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Algorithm xxx PANG: Software for Non-Matching Grid Projections in
2d and 3d with Linear Complexity

MARTIN J. GANDER, Université de Genève

CAROLINE JAPHET, Université Paris XIII, INRIA and University of Maryland

We design and analyze an algorithm with linear complexity to perform projections between 2d and 3d
non-matching grids. This algorithm, named the PANG algorithm, is based on an advancing front technique
and neighboring information. Its implementation is surprisingly short, and we give the entire Matlab code.
For computing the intersections, we use a direct and numerically robust approach. We show numerical
experiments both for 2d and 3d grids, which illustrate the optimal complexity and negligible overhead of
the algorithm. An outline of this algorithm has been presented already in a short proceedings paper of the
18th international conference on domain decomposition methods, see [Gander and Japhet 2008].
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umentation; H.4.0 [Information Systems Applications]: General; I.7.2 [Text Processing]: Document
Preparation—languages; photocomposition

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Advancing front algorithm, linear complexity, non-matching grid pro-
jections

1. INTRODUCTION

The need to project or interpolate grid functions from one grid onto grid functions of
a non-matching second grid is common in many areas of scientific computing. Examples
of methods requiring such a grid transfer are the Chimera methods proposed by [Steger
et al. 1983] and analyzed in [Brezzi et al. 2001], the Mortar methods first introduced in
[Bernardi et al. 1993; 1994] and extended in [Ben Belgacem 1999], [Belgacem and Maday
1999], [Braess and Dahmen 1998], the Patch methods by [Glowinski et al. 2005] for local
refinement, and extended in [Picasso et al. 2007], and in [Kamga and Pironneau 2007], and
Optimized Schwarz waveform relaxation methods introduced in [Gander 1997] and [Gander
et al. 1999] for linear parabolic and hyperbolic problems with constant coefficients, and ex-
tended in [Martin 2005], [Bennequin et al. 2009], [Gander et al. 2007], [Halpern et al. 2010].
Chimera methods are domain decomposition methods specialized for time dependent prob-
lems with moving parts, and thus lead naturally to non-matching grids, to avoid regridding
at each time step. The Mortar method is a domain decomposition method which permits
both an entirely parallel generation of meshes, local adaptive meshes and fast and indepen-
dent solvers in the subdomains. The Patch method, also known as ”numerical zoom”, is a
multiscale method: a problem is solved on a computational domain with a coarse mesh, and
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then locally refined patches are applied in regions where more accuracy in the solution is re-
quired. The Schwarz waveform relaxation method is a domain decomposition method which
computes in the subdomains on the whole time interval, exchanging space-time boundary
data through optimized transmission operators. This method naturally applies to different
space-time discretizations in subdomains, possibly non-conforming, and needs a very small
number of iterations to converge.
All these methods need a transfer of an approximate solution from one grid to a non-

matching neighboring grid. In the literature, this transfer problem has appeared under vari-
ous names: intergrid communication problem [Meakin 1991], grid transfer problems [Plimp-
ton et al. 1998], grid intersection problem [Lee et al. 2004], or overlaying surface meshes
problem [Jiao 2001; Jiao and Heath 2004], [Jain 2007]. Similar approaches for the interpola-
tion of discrete approximations between non-matching grids can be found in [Löhner 2001,
Chapter 13].
In order to obtain a robust and efficient projection algorithm, two main difficulties need to

be addressed: a combinatorial one, in the sense that if n is the number of elements touching
the interface, we search for a faster algorithm than the naive O(n2) algorithm, which just
checks for every element in one grid if it intersects with every other element of the other
grid, see for example [Flemisch et al. 2006]. The second difficulty is to compute numerically
the intersection of two finite elements, which requires to take a numerical decision as to
whether two segments (or surfaces) intersect or not, and whether one point is in an element
or not. There is extensive literature on both problems, for a review, see [Gander and Japhet
2008].
In this paper, we present a compact algorithm with optimal complexity which computes,

for two non-matching meshes, the associated mortar projection matrix, see [Bernardi et al.
1993], or any other similar quantity defined on the intersection of the elements. Thus we
name this new algorithm “Projection Algorithm for Non-matching Grids” (PANG).
This algorithm was introduced in [Gander et al. 2005], [Gander and Japhet 2008], and,

after personal communication, implemented in [Bastian et al. 2010; DUNE 2010]. for the cor-
responding software. Other software packages have been developed to handle non-matching
meshes, see for example [Hecht 2012; MpCCI ].
In section 2, we describe the projection algorithm from [Gander and Japhet 2008] for

irregular triangular grids. In section 3, the projection algorithm is extended to non-matching
tetrahedral grids. We show in section 4 numerical experiments both in 2d and 3d, which
illustrate the optimal complexity and negligible overhead of the algorithm.

