, Theorem 2.1] with r = 2 and s = 1.
4Note that we have a better result: u(\cdot , T ) \in H1(\Omega ).
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4. Optimized Schwarz waveform relaxation method. The OSWR algo-
rithm [13, 14, 35] for solving problem (2.1) is a space-time parallel method based on
a domain decomposition in space only,

\Omega 1 = ( - \infty , 0), \Omega 2 = (0,+\infty ).

Let \scrI = (0, T ), \scrV i = L2(\Omega i \times (0, T )), and I+ be the set of intervals of \BbbR +. The
method solves iteratively subproblems on \Omega 1 \times \scrI and \Omega 2 \times \scrI , exchanging space-time
boundary data5 through the Robin operators \scrB 1 and \scrB 2 (defined in (2.2)), where the
parameter p is chosen to optimize the convergence factor of the algorithm.

The method is thus defined using a subproblem solution operator and a trans-
mission operator: for i = 1, 2,

\bullet the solution operator\scrM i(\scrI , f, u0,i, \xi i), i = 1, 2, that maps the available Robin
condition \xi i, the initial condition u0,i, and source term f to the subdomain
solution ui,

(4.1) \scrM i :
I+ \times \scrV i \times H1(\Omega i)\times \scrY \rightarrow H2,1(\Omega i \times \scrI ),

(\scrI , f, u0,i, \xi i) \rightarrow ui,

where ui is the solution of the following Robin problem in \Omega i \times \scrI :

\scrL ui = f in \Omega i \times \scrI ,
ui(\cdot , 0) = u0,i in \Omega i,

(\scrB iui)(0, \cdot ) = \xi i on \scrI ,
i = 1, 2,(4.2)

\bullet the transmission operator \scrB i, i = 1, 2, that maps the available neighbor
subdomain solution uj \in H2,1(\Omega j \times \scrI ), j = 3 - i, to new Robin datum \xi i \in \scrY 
: \xi i = (\scrB iuj)(0, \cdot ) on \scrI .

Using the definition of \scrM i, problem (2.3)--(2.4) can be rewritten as

ui = \scrM i(\scrI , f, u0,i, \xi i), i = 1, 2,(4.3a)

\xi i = (\scrB iuj)(0, \cdot ) on \scrI , j = 3 - i, i = 1, 2.(4.3b)

The OSWR algorithm for solving problem (4.3) (or equivalently (2.1)) is as follows.

Algorithm 4.1 (OSWR).

Choose initial Robin datum \xi \xi \xi 0 = (\xi 01 , \xi 
0
2) on \scrI , for example, \xi 0i = (\scrB iu0,i)(0, \cdot ), on

(0, T ), i = 1, 2.
for \ell = 1, 2, . . . (OSWR iterations) do
1. Solve the local space-time Robin problems by calculating

u\ell 
i = \scrM i(\scrI , f, u0,i, \xi 

\ell  - 1
i ), i = 1, 2.(4.4)

2. Update the Robin interface term \xi \xi \xi \ell = (\xi \ell 1, \xi 
\ell 
2), with

\xi \ell i = (\scrB iu
\ell 
j)(0, \cdot ) on \scrI , j = 3 - i, i = 1, 2.(4.5)

end for

5In the 1D case considered here, the interface is reduced to one point in space, thus the exchanged
data depend on time only.
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Remark 4.1. By definition of \scrM i and u\ell 
i in (4.4), the interface condition is

(4.6) (\scrB iu
\ell 
i)(0, \cdot ) = \xi \ell  - 1

i , i = 1, 2.

Then, from (4.5), and using that \scrB i =  - \scrB j + p, we obtain, for \ell \geq 1,

(4.7) \xi \ell i =  - \xi \ell  - 1
j + 2pu\ell 

j , j = 3 - i, i = 1, 2.

Let L \in \BbbN \ast . In what follows, we will denote in compact form

(4.8) (uL, \xi \xi \xi L) = OSWRL(\scrI , u0, \xi \xi \xi 
0),

where uL \in L2(\Omega \times \scrI ) with uL| \Omega i
= uL

i , i = 1, 2, and \xi \xi \xi L = (\xi L1 , \xi 
L
2 ) are the output

after L iterations of algorithm (4.4)--(4.5) with initial condition u0 and initial Robin
datum \xi \xi \xi 0 on \scrI (the dependency with f is omitted in (4.8), to simplify the notation).

4.1. Stability and convergence. We suppose that f \in L2(0, T ;L2(\Omega )). For
simplicity, we will use the notation \| \cdot \| for the L2-norm in \Omega or in \Omega i, i = 1, 2, and
\| \cdot \| \scrI for the (L2(\scrI ))2-norm.

Let (u\ell 
i , \xi 

\ell 
i ), i = 1, 2, be defined by (4.4)--(4.5). For the convergence analysis

below, we introduce the following notation for the errors, for i = 1, 2 and \ell \geq 1:

\zeta \ell i := \xi \ell i  - \xi i, where \xi i is defined in (2.4), and we set \zeta \zeta \zeta \ell := (\zeta \ell 1, \zeta 
\ell 
2),(4.9)

e\ell i := u\ell 
i  - u, where u is the solution of (2.1),(4.10)

e\ell := the function in L2(\Omega \times (0, T )) s.t. e\ell | \Omega i
= e\ell i , i = 1, 2.(4.11)

If u0 \in H1(\Omega ), a convergence analysis is done in [12]; we recall it in Theorem 4.2(i).
However, in the context of the coupled Parareal-OSWR method in section 5, incom-
plete iterations of the OSWR algorithm are performed at each Parareal iteration. This
implies that the new initial condition for the OSWR algorithm, through Parareal it-
erations, will no longer be in H1(\Omega ), but only in \scrX . Therefore, we need the following
extended result of Theorem 4.2(ii) below, which will be used to prove the convergence
of the coupled Parareal-OSWR method later. In that case, we suppose that the initial
condition of Algorithm 4.1, denoted now by \=u0, verifies \=u0 \in \scrX , and we introduce the
additional notation for the error at time t = 0:

e0 := \=u0  - u(\cdot , 0) and e0,i := e0| \Omega i
, i = 1, 2.

Theorem 4.2. Let L \in \BbbN \ast .
(i) If u0 \in H1(\Omega ) and \xi \xi \xi 0 \in \scrY 2, then, Algorithm 4.1 is well defined and we have

L\sum 
\ell =1

\Bigl( 
1
2\| e

\ell (., T )\| 2 +
\sum 
i

\| e\ell i\| 2L2(0,T,H1(\Omega i))

\Bigr) 
+ 1

2p\| \zeta \zeta \zeta 
L\| 2\scrI = 1

2p\| \zeta \zeta \zeta 
0\| 2\scrI .(4.12)

Hence, Algorithm 4.1 converges for p > 0 in L\infty (0, T ;L2(\Omega 1)) \cap L2(0, T ;H1(\Omega 1)) \times 
L\infty (0, T ;L2(\Omega 2)) \cap L2(0, T ;H1(\Omega 2)) to the solution u of (2.1).

(ii) If the initial condition of Algorithm 4.1 is \=u0 \in \scrX , and if \xi \xi \xi 0 \in \scrY 2, then
Algorithm 4.1 is well defined and we have

L\sum 
\ell =1

\Bigl( 
1
2\| e

\ell (., T )\| 2 +
\sum 
i

\| e\ell i\| 2L2(0,T,H1(\Omega i))

\Bigr) 
+ 1

2p\| \zeta \zeta \zeta 
L\| 2\scrI = L

2 \| e0\| 
2 + 1

2p\| \zeta \zeta \zeta 
0\| 2\scrI .(4.13)
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Proof. The proof of (i) is done in [12, Theorem 5.15]. Note that the energy
estimate (4.12) is a special case of (4.13) with e0 = 0.

Proof of (ii). We proceed by induction. We have u0,i \in \scrX i independently of \ell .
Moreover, let us suppose that \xi \ell  - 1

i \in \scrY (this is true for \ell = 1). Then from Lemma 2.2
we have u\ell 

i \in H2,1(\Omega i \times (0, T )). Then from Lemma 2.3, or using (4.7) and the trace
theorem, we have \xi \ell i \in \scrY ; thus Algorithm 4.1 is well defined.