2. PROJECTION ALGORITHM FOR 2D MESHES

In this section, we present the algorithm which computes for two non-matching 2d meshes
representing the same planar geometry the associated mortar projection matrix, see
[Bernardi et al. 1993], or any other similar quantity defined on the intersection of the
two meshes by MortarInt in the Intersect procedure. For mortar projection matrices, the
2d meshes are the interface meshes between two domains in 3d, which are non-conforming
at the interface, and hence lead to the need for projection between non-matching grids. An
example which illustrates the complexity faced is given in Figure 1.

2.1. Algorithms for Computing the Intersection of two Triangles

Elegant algorithms for computing intersections of polygons have been developed in the
computer graphics community, and they are known under the name “polygon clipping
algorithms”, see [Weiler and Atherton 1977; Greiner and Hormann 1998]. The basic idea of
the algorithm is as follows: if the starting point on the one polygon is inside of the other
one, then one marches along the edges of the one polygon, and whenever an intersection is
found, one switches the polygons and marches on the edges of the other one. As soon as
one returns to a point already visited, the intersection polygon is complete. If the starting
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Fig. 1. Non-conforming tetrahedral discretization with two subdomains on the left, and the resulting tri-
angular interface meshes on the right.
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Fig. 2. Using the classical polygon clipping algorithm for computing the intersection of two triangles.

point on the one polygon is outside of the other one, one does not switch polygons for the
first detected intersection, but starts from the second detected intersection. An example for
the case of two triangles is shown in Figure 2, where we started with a corner of the blue
(dashed) triangle outside of the intersection, and then find sequentially P (1), P (2), . . . ,
P (6), and then again P (1), which closes the intersection polygon. This algorithm is widely
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Fig. 3. Numerical difficulties in the classical polygon clipping algorithm for computing the intersection of
two triangles.

used in computer graphics. In [Greiner and Hormann 1998], a generalized version which can
also handle self intersecting polygons is proposed, with the quote:

“So far we have tacitly assumed that there are no degeneracies, i.e. each vertex
of one polygon does not lie on an edge of the other polygon. Degeneracies can be
detected in the intersect procedure [...] In this case we perturb the vertex slightly.
If we take care that the perturbation is less than a pixel width, the output on
the screen will be correct”.

While for computer graphics, the pixel level is a natural scale for the perturbation, it is
difficult to define acceptable perturbations for the non-matching grid projection algorithm.
In addition to the functioning of the algorithm these perturbations are essential, as we
illustrate in Figure 3. In the first frame, a node of the red (solid) triangle lies “exactly”’
on an edge of the blue (dashed) one. If, in the intersection algorithm, an intersection is
calculated numerically, the algorithm is supposed to switch onto the blue (dashed) triangle,
which is incorrect in the first frame, but correct in the second one. In the third example, two
edges coincide, and in the fourth two consecutive edges coincide, situations which appear
typically in any mortar code, see Figure 1. Since we did not find a concise and robust
solution in the polygon clipping algorithm for these problems in the context of the mortar
application, we propose a completely different algorithm below. Another approach is given
in [Shewchuk 1997] who uses adaptive high precision floating point arithmetic to resolve
difficult numerical decisions.
We present now our algorithm which computes the intersection polygon of two arbitrary

triangles. Our algorithm turns out to be numerically robust and we show its generalization
to three dimensional interfaces in Section 3. It works as follows: we first compute all edge
intersections, and for each triangle, all its corners which are contained in the other trian-
gle. We then order the set of points obtained counter clockwise. This leads to the simple
intersection algorithm shown in Figure 4. For two triangles X and Y with corner coordinates
stored column-wise, the graphic primitive EdgeIntersections(X,Y) computes all intersec-
tions of edges of triangle X with edges of triangle Y, and the routine PointsOfXInY(X,Y)
computes corners of triangle X in triangle Y. These two routines include borderline cases by
using greater or equal in the decisions. The routine SortAndRemoveDoubles(P) sorts the
points in P in counter clockwise order and removes duplicates, which turns out to make the
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function [P,n,M]=Intersect(X,Y);
% INTERSECT intersection of two triangles and mortar contribution
% [P,n,M]=Intersect(X,Y); computes for the two given triangles X
% and Y the points P where they intersect, in n the indices of
% which neighbors of X are also intersecting with Y, and the
% local mortar matrix M of contributions of the element X on the
% element Y.