The proof of the energy estimate (4.13) follows the same steps as in [12, Theo-
rem 5.15] and is detailed in section 9.

4.2. Optimized Robin parameters. In this section we give the methodology
to calculate the Robin parameter p involved in the OSWR method. This parameter
is chosen to optimize the convergence factor of the algorithm.

Recall that one challenge here is that in the context of the coupled Parareal-
OSWR method introduced later, the initial condition of Algorithm 4.1, through
Parareal iterations, is in \scrX . Thus we have to extend the calculation of the convergence

factor of [11, Lemma 5.7] (that was done for \zeta 0i \in 0H
3
4 (0, T )). This can be done by

extending \zeta 0i to a function \~\zeta 0i in H
1
4 (\BbbR ), from which we obtain \~\zeta \ell i \in H

1
4 (\BbbR ), \ell \geq 1

(by induction). Then the convergence factor is obtained by using Fourier transform
in time.

By linearity of \scrM i, from (4.3a) and (4.4), the error e\ell i := u\ell 
i  - u, i = 1, 2, at

iteration \ell of the OSWRmethod, satisfies e\ell i = \scrM i(\scrI , 0, 0, \zeta \ell  - 1
i ), with \zeta \ell  - 1

i = \xi \ell  - 1
i  - \xi i.

Equivalently, e\ell i is solution of the following problem:

\scrL e\ell i = 0 in \Omega i \times \scrI ,
e\ell i(\cdot , 0) = 0 in \Omega i,

(\scrB ie
\ell 
i)(0, \cdot ) = \zeta \ell  - 1

i on \scrI .
i = 1, 2,(4.14)

From (4.3b) and (4.5), we have \zeta \ell i = \scrB ie
\ell 
j(0, \cdot ), i = 1, 2, and thus the transmission

condition on \scrI in (4.14) also reads

(4.15) (\scrB ie
\ell 
i)(0, \cdot ) = (\scrB ie

\ell  - 1
j )(0, \cdot ) on \scrI , j = 3 - i, i = 1, 2.

In order to use the Fourier transform in time, we have to extend (4.14)--(4.15) to \BbbR .
We proceed by induction on \ell :

\bullet For \ell = 1, problem (4.14) has an initial Robin datum \zeta 0i \in \scrY that can be

extended to H
1
4 (\BbbR )6 to obtain a function denoted by \~\zeta 0i , vanishing on ( - \infty , 0), and

on (T,+\infty ), for i = 1, 2. Then we can extend (4.14) to \BbbR , and their solutions, denoted
by (\~e11, \~e

1
2), vanish on ( - \infty , 0) and coincide with (e11, e

1
2) on (0, T ).

\bullet For \ell \geq 1, if \ell = 1, then \~\zeta \ell  - 1
i is defined above; else we define the Robin

trace \~\zeta \ell  - 1
i := (\scrB i\~e

\ell  - 1
j )(0, \cdot ) on \{ 0\} \times \BbbR that vanishes on ( - \infty , 0) and coincides with

(\scrB ie
\ell  - 1
j )(0, \cdot ) on \{ 0\} \times (0, T ), for i = 1, 2. We assume that \~\zeta \ell  - 1

i \in H
1
4 (\BbbR ), i = 1, 2.

Let us now prove that \~\zeta \ell i belongs to H
1
4 (\BbbR ) for i = 1, 2.

The subdomain problems (4.14) are extended on \Omega i \times \BbbR as follows:

\scrL \~e\ell i = 0 in \Omega i \times \BbbR ,
\~e\ell i(\cdot , 0) = 0 in \Omega i,

(\scrB i\~e
\ell 
i)(0, \cdot ) = \~\zeta \ell  - 1

i on \BbbR ,
i = 1, 2,(4.16)

6See [29, Theorem 11.4], with s = 1
4
.
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and their solution vanish on ( - \infty , 0) and coincide with (e\ell 1, e
\ell 
2) on (0, T ). In particular,

for \ell \geq 2, by the definition of \~\zeta \ell  - 1
i above, (4.15) is extended on \{ 0\} \times \BbbR by

(4.17) (\scrB i\~e
\ell 
i)(0, \cdot ) = (\scrB i\~e

\ell  - 1
j )(0, \cdot ) on \BbbR , j = 3 - i, i = 1, 2.

Moreover, by energy estimates, we have \~e\ell i \in L2(\BbbR ;H1(\Omega i)) and, from the strong form
of the equation satisfied by \partial t\~e

\ell 
i , we deduce that \partial t\~e

\ell 
i \in L2(\BbbR ;H - 1(\Omega i)), i = 1, 2.

Thus, in what follows, we can use Fourier transform in time. Then, we solve in each
subdomain the ODE7

i\omega \^e\ell i  - \nu \partial xx\^e
\ell 
i + a\partial x\^e

\ell 
i + b\^e\ell i = 0, i = 1, 2,(4.18)

with the characteristic roots

r - =
a - 

\surd 
d

2\nu 
, r+ =

a+
\surd 
d

2\nu 
, d = a2 + 4\nu (b+ i\omega ),(4.19)

where
\surd 
d is the complex square-root with positive real part:

\surd 
d =

\sqrt{} 
\~d+ a2 + 4\nu b

2
+ i sign(\omega )

\sqrt{} 
\~d - a2  - 4\nu b

2
,

where \~d :=
\sqrt{} 
(a2 + 4\nu b)2 + 16\nu 2\omega 2. Thus, \scrR e(r+) > 0 and \scrR e(r - ) < 0, and the

solutions \^e\ell i \in L2(\Omega i), i = 1, 2, are given by8

\^e\ell 1 =
2\surd 
d+ p

\^\zeta \ell  - 1
1 (\omega )er

+x, \^e\ell 2 =
2\surd 
d+ p

\^\zeta \ell  - 1
2 (\omega )er

 - x, \ell \geq 1.(4.20)

Then, replacing (4.20) in the transmission conditions (4.17) leads to

(4.21) \forall \ell \geq 1,

\biggl( 
\^\zeta \ell 1
\^\zeta \ell 2

\biggr) 
=

\Biggl( 
 - 
\surd 
d+ p\surd 
d+ p

\Biggr) \biggl( 
\^\zeta \ell  - 1
2
\^\zeta \ell  - 1
1

\biggr) 
.

Thus, from (4.21) we have, for all \omega \in \BbbR , and for \ell \geq 1,

| \^\zeta \ell i (\omega )| \leq | \^\zeta \ell  - 1
3 - i (\omega )| for i = 1, 2.

Using the induction hypothesis (i.e., \~\zeta \ell  - 1
i \in H

1
4 (\BbbR ) for i = 1, 2), the above inequality

implies that \~\zeta \ell i \in H
1
4 (\BbbR ) for i = 1, 2. Consequently, we get \~\zeta \zeta \zeta 

\ell 
\in (H

1
4 (\BbbR ))2, \forall \ell \geq 1.

Setting \^\zeta \zeta \zeta 
\ell 
:= (\^\zeta \ell 1,

\^\zeta \ell 2), from (4.21), we have

(4.22) \forall \ell \geq 2, \^\zeta \zeta \zeta 
\ell 
= \rho 0(\omega , p) \^\zeta \zeta \zeta 

\ell  - 2
, with \rho 0(\omega , p) :=

\Biggl( 
 - 
\surd 
d+ p\surd 
d+ p

\Biggr) 2

.

From (4.22), by induction on \ell we obtain

(4.23) \^\zeta \zeta \zeta 
2\ell 

= (\rho 0(\omega , p))
\ell \^\zeta \zeta \zeta 

(0)
\forall \ell \geq 1.

7Note that (4.18) is in the sense of distributions. Then (4.20) implies that (4.18) also holds in
the classical sense.

8Note that here the term ``\partial x"" in \scrB i is multiplied by \nu while this is not the case in [12]. Thus \^e\ell i
is slightly different here from the one of [12].
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From (4.23), the convergence factor of the algorithm is \rho 0(\omega , p), defined in (4.22).
While we have max\omega \in \BbbR | \rho 0(\omega , p)| = lim\omega \rightarrow \infty | \rho 0(\omega , p)| = 1, we can use the con-

tinuous convergence factor \rho 0(\omega , p) to calculate an efficient Robin parameter for the
discrete setting (see, e.g., [26, 27, 35, 10, 12]).

Indeed, in numerical computations, the frequency \omega is bounded, i.e., we have
\omega min \leq \omega \leq \omega max, where \omega max = \pi 

\Delta t is the largest discrete frequency supported by
the numerical time grid, and \omega min = \pi 

T is the smallest frequency relevant to the global
time interval. Defining

\rho c(p) := max
\pi 
T \leq \omega \leq \pi 

\Delta t

| \rho 0(p, \omega )| ,

then the optimized Robin parameter pc is chosen such that it verifies

(4.24) \rho c(pc) = min
p>0

\rho c(p).

In practice, the minimization problem (4.24) is solved using the fminsearch function
in MATLAB.

5. Coupled Parareal-OSWR method. We set (0, T ) = \cup N - 1
n=0 \scrI n as in sec-

tion 3. Then the Parareal-OSWR algorithm is defined using the coarse propagator \scrG 
of section 3 and the incomplete9 fine propagator OSWRL defined by (4.8) as follows.

Algorithm 5.1 (coupled Parareal-OSWR).

1. Choose initial datum (U0
n)n\in J0,NK with U0

0 = u0 and U0
n an approximation of

u(\cdot , Tn), for example, U0
n := \scrG (\scrI n - 1, U

0
n - 1), for n = 1, 2, . . . , N .

2. Choose initial Robin datum (\xi \xi \xi 0,0n )n\in J0,N - 1K, with \xi \xi \xi 0,0n := (\xi 0,01,n, \xi 
0,0
2,n) on \scrI n, for

example, \xi 0,0i,n = (\scrB iU
0
n)(0, \cdot ), i = 1, 2.

for k =0,1,. . . (Parareal iterations) do
1. On each time interval \scrI n, n = 0, 1, . . . , N  - 1:

(5.1) Calculate (uk,L
n , \xi \xi \xi k,Ln ) = OSWRL(\scrI n, Uk

n , \xi \xi \xi 
k,0
n ).

2. Set Uk+1
0 = u0 and do Parareal corrections:

(5.2) Uk+1
n+1 = uk,L

n (\cdot , Tn+1) + \scrG (\scrI n, Uk+1
n ) - \scrG (\scrI n, Uk

n).

(5.3) Update the interface term: \xi \xi \xi k+1,0
n = \xi \xi \xi k,Ln .

end for

Remark 5.1. In (5.1), if L = \infty , then uk,L
n \in H1(\Omega ), \forall n \geq 0, k \geq 0. However, if

L < \infty and chosen small (e.g., L = 2), then uk,L
n \in \scrX , \forall n \geq 0, k \geq 0, but there is

very little chance that uk,L
n be in H1(\Omega ). Thus, using (5.2) and that u0 \in H1(\Omega ) \subset \scrX ,

we will have Uk
n \in \scrX , \forall n \geq 0, k \geq 0.

6. Convergence of the Parareal-OSWR algorithm. We will consider the
convergence in the L2(\Omega )-norm. As in section 4, \| \cdot \| will stand for the L2-norm in \Omega 

or in \Omega i, i = 1, 2, and \| \cdot \| \scrI the (L2(\scrI ))2-norm. Let \widetilde \scrG be the coarse propagator
associated to the source term f = 0. We have the following result.

9In the sense that L will be smaller than the number of iterations required for convergence.
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Theorem 6.1. We suppose that there exists a constant \gamma 1 such that

\| \widetilde \scrG (\scrI n, U)\| \leq \gamma 1\| U\| \forall U \in L2(\Omega ), \forall n = 0, 1, . . . , N.(6.1)

Then, when k \rightarrow \infty , Uk
n converges to u(., Tn) in L2(\Omega ). Moreover, when k \rightarrow \infty , uk,\ell 

i,n

converges to u| \Omega i\times [Tn,Tn+1] in L2(Tn, Tn+1, H
1(\Omega )) for all \ell = 1, 2, . . . , L.

In order to prove Theorem 6.1, we introduce the following notation.

Notation for error estimation. Let u be the solution of problem (2.1), and

let (uk,\ell 
n , \xi \xi \xi k,\ell n )1\leq \ell \leq L be the sequence of iterates through the OSWR step (5.1). We

define, for k = 0, 1, . . . and n = 0, . . . , N  - 1, the following:
\bullet Ek

n := Uk
n  - un, n = 0, . . . , N , where un = u(., Tn),

\bullet ek,\ell n := uk,\ell 
n  - u, the error in L2(\Omega \times \scrI n) at each iteration \ell inside step (5.1),

with ek,\ell i,n := ek,\ell n | \Omega i
, i = 1, 2, for \ell = 1, . . . , L,

\bullet \zeta \zeta \zeta k,\ell n := \xi \xi \xi k,\ell n  - \xi \xi \xi n, for \ell = 1, . . . , L, where \xi \xi \xi n = ((\scrB 1u)(0, \scrI n), (\scrB 2u)(0, \scrI n)).
Then, by linearity, the algorithm on the error reads as follows.

Algorithm 6.1 (coupled Parareal-OSWR algorithm on the error).

1. Define initial data (E0
n)n\in J0,NK with E0

0 = 0, E0
n := \scrG (\scrI n - 1, U

0
n - 1)  - un, where

U0
0 = u0, n = 1, 2, . . . , N .

2. Define initial Robin datum (\zeta \zeta \zeta 0,0n )n\in J0,NK, with \zeta \zeta \zeta 0,0n := (\zeta 0,01,n, \zeta 
0,0
2,n) on \scrI n, where

\zeta 0,0i,n = (\scrB iE
0
n)(0, \cdot ), i = 1, 2.

for k = 0, 1, . . . (Parareal iterations) do
1. On each time interval \scrI n, n = 0, 1, . . . , N  - 1:

(6.2) Calculate (ek,Ln , \zeta \zeta \zeta k,Ln ) = OSWRL(\scrI n, Ek
n, \zeta \zeta \zeta 

k,0
n ).

2. Set Ek+1
0 = 0 and do Parareal correction:

(6.3) Ek+1
n+1 = ek,Ln (\cdot , Tn+1) + \widetilde \scrG (\scrI n, Ek+1

n  - Ek
n).

(6.4) Update the interface term: \zeta \zeta \zeta k+1,0
n = \zeta \zeta \zeta k,Ln .

end for

The proof of Theorem 2.1 relies on the OSWR estimate (4.13) with e0 = Ek
n (from

incomplete iterations) and \zeta \zeta \zeta \ell = \zeta \zeta \zeta k,\ell n . Then summing with respect to k, the terms with

\zeta \zeta \zeta k,\ell n are treated using the update \zeta \zeta \zeta k+1,0
n = \zeta \zeta \zeta k,Ln (see Lemma 6.2), and the terms with

Ek
n are treated using hypothesis (6.1) and proving the new estimate of Lemma 6.3.

Lemma 6.2. For all n \in J0, N  - 1K, we have

K\sum 
k=0

\| ek,Ln (., Tn+1)\| 2 \leq L

K\sum 
k=0

\| Ek
n\| 2 + 1

p\| \zeta \zeta \zeta 
0,0
n \| 2\scrI n

.(6.5)

Proof. Step (6.2) is the OSWR method on \scrI := \scrI n, with initial condition Ek
n \in \scrX 
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(see Remark 5.1). Thus, from (4.13) with e0 := Ek
n, e

\ell 
i := ek,\ell i,n, \zeta \zeta \zeta 

\ell := \zeta \zeta \zeta k,\ell n , we obtain

L\sum 
\ell =1

\Bigl( 
1
2\| e

k,\ell 
n (., Tn+1)\| 2 +

\sum 
i

\| ek,\ell i,n\| 
2
L2(Tn,Tn+1;H1(\Omega i))

\Bigr) 
+ 1

2p\| \zeta \zeta \zeta 
k,L
n \| 2\scrI n

= L
2 \| E

k
n\| 2 + 1

2p\| \zeta \zeta \zeta 
k,0
n \| 2\scrI n

.