[P,n]=EdgeIntersections(X,Y);
Q=PointsOfXInY(X,Y);
if size(Q,2)>1 % if two or more interior
n=[1 1 1]; % points the triangle is

end % candidate for all neighbors
P=[P Q];
P=[P PointsOfXInY(Y,X)];
P=SortAndRemoveDoubles(P); % sort counter clock wise
M=zeros(3,3);
if size(P,2)>0
for j=2:size(P,2)-1 % compute interface matrix
M=M+MortarInt(P(:,[1 j j+1]),X,Y);

end;
% patch(P(1,:),P(2,:),’m’) % draw intersection for illustration
% pause(1)
end;

Fig. 4. Algorithm for computing the intersection of two triangles, and the integrals on this intersection of
the products of finite element shape functions of the two triangles.

algorithm numerically robust. A possible implementation of these basic routines is given in
Appendix B.1.
The algorithm also returns the important information of which neighboring triangles of

X will also intersect with Y, and the integrals on the intersection P of products of element
shape functions of X with the ones of Y, computed by the routine MortarInt and gathered
in the small matrix M. A possible implementation of this routine is given in Appendix B.2
as well.

2.2. Algorithms for Efficient Grid Traversals

An excellent overview for intergrid interpolation algorithms for non-structured grids is given
in [Löhner 2001, Chapter 13], see also the references therein. When many points need to be
interpolated from an unstructured grid, the best algorithms which exhibit linear complexity,
use neighboring information. One can use an advancing front technique that starts, for each
new point at which one needs to interpolate data, a local search in the neighborhood of the
element where the previous point was interpolated. Only if this search is not successful in
less than a constant number of steps is a brute force search launched, see [Löhner 2001].
A related technique [Lee et al. 2004], with approximately linear complexity, uses a self-
avoiding walk, with a vicinity search which can only fail after a boundary element had no
intersection with any element of the other mesh; in this case a quad-tree search is employed.
Further techniques for treating the boundary are given in [Löhner 2001]. In [Brune et al.
2012], local traversals for nodes-nested meshes are used to construct interpolation operators
in the multigrid context efficiently.
We propose here an advancing front algorithm which uses the fact that each triangle

knows its neighbors. For our algorithm, each triangle of a mesh is stored in a corresponding
line of the mesh matrix T: the first three entries are indices into a table of nodal coordinates
N stored column-wise, and the next three entries represent neighboring element indices, or
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Fig. 5. Example of a simple mesh with neighboring information (see text)

the total number of triangles plus one to indicate a real boundary. For example, the unit
square domain with two triangles shown in Figure 5 is given by the following node and mesh
table:

N=[0 1 0 1
0 0 1 1];

T=[1 2 4 3 3 2
1 4 3 1 3 3];

Note that both the nodes of the triangle and the neighboring triangle indices are ordered
counter clockwise. The algorithm is defined as follows: given two mesh tables of triangular
meshes Ta for mesh a and Tb for mesh b, the algorithm starts with a pair of triangles which
intersect, as shown in the first drawing in Figure 6 with the bold red (solid) triangle and the
bold blue (dashed) triangle. Two triangles which intersect are often available at a corner,
and in our algorithm we assume that these are the first triangles in Ta and Tb. Otherwise,
one could also find two intersection triangles by one direct search, which does not alter the
overall complexity of the algorithm. Then the algorithm computes the intersection of these
first two triangles (step 2 in Figure 6). The next step (step 3 in Figure 6), consists of adding
the neighbors of the triangle from mesh a, namely the bold blue (dashed) triangles, in a
list al, as possible candidates that may intersect our triangle from mesh b. We continue
intersecting with each triangle in the list al, and add untreated further neighbors to the
list al, as shown in steps 4 to 9 in Figure 6. The shaded blue triangles with right-leaning
diagonal lines are waiting in the list al to be treated. We do not add neighbors of a triangle
to the list al if the triangle did not intersect with our triangle from mesh b. We continue
this process until the list al becomes empty in step 10 of Figure 6. Now we know that the
starting bold red triangle from mesh b can not intersect any more triangles from mesh a,
so we put all the neighbors of the starting triangle of mesh b into a list bl; this is only the
bold red (solid) triangle in step 11 in Figure 6 in this case. Starting in step 12 with the
bold blue (dashed) triangle we kept as a starting candidate from the previous intersection
computation, we now perform the same steps we used for the first red triangle on each
of the red triangles in the list bl until it becomes empty, and the algorithm terminates.
Graphically, we denote by shaded red triangles with left-leaning diagonal lines the ones
which are currently on hold in the list bl, and one can see in step 27 that the algorithm
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Fig. 6. First steps of an advancing front technique to compute the projection matrix for two arbitrary,
non-conforming triangular meshes.
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function M=InterfaceMatrix(Na,Ta,Nb,Tb);
% INTERFACEMATRIX projection matrix for nonmatching triangular grids
% M=InterfaceMatrix(Na,Ta,Nb,Tb); takes two triangular meshes Ta
% and Tb with associated nodal coordinates in Na and Nb and
% computes the interface projection matrix M