Moreover, in our algorithm, from (6.4) we have \zeta \zeta \zeta k+1,0
n = \zeta \zeta \zeta k,Ln ; thus

L\sum 
\ell =1

\Bigl( 
1
2\| e

k,\ell 
n (., Tn+1)\| 2 +

\sum 
i

\| ek,\ell i,n\| 
2
L2(Tn,Tn+1;H1(\Omega i))

\Bigr) 
+ 1

2p\| \zeta \zeta \zeta 
k+1,0
n \| 2\scrI n

= L
2 \| E

k
n\| 2 + 1

2p\| \zeta \zeta \zeta 
k,0
n \| 2\scrI n

.

Summing with respect to k, from 0 to K, we get a telescopic sum on the interface,
and therefore

K\sum 
k=0

L\sum 
\ell =1

\Bigl( 
1
2\| e

k,\ell 
n (., Tn+1)\| 2 +

\sum 
i

\| ek,\ell i,n\| 
2
L2(Tn,Tn+1;H1(\Omega i))

\Bigr) 
+ 1

2p\| \zeta \zeta \zeta 
K+1,0
n \| 2\scrI n

= L
2

K\sum 
k=0

\| Ek
n\| 2 + 1

2p\| \zeta \zeta \zeta 
0,0
n \| 2\scrI n

,(6.6)

from which we obtain (6.5).

Lemma 6.3. We suppose that \widetilde \scrG satisfies (6.1). Then, for all n \in J0, N  - 1K,

K\sum 
k=0

\| Ek+1
n+1\| 2 \leq 8\gamma 2

1

K+1\sum 
k=0

\| Ek
n\| 2 + 2

K\sum 
k=0

\| ek,Ln (., Tn+1)\| 2.(6.7)

Proof. Using the triangle inequality in (6.3), and then (6.1), we get

\| Ek+1
n+1\| 2 \leq 2\| \widetilde \scrG (\scrI n, Ek+1

n  - Ek
n)\| 2 + 2\| ek,Ln (., Tn+1)\| 2,

\leq 2\gamma 2
1\| Ek+1

n  - Ek
n\| 2 + 2\| ek,Ln (., Tn+1)\| 2,

\leq 4\gamma 2
1

\bigl( 
\| Ek+1

n \| 2 + \| Ek
n\| 2
\bigr) 
+ 2\| ek,Ln (., Tn+1)\| 2.

Then, summing with respect to k, from 0 to K, we have

K\sum 
k=0

\| Ek+1
n+1\| 2 \leq 4\gamma 2

1

K\sum 
k=0

\bigl( 
\| Ek+1

n \| 2 + \| Ek
n\| 2
\bigr) 
+ 2

K\sum 
k=0

\| ek,Ln (., Tn+1)\| 2,

from which we deduce (6.7).

With these lemmas, we can now prove Theorem 6.1

Proof of Theorem 6.1. From Lemmas 6.2 and 6.3, we get

K\sum 
k=0

\| Ek+1
n+1\| 2 \leq 8\gamma 2

1

K+1\sum 
k=0

\| Ek
n\| 2 + 2L

K\sum 
k=0

\| Ek
n\| 2 + 2

p\| \zeta \zeta \zeta 
0,0
n \| 2\scrI n

.
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Setting \gamma 2 = 8\gamma 2
1+2L and Rn = \| E0

n+1\| 2+ 2
p\| \zeta \zeta \zeta 

0,0
n \| 2\scrI n

, we can rewrite this inequality as

K+1\sum 
k=0

\| Ek
n+1\| 2 \leq \gamma 2

K+1\sum 
k=0

\| Ek
n\| 2 +Rn, n \in J0, N  - 1K.

From this inequality, by induction, we obtain

K+1\sum 
k=0

\| Ek
n+1\| 2 \leq \gamma n+1

2

K+1\sum 
k=0

\| Ek
0 \| 2 +

n\sum 
j=0

\gamma j
2Rn - j , n \in J0, N  - 1K.

Using that Ek
0 = 0, \forall k \geq 0, we finally obtain

K+1\sum 
k=0

\| Ek
n+1\| 2 \leq 

n\sum 
j=0

\gamma j
2Rn - j , n \in J0, N  - 1K.(6.8)

Since the right-hand side of (6.8) does not depend on K, this shows that, for a given

n \in J0, NK, the sum
\sum K

k=0 \| Ek
n\| 2 is bounded with respect to K. Hence Ek

n converges
to 0 in the L2(\Omega )-norm when k \rightarrow \infty . Moreover, from inequality (6.6), we obtain, for
all \ell = 1, 2, . . . , L,

K\sum 
k=0

\| ek,\ell i,n\| L2(Tn,Tn+1;H1(\Omega i)) \leq 
L

2

K\sum 
k=0

\| Ek
n\| 2 + 1

2p\| \zeta \zeta \zeta 
0,0
n \| 2\scrI n

.

As the sum in the right-hand side of the above inequality is bounded with respect to
K, then the sum in the left-hand side is also bounded with respect to K. Hence, ek,\ell i,n

tends to 0 in L2(Tn, Tn+1;H
1(\Omega i)), i.e, u

k,\ell 
i,n \rightarrow ui,n in L2(Tn, Tn+1;H

1(\Omega i)), for any
\ell .

Remark 6.4. Note that assumption (6.1) is very weak, as we do not require the
Lipschitz constant to be strictly lower than 1.10

Remark 6.5. The proof of convergence of the nonoverlapping Parareal-OSWR
algorithm in Theorem 6.1 (using energy estimates) is done with Uk

n \in \scrX for all n \geq 0,
k \geq 0 (see Remark 5.1). This result is obtained without any correction on Uk

n so that
it is more regular (i.e., in H1(\Omega )). Thus, in practice we do not need a correction on
Uk
n to have a convergent algorithm. Note that in the case of overlapping subdomains,

a correction step will be needed; see [7].

Remark 6.6. In Algorithm 5.1, a possible choice for the initial Robin datum on \scrI n
is to take \xi 0,0i,n = (\scrB iU

0
n)(0), i = 1, 2 (i.e., \xi 0,0i,n is constant on \scrI n). A better choice,

which improves the convergence of the Parareal-OSWR method, is to define V 0
n as a

linear interpolation between U0
n and U0

n+1, and then to take \xi 0,0i,n = (\scrB iV
0
n )(0), i = 1, 2.

Thus, in what follows the latter case will be considered.

7. Numerical results in one dimension. In this section, we consider prob-
lem (2.1) with \Omega = ]0, 1[ and Dirichlet boundary conditions at x = 0 and x = 1.
A regular advection-diffusion example is shown, and then an advection-dominated
one (where the Parareal method doesn't perform well). A cell-centered finite volume

10This assumption is, for example, satisfied for the implicit Euler scheme, and is deduced from
the regularity of the elliptic problem: U

\Delta T
 - \nu \partial xxU + a\partial xU + bU = U0

\Delta T
.
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method is used, with a centered discretization for the advection term (for regular
advection-diffusion) or an upwind discretization as in [6] (in the advection dominated
case). For the time discretization, the backward Euler method is used, with time step
\Delta T for the coarse solver.

For the fine solver with L = \infty , as well as for the coarse solver, we use the OSWR
method, with a stopping criterion such that the jump of the optimized transmission
conditions, measured in the L2-norm on the interface, has been reduced below 10 - 13.
Otherwise, we will consider L iterations for the fine solver, with different values of L.
A comparison will be done with the PSWR method of [16], which corresponds to the
case L = 1 coupled with an incomplete coarse solver based on only one iteration of
the OSWR method.