bl=[1]; % bl: list of triangles of Tb to treat
bil=[1]; % bil: list of triangles Ta to start with
bd=zeros(size(Tb,1)+1,1); % bd: flag for triangles in Tb treated
bd(end)=1; % guard, to treat boundaries
bd(1)=1; % mark first triangle in b list
M=sparse(size(Nb,2),size(Na,2));
while length(bl)>0
bc=bl(1); bl=bl(2:end); % bc: current triangle of Tb
al=bil(1); bil=bil(2:end); % triangle of Ta to start with
ad=zeros(size(Ta,1)+1,1); % ad: flag for triangles in Ta treated
ad(end)=1; % guard, to treat boundaries
ad(al)=1; % mark first triangle in a list
n=[0 0 0]; % triangles intersecting with neighbors
while length(al)>0

ac=al(1); al=al(2:end); % take next candidate
[P,nc,Mc]=Intersect(Nb(:,Tb(bc,1:3)),Na(:,Ta(ac,1:3)));
if ~isempty(P) % intersection found
M(Tb(bc,1:3),Ta(ac,1:3))=M(Tb(bc,1:3),Ta(ac,1:3))+Mc;
t=Ta(ac,3+find(ad(Ta(ac,4:6))==0));
al=[al t]; % add neighbors
ad(t)=1; % mark them as treated
n(find(nc>0))=ac; % ac is starting candidate for neighbor

end
end
tmp=find(bd(Tb(bc,4:6))==0); % find non-treated neighbors
idx=find(n(tmp)>0); % take those which intersect with Ta
t=Tb(bc,3+tmp(idx));
bl=[bl t]; % and add them
bil=[bil n(tmp(idx))]; % with starting candidates Ta
bd(t)=1; % mark them as treated

end

Fig. 7. Algorithm with linear complexity for computing the projection matrix of two non matching trian-
gular grids.

has not yet finished, there are still many triangles left in the lists al and bl to be treated.
The Matlab implementation of our algorithm is shown in Figure 7.
We now study the complexity of our projection algorithm: the key step is that we stored

a starting candidate from list al for each of the triangles added to list bl in list bil. This
information is obtained without extra calculation in the computation of the intersection.
Thus in step 12 of Figure 6, we know with which blue (dashed) triangle we have to start to
compute intersections, and there is never a search needed for a candidate triangle of mesh a
which could intersect with the currently treated triangle from mesh b. The algorithm treats
triangles of mesh b one by one, and checks for each triangle at most a constant number
of triangles in mesh a, which shows that the expected complexity is linear. However, when
every triangle of mesh a intersects every triangle of mesh b, then the constant equals the
total number of triangles in mesh a and this leads to quadratic complexity and can not be
avoided in this case.
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Note that this advancing front algorithm only uses the fact that each element has a
certain number of neighbors, equal to 3 in the implementation shown. Thus the algorithm
is independent of the number of dimensions. However, we assumed that the two meshes are
simply connected, and also that the intersection of one element with the elements of the
other mesh are simply connected, assumptions which generally hold for mortar methods.
Otherwise the algorithm would need extra starting points in order to find the complete
intersections.
An example of how to run the code is given in Appendix B.3.