We take T = 1, a = 1, and b = 0. The domain \Omega is decomposed into two
subdomains \Omega 1 = ]0, 1/2[ and \Omega 2 = ]1/2, 1[ and we choose N = 10 time subintervals.
The error is measured in the L\infty (0, T ;\scrX )-norm. Note that we obtain similar results
in the L\infty (\Omega \times (0, T ))-norm. The cost of the coarse solver is negligible.

7.1. Regular advection-diffusion. We set \nu = 1 and choose the right-hand
side f and the values of the boundary and initial conditions so that the exact solution
is given by u(x, t) = exp( - t) sin(\pi x). The mesh size and time steps (for the fine
solver) are \Delta x = 1, 25.10 - 3,\Delta t = 1, 69.10 - 4, respectively.

In Figure 1, we plot the evolution of the relative error between the Parareal-
OSWR (or PSWR) solution and the converged Parareal solution, as a function of the
number of Parareal iterations.

Fig. 1. Relative error versus Parareal
iterations. (Figure in color online.)

Table 1
Number of Parareal iterations k and total

number of OSWR iterations L \ast k versus L.

L PSWR 1 2 4 8 48 (\infty )

k 76 77 39 19 13 7

L \ast k 77 77 78 76 104 336

The case L = \infty (black circle curve) corresponds to L = 48. The horizontal
dashed green line represents the relative scheme error divided by 10, and we consider
the number of iterations such that the algorithm error is smaller than this value.
This is obtained after 7 iterations for Parareal, and after 13, 19, 39, 77 iterations for
Parareal-OSWR with L = 8, L = 4, L = 2, L = 1, respectively. These data are
reported in Table 1.

We observe that the fastest case is L = 4 with 76 OSWR iterations globally, and
it performs similarly to L = 1 or PSWR.

Table 2 shows the gain (in terms of fine solver iterations), when the fine solvers
are performed in parallel, of Parareal, coupled Parareal-OSWR, and PSWR methods
compared to the pure OSWR algorithm (first column). We see that for N = 10 time
windows, the gain factor is 1.43 for Parareal and 6.33 for Parareal-OSWR or PSWR.
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Table 2
Example in 1D (regular advection-diffusion): Gain factor for Parareal, coupled Parareal-

OSWR, and PSWR methods compared to the OSWR solver, with N = 10 time windows.

Solver OSWR Parareal Parareal-OSWR (L = 4) PSWR

Iterations (n) 48 336 76 76

Loss factor (\ell = n/48) -- 7 1.58 1.58

Final gain factor (N/\ell ) -- 1.43 6.33 6.33

7.2. Advection dominated case. We set \nu = 0.001, u0(x) = x, \forall x \in [0, 1],
f = 0, and u(0, t) = 0, u(1, t) = 1, \forall t \in (0, T ). The mesh size and time steps (for the
fine solver) are \Delta t = \Delta x = 10 - 3.

In Figure 2, we plot the evolution of the relative error between the Parareal-
OSWR (or PSWR) solution and the converged Parareal solution, as a function of the
number of Parareal iterations.

Fig. 2. Relative error versus Parareal itera-
tions.

Table 3
Number of Parareal iterations k and total

number of OSWR iterations L \ast k, versus L.

L PSWR 1 2 4 8 (\approx \infty )

k 11 11 10 10 10

L \ast k 11 11 20 40 80

The classical Parareal algorithm, i.e., the case L = \infty (black circle curve) does
not work at all, since it fully needs ten iterations to converge. In consequence, the
final gain factor of the best choice, shown in Table 4, decreases compared to the
regular advection-diffusion case, as do all other choices. Figure 2 and Table 3 show
that PSWR and Parareal-OSWR with L = 1 are the best choice, and are a good
alternative method to classical Parareal, when the latter doesn't work. Indeed, we
gain a factor 5.45 for Parareal-OSWR or PSWR.

Table 4
Example in 1D (advection dominated): Gain factor for Parareal, coupled Parareal-OSWR, and

PSWR methods compared to the OSWR solver, with N = 10 time windows.

Solver OSWR Parareal Parareal-OSWR (L = 1) PSWR

Iterations (n) 6 80 11 11

Loss factor (\ell = n/6) -- 13.3 1.83 1.83

Final gain factor (N/\ell ) -- 0.75 5.45 5.45

8. Numerical results in two dimensions. In this section, we give some nu-
merical illustrations of the performances of the coupled Parareal-OSWR method (Al-
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gorithm 5.1) with or without Krylov acceleration (see below), in two space dimen-
sions. In sections 8.1 and 8.2, these results are shown in the context of the NICEM
method [25] for the space discretization that enables the use of more efficient transmis-
sion conditions in the OSWR method (i.e., Ventcel conditions) with general domain
decomposition and meshes. A regular advection-diffusion case is first considered,
with a comparison between Robin and Ventcel conditions.11 Then, an example with
boundary layer and vorticies is given, on conforming and nonconforming meshes, and
on long and short time intervals (the latter being the worst case for Parareal). In sec-
tion 8.3 we show an example in an industrial context [3], using mixed finite elements
and Robin transmission conditions. In all cases the backward Euler scheme in time
is used, with time step \Delta T for the coarse solver.

The multidomain problem (4.3) can actually be reformulated as an interface prob-
lem (see [9, 22]) that can be solved by various iterative methods, such as block-Jacobi
(which corresponds to the OSWR algorithm) or GMRES. The latter being faster,
it will be used and called ``OSWRG"" in what follows, and the corresponding cou-
pled method is called Parareal-OSWRG. In that case L will designate the number
of GMRES iterations in the fine solver. A comparison between Parareal-OSWR and
Parareal-OSWRG will be done in section 8.1.

For the coarse solver, as well as for the fine solver with L = \infty , we use the OSWRG
method, with a stopping criterion such that the jump of the optimized transmission
conditions, measured in the L2-norm on the interface, has been reduced below 10 - 13.
Otherwise, we will consider L iterations for the fine solver, with different values of L.
In the results below, the cost of the coarse solver is negligible.

Note that in what follows the error is measured in the L\infty (0, T ;\scrX )-norm, and
that we obtain similar results in the L\infty (\Omega \times (0, T ))-norm.

8.1. A rotating velocity. We set \Omega = ]0, 1[\times ]0, 1[, T = 21, and consider the
2D problem:

\partial tu+\nabla \cdot (aaau) - \nu \Delta u = f in \Omega \times (0, T ),(8.1a)

u = uD on \partial \Omega \times (0, T ),(8.1b)

u(\cdot , 0) = u0 in \Omega ,(8.1c)

with a rotating velocity field aaa = (ax, ay), where ax =  - sin
\bigl( 
\pi (y  - 1

2 )
\bigr) 
cos
\bigl( 
\pi (x - 1

2 )
\bigr) 

and ay = cos
\bigl( 
\pi (y  - 1

2 )
\bigr) 
sin
\bigl( 
\pi (x - 1

2 )
\bigr) 
; see Figure 3 on the left. We choose f and the

values of the boundary and initial conditions so that the exact solution is given by

(8.2) u(x, y, t) = cos(\pi x) sin(\pi y) cos
\Bigl( 2\pi t
11

\Bigr) 
\forall (x, y) \in \Omega , \forall t \in (0, T ).

The number of time windows for the Parareal iterations is N = 21. The time steps
of the coarse and fine solvers are \Delta tC = 1 and \Delta tF = 0.0156, respectively.

In what follows we denote by e the relative scheme error, in L\infty (0, T ;\scrX )-norm,
between the converged Parareal solution and the solution u of problem (8.1), given
in (8.2). The term ``OSWRG iterations"" will designate the iterations of the fine solver.
We will give two cases for the diffusion and the space domain decomposition.

Case 1. We take \nu = 0.05 and a decomposition of \Omega into four subdomains as in
Figure 3 in the middle. The number of triangles in the whole domain \=\Omega is 8192 and
the mesh size in each subdomain is 0.0221.

11These optimized parameters are variable and calculated on each edge of the interfaces.
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Fig. 3. Example 1: Rotating velocity (left), decomposition of \Omega into four subdomains (middle),
and decomposition of \Omega into nine subdomains (right).