3. PROJECTION ALGORITHM FOR 3D MESHES

In the context of mortar methods, three dimensional interfaces appear naturally when solv-
ing time dependent three dimensional problems. For patch methods, three dimensional
interfaces appear naturally when solving three dimensional problems. The combinatorial
algorithm for computing the mesh projection shown in Figure 7 is independent of the di-
mension, except for small changes in the number of indices, since the triangles have become
tetrahedra now (or prisms for time dependent problems), and we give a precise implemen-
tation in Appendix C.1. The intersection algorithm shown in Figure 4 however needs to be
generalized to three dimensional objects. To do so, we can proceed along the same lines as
in our new 2d intersection algorithm: in the case of tetrahedral meshes, one first calculates
all points were an edge of one tetrahedron traverses the face of the other, then all corners
of one tetrahedron contained in the other, and finally orders the points face by face counter
clockwise. The implementation of this algorithm is given in Appendix A.
The following example shows how the algorithm in 3d should be called, and also gives

the structure of the input data:

% EXAMPLEINTERSEC3D test the intersection program for three dimensional meshes

X=[0 1 1/2 1/2
0 0 1 1/2
0 0 0 1]

Y=[0 1 1/2 1/2
1 1 -1/2 1/2
1/2 1/2 1/2 -1/2]

[P,nc,H,v]=Intersection3d(X,Y);

The intersection algorithm in 3d uses again several geometric primitives: these are
TriangleLineIntersection, InsertPoint, RemoveDuplicates, NewFace, OrderPoints
and PyramidVolume, a possible implementation of which is given in Appendix C.2.
To test the algorithm, an example in Matlab is given in Appendix C.3.

Remark 3.1. In Matlab, one can replace the routines RemoveDuplicates, PointsOfXinY
and PointInTetrahedra by the built-in Matlab routines unique, inpolygon and tsearchn
respectively. However, in this paper, we prefer to give in detail all the needed routines so
that the algorithm can be used in other languages such as Fortran, C or Python.

4. NUMERICAL EXPERIMENTS

We compare in Figure 8 our algorithm with the brute force search, where for each element
in the first mesh the intersection with every element in the second mesh is computed, see
Appendix B.4 for the code. We start with two random triangular meshes and present the
average computing time for twenty projection calculations in two dimensions on the left,
and for five projection calculations for the 3 dimensional case on the right, for the code see
Appendix C.4. One can clearly see that the new algorithm scales linearly with the number of
elements, while the brute force algorithm scales quadratically. We observe that in addition
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Fig. 8. Comparison in computing time for two dimensional meshes on the left, and three dimensional
meshes on the right.

to the asymptotic superiority, the new projection algorithm is already competitive for small
meshes, i.e. the algorithmic overhead is negligible.

5. CONCLUSIONS

We have presented intersection algorithms for non-matching grids in two and three spatial
dimensions. The algorithms all have linear complexity, and address the numerically difficult
intersection process of geometric objects by a new, robust approach. Our numerical results
show that the projection algorithm has a negligible algorithmic overhead, and thus it is
already competitive for small meshes.
In the intersection algorithm we presented for two triangles/tetrahedra, before starting

the computation of the intersection, one could use an inexact range test in order to quickly
exclude non-intersecting triangles/tetrahedra and thus make the algorithm slightly faster.
The advancing front technique has already been extended to two non-conforming inter-

faces that do not quite lie in the same physical manifold (e.g. for contact problems), and
thus an additional projection “normal” to the interface is necessary. It is currently adapted
to the case of two dimensional meshes which are immersed in a three dimensional domain.

APPENDIX

A. INTERSECTION3D ROUTINE

In this appendix, we give the intersection algorithm generalized to three dimensional meshes.

function [P,nc,H,v]=Intersection3d(X,Y);
% INTERSECTION3D computes intersection polyhedron of two tetrahedra
% [P,nc,H,v]=Intersection3d(X,Y); computes for the two given tetrahedra
% X and Y (point coordinates are stored column-wise) the points P
% where they intersect, in nc the bolean information of which
% neighbors of X are also intersecting with Y, in H stored row-wise
% the polygons of the faces of the intersection polyhedron, stored
% counter-clock-wise looking from the outside, and in v the volume
% of the intersection.

P=[];nc=[0 0 0 0];
sxk=zeros(4,1); % intersection node index
syk=zeros(4,1); % on surfaces of X and Y
l1=[1 2 3 4 1 2]; % enumeration of lines
l2=[2 3 4 1 3 4];
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s1=[1 1 2 3 1 2]; % faces touching each line
s2=[4 2 3 4 3 4];
ni=[1 3 4; 1 2 4; 1 2 3; 2 3 4]; % faces touching each node
for i=1:6 % find intersections of edges of
for j=1:4 % X with surfaces of Y
p=TriangleLineIntersection([X(:,l1(i)) X(:,l2(i))],...