In Figure 4 (left), we plot the evolution of the relative error between the Parareal-
OSWRG solution (with Ventcel conditions) and the converged Parareal solution, as
a function of the number of Parareal iterations, for different values of L. The case
L = \infty (black circle curve) corresponds to L = 10 (average value). The horizontal
dashed green line represents 0.1e, and we consider the number of iterations such that
the algorithm error is smaller than this value. This is obtained after 3 iterations for
Parareal or Parareal-OSWRG with L = 8, and after 5, 8, 18 iterations for Parareal-
OSWRG with L = 4, L = 2, L = 1, respectively. These data are reported in Table 5
(left). We observe that the fastest case is L = 2 with 16 OSWRG iterations globally.
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Fig. 4. Example 1: Relative error versus Parareal iterations. Case \nu = 0.05 with four subdo-
mains (left) and case \nu = 0.1 with nine subdomains (right). (Figure in color online.)

Table 5
Example 1: Number of Parareal iterations k and total number of OSWRG iterations L \ast k,

versus L, case \nu = 0.05 with four subdomains (left) and case \nu = 0.1 with nine subdomains (right).

L 1 2 4 8 10 (\approx \infty )

k 17 8 5 3 3

L \ast k 17 16 20 24 30

L 1 2 4 8 24 (\approx \infty )

k 30 12 5 3 2

L \ast k 30 24 20 24 48

Table 6 shows the gain (in term of fine solver iterations), when the fine solvers are
performed in parallel, of the full Parareal (L = 10) or the coupled Parareal-OSWRG
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Table 6
Example 1 (case 1): Gain factor for Parareal and coupled Parareal-OSWRG methods compared

to the OSWRG solver for solving problem (8.1), with N = 21 time windows.

Solver OSWRG Parareal Parareal-OSWRG (L = 2)

Iterations (n) 16 30 16

Loss factor (\ell = n/16) -- 1.87 1

Final gain factor (N/\ell ) -- 11.2 21

methods compared to the OSWRG algorithm for solving problem (8.1). The first
column corresponds to the number of OSWRG iterations to reach 0.1e (where e is the
relative scheme error), when the OSWRG method is used to solve (8.1). We observe
that for N = 21 time windows, we gain a factor 11.2 for Parareal and a factor 21 for
Parareal-OSWRG which is the expected parallel efficiency.
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Fig. 5. Example 1 (case 1): Relative error versus Parareal iterations. Parareal-OSWRG with
Ventcel (top left), Parareal-OSWR with Ventcel (top right), Parareal-OSWRG with Robin (bottom
left), and Parareal-OSWR with Robin (bottom right).

In Figure 5, we consider four cases for the fine solver: OSWRG with Ventcel (top
left), OSWR with Ventcel (top right), OSWRG with Robin (bottom left), and OSWR
with Robin (bottom right). The best choice for the latter is L = 4, and L = 2 else.

The gain factor, when the fine solvers are performed in parallel, compared to
the corresponding pure OSWR (or OSWRG) algorithm (with Robin or Ventcel) is as
follows: 21 for Parareal-OSWRG with Ventcel (i.e., the expected parallel efficiency),
22.05 for Parareal-OSWRG with Robin, 23.86 for Parareal-OSWR with Ventcel, and
25.66 for Parareal-OSWR with Robin (i.e., the gain factor is a little bit better when
using OSWR instead of OSWRG).

In what follows (case 2 and section 8.2), we will consider the fastest method that
is the Parareal-OSWRG algorithm with Ventcel conditions.
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Case 2. We take \nu = 0.1 and a decomposition of \Omega into nine subdomains as in
Figure 3 (right). The number of triangles in the whole domain \=\Omega is 18432 and the
mesh size in each subdomain is 0.0147.

In Figure 4 (right), the Parareal algorithm (black circle curve) corresponds to
L = 24. The horizontal dashed green line represents 0.1e, and is reached after 2
iterations for Parareal, and after 3, 5, 12, 30 iterations for Parareal-OSWRG with
L = 8, L = 4, L = 2, L = 1, respectively. These data are shown in Table 5 (right),
and we see that the fastest case is L = 4, with a total of 20 OSWRG iterations.

Table 7 shows the gain, when the fine solvers are performed in parallel, of the
Parareal or the coupled Parareal-OSWRG methods compared to the pure OSWRG
algorithm. In the first column we give the number of OSWRG iterations to reach
0.1e, when it is used as a solver for problem (8.1). We observe that for N = 21 time
windows, we gain a factor 10.94 for Parareal and a factor 26.25 for Parareal-OSWRG
which represents an efficiency strictly greater than 1, since the number of processors
is 21. This is notably better than the expected parallel efficiency.

Table 7
Example 1 (case 2): Gain factor for Parareal and coupled Parareal-OSWRG methods compared

to the OSWRG solver for solving problem (8.1), with N = 21 time windows.

Solver OSWRG Parareal Parareal-OSWRG (L = 4)

Iterations (n) 25 48 20

Loss factor (\ell = n/25) -- 1.92 0.8

Final gain factor (N/\ell ) -- 10.94 26.25

8.2. A boundary layer case with vorticies. We consider problem (8.1) with
f = 0, u0(x, y) = 1 - x, uD(x, y) = 1 on \{ x = 0\} , and uD(x, y) = 0 elsewhere, and the
following velocity field (see [37, 34]): aaa = 0.32\pi 

\bigl( 
sin(4\pi x) sin(4\pi y), cos(4\pi x) cos(4\pi y)

\bigr) 
;

see Figure 6 (left). The diffusion coefficient is \nu = 0.01 and the final time is T = 51.
The number of time windows for the Parareal iterations is N = 51. The time step of
the coarse solver is \Delta tC = 1.

In what follows we consider a decomposition of \Omega into nine subdomains and
consider a uniform mesh (case 1) and then a nonconforming mesh adapted to the
physics (case 2). The computed Parareal-OSWRG solution at final time t = T (with
the nonconforming mesh) is shown in Figure 6 (right).

Case 1. We consider a uniform mesh as in Figure 3 (right), with a mesh size in
each subdomain equal to 0.0147. The time step of the fine solver is \Delta tF = 0.0156.

In Figure 7 (left), we plot the evolution of the relative error in L\infty (0, T ;\scrX )-norm,
between the Parareal-OSWRG solution and the converged Parareal solution, as a
function of the number of Parareal iterations for different values of L. The Parareal
algorithm corresponds to L = 10 and we will compare the other cases of L to this
case. We do not know the solution of problem (8.1) and thus the relative scheme
error e; however we expect that e is between 10 - 1 and 10 - 3, and thus 0.1e between
10 - 2 and 10 - 4. Consequently, in Figure 7 (left), the horizontal dashed green lines
represent three possible values for 0.1e, and Table 8 shows the number of Parareal
and total OSWRG iterations to reach these different values, for L = 1, 2, 4, 8, 10. We
observe that the fastest case is L = 2.

We see in Figure 7 two convergence regimes, on the one hand for the case L = \infty 
where the iterative method is purely the parareal method, and on the other hand for
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Fig. 6. Example 2: Velocity field (left), nonconforming meshes (middle), and computed
Parareal-OSWRG solution at final time (right).

L = 1 where the method is essentially of the Schwarz type.
More precisely, for finite L (=1, 2, 4, 8) we notice that the first iterations converge

at the parareal convergence rate, to take into account the temporal component of the
error; then the algorithm takes into account the spatial component of the error with
convergence curves that looks like those of the pure Schwarz type iterations (see [10]),
since the coupled iterations are essentially Schwarz type iterations, this happening all
the faster as L is large.

0 10 20 30 40 50 60 70
Parareal iteration

10 -4

10 -3

10 -2

10 -1

10 0

lo
g(

er
ro

r)

L=
L=8
L=4
L=2
L=1

0 10 20 30 40 50 60 70 80
Parareal iteration

10 -4

10 -3

10 -2

10 -1

10 0

lo
g(

er
ro

r)

L=
L=8
L=4
L=2
L=1

Fig. 7. Example 2: Relative error versus Parareal iterations, with a zoom on the first iterations.
Left: Case 1 (conforming meshes). Right: Case 2 (nonconforming meshes). (Figure in color
online.)