[Y(:,j) Y(:,mod(j,4)+1) Y(:,mod(j+1,4)+1)]);
if ~isempty(p)

[k,P]=InsertPoint(p,P); % insert point if new
nc(s1(i))=1;nc(s2(i))=1;
syk(j)=syk(j)+1;SY(j,syk(j))=k; % remember to which surfaces
sxk(s1(i))=sxk(s1(i))+1;SX(s1(i),sxk(s1(i)))=k; % it belongs
sxk(s2(i))=sxk(s2(i))+1;SX(s2(i),sxk(s2(i)))=k;

end;
end;

end;
for i=1:6 % find intersections of edges of
for j=1:4 % Y with surfaces of X
p=TriangleLineIntersection([Y(:,l1(i)) Y(:,l2(i))],...

[X(:,j) X(:,mod(j,4)+1) X(:,mod(j+1,4)+1)]);
if ~isempty(p)

[k,P]=InsertPoint(p,P);
nc(j)=1;
sxk(j)=sxk(j)+1;SX(j,sxk(j))=k;
syk(s1(i))=syk(s1(i))+1;SY(s1(i),syk(s1(i)))=k;
syk(s2(i))=syk(s2(i))+1;SY(s2(i),syk(s2(i)))=k;

end;
end;

end;

fn=[0 0 0 0];
for i=1:4 % find interior points of X in Y
if PointInTetrahedron(X(:,i),Y)
[k,P]=InsertPoint(X(:,i),P);
sxk(ni(i,1))=sxk(ni(i,1))+1;SX(ni(i,1),sxk(ni(i,1)))=k;
sxk(ni(i,2))=sxk(ni(i,2))+1;SX(ni(i,2),sxk(ni(i,2)))=k;
sxk(ni(i,3))=sxk(ni(i,3))+1;SX(ni(i,3),sxk(ni(i,3)))=k;
p=X(:,i); fn(i)=1;

end;
if PointInTetrahedron(Y(:,i),X) % and vice versa
[k,P]=InsertPoint(Y(:,i),P);
syk(ni(i,1))=syk(ni(i,1))+1;SY(ni(i,1),syk(ni(i,1)))=k;
syk(ni(i,2))=syk(ni(i,2))+1;SY(ni(i,2),syk(ni(i,2)))=k;
syk(ni(i,3))=syk(ni(i,3))+1;SY(ni(i,3),syk(ni(i,3)))=k;
p=Y(:,i);

end;
end;
if sum(fn)>1 % more than one point inside
nc=[1 1 1 1]; % means all neighbors intersect

end;
H=[]; % contains surfaces of the
n=0; % intersection polyhedron
v=0;
if size(P,2)>3 % construct intersection polyhedra,
cm=sum(P’)’/size(P,2); % center of mass
for i=1:4 % scan surfaces of X and Y
if sxk(i)>0
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no=RemoveDuplicates(SX(i,1:sxk(i)));
if length(no)>2 & NewFace(H,no) % don’t compute degenerate polygons

p=P(:,no); % and check if face is new
[p,id]=OrderPoints(p,cm); % order points counter-clock-wise
n=n+1;
H(n,1:length(id))=no(id); % add surface
v=v+PyramidVolume(p,cm); % add volume

end;
end
if syk(i)>0
no=RemoveDuplicates(SY(i,1:syk(i)));
if length(no)>2 & NewFace(H,no)

p=P(:,no);
[p,id]=OrderPoints(p,cm);
n=n+1;
H(n,1:length(id))=no(id);
v=v+PyramidVolume(p,cm);

end;
end

end
end;

B. REMAINING 2D ROUTINES

We show in this appendix a possible Matlab implementation of the complete remaining
routines in 2d in order to test the code, and also give two examples on how to run it.

B.1. Remaining Geometric Primitives

Here is a possible implementation of the remaining geometric primitives
EdgeIntersections, PointsOfXInY and SortAndRemoveDoubles, which are used by
our intersection algorithm implementation in Figure 4:

function [P,n]=EdgeIntersections(X,Y)
% EDGEINTERSECTIONS computes edge intersections of two triangles
% [P,n]=EdgeIntersections(X,Y) computes for the two given triangles X
% and Y the points P where their edges intersect. In addition,
% in n the indices of which neighbors of X are also intersecting
% with Y are given.

P=[]; k=0; n=[0 0 0];
for i=1:3 % find all intersections of edges
for j=1:3

b=Y(:,j)-X(:,i);
A=[X(:,mod(i,3)+1)-X(:,i) -Y(:,mod(j,3)+1)+Y(:,j)];
if rank(A)==2 % edges not parallel
r=A\b;
if r(1)>=0 & r(1)<=1 & r(2)>=0 & r(2)<=1, % intersection found

k=k+1; P(:,k)=X(:,i)+r(1)*(X(:,mod(i,3)+1)-X(:,i)); n(i)=1;
end;

end;
end;

end;

function P=PointsOfXInY(X,Y);
% POINTSOFXINY finds corners of one triangle within another one
% P=PointsOfXInY(X,Y); computes for the two given triangles X
% and Y (point coordinates are stored column-wise, in counter clock
% order) the corners P of X which lie in the interior of Y.
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k=0;P=[];
v0=Y(:,2)-Y(:,1); v1=Y(:,3)-Y(:,1); % find interior points of X in Y
d00=v0’*v0; d01=v0’*v1; d11=v1’*v1; % using baricentric coordinates
id=1/(d00*d11-d01*d01);
for i=1:3
v2=X(:,i)-Y(:,1); d02=v0’*v2; d12=v1’*v2;
u=(d11*d02-d01*d12)*id; v=(d00*d12-d01*d02)*id;
if u>=0 & v>=0 & u+v<=1 % also include nodes on the boundary
k=k+1; P(:,k)=X(:,i);

end;
end;

Remark B.1. In all the tests over the past years, the routine above never failed to com-
pute the correct intersection. There is however no proof using a detailed floating point anal-
ysis of this. In one case of a three dimensional interface projected onto a two-dimensional
surface, the routine PointsOfXInY failed, and we modified the decision line by adding a
tolerance to guarantee that it also includes points which are numerically barely inside:

if u>=0-eps & v>=0-eps & u+v<=1+eps % include nodes with guarantee

It remains open if this is really necessary for the 2d grids we consider here. One could also
extend the lines by eps in the routine EdgeIntersections to achieve a similar goal.

The third geometric primitive is

function P=SortAndRemoveDoubles(P);
% SORTANDREMOVEDOUBLES sort points and remove duplicates
% P=SortAndRemoveDoubles(P); orders polygon corners in P counter
% clock wise and removes duplicates

ep=10*eps; % tolerance for identical nodes
m=size(P,2);
if m>0
c=sum(P’)’/m; % order polygon corners counter
for i=1:m % clockwise
d=P(:,i)-c; ao(i)=angle(d(1)+sqrt(-1)*d(2));

end;
[tmp,id]=sort(ao);
P=P(:,id);
i=1;j=2; % remove duplicates
while j<=m
if norm(P(:,i)-P(:,j))>ep

i=i+1;P(:,i)=P(:,j);j=j+1;
else

j=j+1;
end;

end;
P=P(:,1:i);

end;

B.2. Mortar Element Integration

Here is the implementation of the mortar integration routine MortarInt, useful when the
mesh intersection algorithm is used for mortar methods:

function M=MortarInt(T,X,Y)
% MORTARINT computes mortar contributions
% M=MortarInt(T,X,Y); computes for triangles X and Y the integrals
% of all P1 element shape function combinations between triangles
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% X and Y on triangle T. The result is stored in the 3 by 3 matrix M

Jd=-T(1,1)*T(2,3)-T(1,2)*T(2,1)+T(1,2)*T(2,3)+T(1,1)*T(2,2)+...
T(1,3)*T(2,1)-T(1,3)*T(2,2);

a=T(1,1);
d=T(2,1);
e=-T(2,1)+T(2,2);
b=-T(1,1)+T(1,2);
c=-T(1,1)+T(1,3);
f=-T(2,1)+T(2,3);

T1=1/2*(X(1,1)*(X(2,2)-X(2,3))-X(1,2)*(X(2,1)-X(2,3))+X(1,3)*(X(2,1)-X(2,2)));
T2=1/2*(Y(1,1)*(Y(2,2)-Y(2,3))-Y(1,2)*(Y(2,1)-Y(2,3))+Y(1,3)*(Y(2,1)-Y(2,2)));

A11=1/(2*abs(T1))*((X(2,2)-X(2,3))*b-(X(1,2)-X(1,3))*e);
B11=1/(2*abs(T1))*((X(2,2)-X(2,3))*c-(X(1,2)-X(1,3))*f);
C11=1/(2*abs(T1))*((X(2,2)-X(2,3))*a-(X(1,2)-X(1,3))*d ...