The OSWRG algorithm used as a solver for problem (8.1) will need 22, 36, and
49 iterations to get a relative error in L\infty (0, T ;\scrX )-norm (between the iterate solution
and the converged OSWRG solution) smaller than 10 - 2, 10 - 3, and 10 - 4, respectively.
Table 9 shows the gain, when the fine solvers are performed in parallel, of the Parareal
or the coupled Parareal-OSWRG methods compared to the OSWRG algorithm. In
this table we take the values obtained for e = 10 - 2 (note that these values correspond
also to those obtained with a mean value of the values for e = 10 - 1, e = 10 - 2, and
e = 10 - 3). We observe that for N = 51 time windows, we gain approximately a
factor 26.29 for Parareal and a factor 57.38 for Parareal-OSWRG which is slightly
better than the expected parallel efficiency.
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Table 8
Example 2 (case 1): Number of Parareal iterations k and total number of OSWRG iterations

L\ast k, versus L to reach three different values: 10 - 2 (top left), 10 - 3 (top right), and 10 - 4 (bottom).

L 1 2 4 8 10 (\approx \infty )

k 13 6 4 3 3

L \ast k 13 12 16 24 30

L 1 2 4 8 10 (\approx \infty )

k 39 16 10 7 7

L \ast k 39 32 40 56 70

L 1 2 4 8 10 (\approx \infty )

k 65 26 16 11 11

L \ast k 65 52 64 88 110

Table 9
Example 2 (case 1): Gain factor for Parareal and coupled Parareal-OSWRG methods compared

to the OSWRG solver for solving problem (8.1), with N = 51 time windows.

Solver OSWRG Parareal Parareal-OSWRG (L = 2)

Iterations (n) 36 70 32

Loss factor (\ell = n/36) -- 1.94 0.89

Final gain factor (N/\ell ) -- 26.29 57.38

Case 2. We consider nonconforming meshes, refined in the region of the boudary
layer (see Figure 6 (middle)), with a mesh size equal to 0.0065, 0.0131, and 0.0295
for the subdomains with a boundary along \{ x = 0\} , those with boundaries along
\{ x = 1

3\} and \{ x = 2
3\} , and those with a boundary along \{ x = 1\} , respectively. The

time step of the fine solver is \Delta tF = 0.01. In Figure 7 (right), we plot the evolution of
the relative error in L\infty (0, T ;\scrX )-norm, between the Parareal-OSWRG solution and
the converged Parareal solution, as a function of the number of Parareal iterations
for different values of L. The Parareal algorithm (L = \infty ) corresponds to the case
L = 12. As for case 1, the horizontal dashed green lines represent three possible values
of 10\% of the error, and Table 10 shows the number of Parareal and total OSWRG
iterations to reach these different values for L = 1, 2, 4, 8, 12. We observe that L = 2
is the case with the fewest iterations. We also observe on this figure two convergence
regimes as for case 1.

The OSWRG algorithm used as a solver for problem (8.1) will need 24, 40, and
56 iterations to get a relative error (between the iterative solution and the converged
OSWRG solution) smaller than 10 - 2, 10 - 3, and 10 - 4, respectively. Table 11 shows the
gain, when the fine solvers are performed in parallel, of the Parareal or the coupled
Parareal-OSWRG methods compared to the OSWRG algorithm. In this table we
take the values obtained for e = 10 - 2 (note that these values correspond also to those
obtained with a mean value of the values for e = 10 - 1, e = 10 - 2, and e = 10 - 3).
We observe that for N = 51 time windows, the results with a conforming mesh
(Table 9) or with nonconforming meshes (Table 11) are very close and slightly better
for nonconforming meshes adapted to the physics. Indeed, the gain is approximately
a factor 24.28 for Parareal and a factor 60 for Parareal-OSWRG which is significantly
better than the expected parallel efficiency.

Case 3. We consider the example of case 1, now with T = 1 and N = 10, i.e.,
an advection dominated case on short time interval for which the Parareal algorithm
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Table 10
Example 2 (case 2): Number of Parareal iterations k and total number of OSWRG iterations

L\ast k, versus L to reach three different values: 10 - 2 (top left), 10 - 3 (top right), and 10 - 4 (bottom).

L 1 2 4 8 12 (\approx \infty )

k 16 6 4 3 3

L \ast k 16 12 16 24 36

L 1 2 4 8 12 (\approx \infty )

k 47 17 11 7

L \ast k 47 34 44 56 84

L 1 2 4 8 12 (\approx \infty )

k 79 28 17 11

L \ast k 79 56 68 88 132

Table 11
Example 2 (case 2): Gain factor for Parareal and coupled Parareal-OSWRG methods compared

to the OSWRG solver for solving problem (8.1), with N = 51 time windows.

Solver OSWRG Parareal Parareal-OSWRG (L = 2)

Iterations (n) 40 84 34

Loss factor (\ell = n/40) -- 2.1 0.85

Final gain factor (N/\ell ) -- 24.28 60
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Fig. 8. Relative error versus Parareal itera-
tions. (Figure in color online.)

Table 12
Number of Parareal iterations k and total

number of OSWRG iterations L \ast k, versus L.

L 1 2 4 8 35 (\approx \infty )

k 30 12 11 10 10

L \ast k 30 24 44 80 350

converges slowly.
In Figure 8, we plot the evolution of the relative error in L\infty (0, T ;\scrX )-norm,

between the Parareal-OSWRG solution and the converged Parareal solution, as a
function of the number of Parareal iterations for different values of L. The Parareal
algorithm (L = \infty ) corresponds to the case L = 35. As for case 1, the horizontal
dashed green lines represent three possible values of 10\% of the error, and Table 12
shows the number of Parareal and total OSWRG iterations to reach 10 - 3 for the
values L = 1, 2, 4, 8, 35. As in section 7.2, we observe that the pure Parareal algorithm
doesn't perform well since it needs full 10 iterations to converge. Parareal-OSWRG
with L = 2 is the best choice, and a good alternative method to the Parareal method.
Indeed, as shown in Table 13, we gain a factor 29.58 for Parareal-OSWRG compared
to the pure OSWRG algorithm, and a factor 14.58 compared to the pure Parareal
algorithm.

Remark 8.1. Note that in the results above, the number of OSWRG iterations
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Table 13
Example 2 (case 3): Gain factor for Parareal and coupled Parareal-OSWRG methods compared

to the OSWRG solver for solving problem (8.1), with N = 10 time windows, to reach 10 - 3.

Solver OSWRG Parareal Parareal-OSWRG (L = 4)

Iterations (n) 71 350 24

Loss factor (\ell = n/71) -- 4.93 0.34

Final gain factor (N/\ell ) -- 2.03 29.58

to reach full convergence, inside each time window in the Parareal iterations (35),
is smaller than the one needed to reach full convergence on (0, T ) (71), probably
because the time windows are smaller. This explains the gain of a factor 2.03 when
using Parareal, compared to the pure OSWRG algorithm.

Remark 8.2. The 2D simulations of this section don't show a comparison with
the PSWR algorithm of [15]. However, we have observed that the case L = 1 is not
the optimal choice of L. Doing incomplete iterations for the coarse solver as well, will
very likely lead to similar or slower convergence.

8.3. Example in an industrial context. We consider a model problem given
by ANDRA, the French National Agency for Radioactive Waste Management (see [22,
1, 3]), that simulates the transport of a contaminant in and around a nuclear waste
repository site. The simulation domain is depicted in Figure 9 (left) (not at scale). The
nuclear waste is stored in the repository (yellow), which is a 2950m by 10m rectangle
located in the center of a clay domain of 3950m by 140m. In this example, we are
concerned with the following time-dependent diffusion problem in mixed formulation:

\sigma \sigma \sigma =  - SSS\nabla u in \Omega \times (0, T ),(8.3a)

\phi 
\partial u

\partial t
+\nabla \cdot \sigma \sigma \sigma = f in \Omega \times (0, T ),(8.3b)

where \Omega = [0, 3950]\times [0, 140] is decomposed into nine subdomains with \Omega 5 the nuclear
waste repository; see Figure 9. Here u is the (dimensionless) concentration of the
contaminant, \phi is the porosity, and SSS is the time-independent diffusion tensor, given
in Table 14 (where \BbbI is the identity matrix).

3950m

10m 140m

2950m

Ω

Ω

Ω Ω

Ω

ΩΩΩ
1 2 3

4
Ω5 6

7 8 9

Fig. 9. Geometry of the nuclear waste repository (yellow) and the clay layer around it, with
its decomposition into nine subdomains (left), and mesh used in and around the repository (right).
(Figure in color online.)

The initial condition is u0 = 0, and we set homogeneous Dirichlet conditions on
the top and the bottom of \Omega , and homogeneous Neumann conditions on the other
sides of \partial \Omega . We are interested in the long-term behavior of the repository, over one
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Table 14
Porosity \phi , diffusion tensor SSS, and source term f .

\phi SSS f

\Omega 5 0.2 2\times 10 - 9\BbbI m2/s

\biggl\{ 
10 - 5 years - 1 if t \leq 105 years,
0 if t > 105 years

\Omega i (i \not = 5) 0.05 5\times 10 - 12\BbbI m2/s 0

million years, so that we set T = 106 years. A dimensionless form of this problem is
given in [3]. The number of triangles in the mesh of \=\Omega is 58710 (see Figure 9 (right)),
and the number of DoF is 148134. We use the Parareal-OSWRG method with Robin
transmission conditions to solve this problem.
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Fig. 10. Relative error versus Parareal itera-
tions. (Figure in color online.)

Table 15
Number of Parareal iterations k and total

number of OSWRG iterations L \ast k, versus L.

L 2 4 8 12 (\approx \infty )

k 13 3 3 3

L \ast k 26 12 24 36

In Figure 10, we plot the relative error in L2(\Omega \times (0, T ))-norm, between the
Parareal-OSWRG solution and the converged Parareal solution, versus the number
of Parareal iterations for different values of L. The Parareal algorithm (L = \infty )
corresponds to L = 10.

In [1], an a posteriori stopping criterion is given for this test case and the dashed
green line shown in Figure 10 corresponds to this criterion. This line is reached after
3 iterations for Parareal and Parareal-OSWRG with L = 4, and after 13 iterations
for Parareal-OSWRG with L = 2.12 These data are reported in Table 15 (for the
methods that converge in at most 30 iterations), and we observe that the fastest case
is L = 4 with a total of 12 OSWRG iterations.

Table 16 shows the gain when the fine solvers are performed in parallel, of the
Parareal or the coupled Parareal-OSWRGmethods compared to the OSWRGmethod.
In the first column we give the number of OSWRG iterations given in [1] from the
a posteriori stopping criterion, when the OSWRG method is used for solving prob-
lem (8.3). We see that forN = 10 time windows, we gain a factor 3.06 for Parareal and
a factor 9.17 for Parareal-OSWRG, which is almost the expected parallel efficiency.

Remark 8.3. Note that increasing the contrast in the diffusion tensor SSS by taking
SSS = 2\times 10 - 9 in \Omega 5 and SSS = 5\times 10 - 13 in the other subdomains leads to slightly better
results: The best choice is still L = 4, and for N = 10 time windows, we gain a factor
2.67 for Parareal and a factor 10 for Parareal-OSWRG, which is the expected parallel

12The case L = 1 is not shown, as the error is still far above the green line after 30 iterations.
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Table 16
Example 3: Gain factor for Parareal and coupled Parareal-OSWRG methods compared to the

OSWRG solver for solving problem (8.3), with N = 10 time windows.

Solver OSWRG Parareal Parareal-OSWRG (L = 4)

Iterations (n) 11 36 12

Loss factor (\ell = n/11) -- 3.27 1.09

Final gain factor (N/\ell ) -- 3.06 9.17

efficiency.

Remark 8.4. Note that to determine a suitable L in general, which may vary
through Parareal iterations, one could design a posteriori error estimates that com-
bine contributions from the scheme error and from the current nonconverged OSWR
iteration. This would give a suitable L and an efficient stopping criterion for the
Parareal-OSWR iterations, which would enhance the application of the method.

9. Proof of estimate (4.13) in Theorem 4.2.

Proof. For i = 1, 2, let (u\ell 
i , \xi 

\ell 
i ) be defined by (4.4)--(4.5) with initial condition \=u0.

We set \zeta \ell i := \xi \ell i  - \xi i, where \xi i is defined in (2.4), and e\ell i := u\ell 
i  - u| \Omega i

, where u is the
solution of (2.1). With (\zeta 01 , \zeta 

0
2 ) given, the error e\ell i satisfies, for \ell = 1, 2, . . . , L,

\scrL e\ell i = 0 in \Omega i \times \scrI ,(9.1a)

e\ell i(\cdot , 0) = e0,i in \Omega i,(9.1b)

(\scrB ie
\ell 
i)(0, \cdot ) = \zeta \ell  - 1

i on \scrI ,(9.1c)

where

(9.2) \zeta \ell i = \scrB ie
\ell 
j(0, \cdot ), \ell \geq 1.

Then the proof follows the same steps as in [12, Theorem 5.15].
Multiplying (9.1a) by e\ell i and integrating in space on \Omega i, we obtain

1
2

d
dt\| e

\ell 
1\| 2 + \nu \| \partial xe\ell 1\| 2 + b\| e\ell 1\| 2  - 

\Bigl( 
\nu \partial xe

\ell 
1  - 

a

2
e\ell 1

\Bigr) 
(0, .)e\ell 1(0, .) = 0,

1
2

d
dt\| e

\ell 
2\| 2 + \nu \| \partial xe\ell 2\| 2 + b\| e\ell 2\| 2 +

\Bigl( 
\nu \partial xe

\ell 
2  - 

a

2
e\ell 2

\Bigr) 
(0, .)e\ell 2(0, .) = 0.

Introducing the Robin interface operators \scrB i, i = 1, 2, defined in (2.2), and rewriting
the terms on the interface in the form\Bigl( 

\nu \partial xe
\ell 
i  - 

a

2
e\ell i

\Bigr) 
e\ell i =

1
2p

\bigl( 
(\scrB 1e

\ell 
i)

2  - (\scrB 2e
\ell 
i)

2
\bigr) 
, i = 1, 2,

we obtain the energy estimates for i = 1, 2,

1
2

d
dt\| e

\ell 
i\| 2 + \nu \| \partial xe\ell i\| 2 + b\| e\ell i\| 2 + 1

2p ((\scrB je
\ell 
i)(0, .))

2 = 1
2p ((\scrB ie

\ell 
i)(0, .))

2, j = 3 - i.

Replacing (\scrB ie
\ell 
i)(0, .) = \zeta \ell  - 1

i , (\scrB je
\ell 
i)(0, .) = \zeta \ell j (from (9.1c) and (9.2)), and summing

the above expression over i, we get for all t \in \scrI ,\sum 
i

\bigl( 
1
2

d
dt\| e

\ell 
i\| 2 + \nu \| \partial xe\ell i\| 2 + b\| e\ell i\| 2

\bigr) 
+ 1

2p

\sum 
i

(\zeta \ell i )
2 = 1

2p

\sum 
i

(\zeta \ell  - 1
i )2.
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Then, integrating on \scrI , and considering L2(0, T ;H1(\Omega i)) endowed with the norm
\| u\| 2L2(0,T ;H1(\Omega i))

:=
\int 
\scrI 
\bigl( 
\nu \| \partial xu\| 2 + b\| u\| 2

\bigr) 
dt, we obtain

1
2\| e

\ell (., T )\| 2 +
\sum 
i

\| e\ell i\| 2L2(0,T,H1(\Omega i))
+ 1

2p\| \zeta \zeta \zeta 
\ell \| 2\scrI = 1

2

\sum 
i

\| e\ell i(., 0)\| 2 + 1
2p\| \zeta \zeta \zeta 

\ell  - 1\| 2\scrI .

Summing over \ell from 1 to L, we get a telescopic sum on the interface and thus we
get (4.13).
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