+(X(1,2)*X(2,3)-X(2,2)*X(1,3)));
A12=1/(2*abs(T1))*((X(2,3)-X(2,1))*b+(X(1,1)-X(1,3))*e);
B12=1/(2*abs(T1))*((X(2,3)-X(2,1))*c+(X(1,1)-X(1,3))*f);
C12=1/(2*abs(T1))*((X(2,3)-X(2,1))*a+(X(1,1)-X(1,3))*d ...

-(X(1,1)*X(2,3)-X(2,1)*X(1,3)));
A13=1/(2*abs(T1))*((X(2,1)-X(2,2))*b-(X(1,1)-X(1,2))*e);
B13=1/(2*abs(T1))*((X(2,1)-X(2,2))*c-(X(1,1)-X(1,2))*f);
C13=1/(2*abs(T1))*((X(2,1)-X(2,2))*a-(X(1,1)-X(1,2))*d ...

+(X(1,1)*X(2,2)-X(2,1)*X(1,2)));
A21=1/(2*abs(T2))*((Y(2,2)-Y(2,3))*b-(Y(1,2)-Y(1,3))*e);
B21=1/(2*abs(T2))*((Y(2,2)-Y(2,3))*c-(Y(1,2)-Y(1,3))*f);
C21=1/(2*abs(T2))*((Y(2,2)-Y(2,3))*a-(Y(1,2)-Y(1,3))*d ...

+(Y(1,2)*Y(2,3)-Y(2,2)*Y(1,3)));
A22=1/(2*abs(T2))*((Y(2,3)-Y(2,1))*b+(Y(1,1)-Y(1,3))*e);
B22=1/(2*abs(T2))*((Y(2,3)-Y(2,1))*c+(Y(1,1)-Y(1,3))*f);
C22=1/(2*abs(T2))*((Y(2,3)-Y(2,1))*a+(Y(1,1)-Y(1,3))*d ...

-(Y(1,1)*Y(2,3)-Y(2,1)*Y(1,3)));
A23=1/(2*abs(T2))*((Y(2,1)-Y(2,2))*b-(Y(1,1)-Y(1,2))*e);
B23=1/(2*abs(T2))*((Y(2,1)-Y(2,2))*c-(Y(1,1)-Y(1,2))*f);
C23=1/(2*abs(T2))*((Y(2,1)-Y(2,2))*a-(Y(1,1)-Y(1,2))*d ...

+(Y(1,1)*Y(2,2)-Y(2,1)*Y(1,2)));

M(1,1)=1/24*Jd*(2*A11*A21+B11*A21+A11*B21+2*B11*B21+4*C11*A21 ...
+4*A11*C21+4*C11*B21+4*B11*C21+12*C11*C21);

M(1,2)=1/24*Jd*(2*A11*A22+B11*A22+A11*B22+2*B11*B22+4*C11*A22 ...
+4*A11*C22+4*C11*B22+4*B11*C22+12*C11*C22);

M(1,3)=1/24*Jd*(2*A11*A23+B11*A23+A11*B23+2*B11*B23+4*C11*A23 ...
+4*A11*C23+4*C11*B23+4*B11*C23+12*C11*C23);

M(2,1)=1/24*Jd*(2*A12*A21+B12*A21+A12*B21+2*B12*B21+4*C12*A21 ...
+4*A12*C21+4*C12*B21+4*B12*C21+12*C12*C21);

M(2,2)=1/24*Jd*(2*A12*A22+B12*A22+A12*B22+2*B12*B22+4*C12*A22 ...
+4*A12*C22+4*C12*B22+4*B12*C22+12*C12*C22);

M(2,3)=1/24*Jd*(2*A12*A23+B12*A23+A12*B23+2*B12*B23+4*C12*A23 ...
+4*A12*C23+4*C12*B23+4*B12*C23+12*C12*C23);

M(3,1)=1/24*Jd*(2*A13*A21+B13*A21+A13*B21+2*B13*B21+4*C13*A21 ...
+4*A13*C21+4*C13*B21+4*B13*C21+12*C13*C21);

M(3,2)=1/24*Jd*(2*A13*A22+B13*A22+A13*B22+2*B13*B22+4*C13*A22 ...
+4*A13*C22+4*C13*B22+4*B13*C22+12*C13*C22);

M(3,3)=1/24*Jd*(2*A13*A23+B13*A23+A13*B23+2*B13*B23+4*C13*A23 ...
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+4*A13*C23+4*C13*B23+4*B13*C23+12*C13*C23);

B.3. Running an Example in 2d

The following example shows how the algorithm in 2d can be used for a simple model
problem:

% 2D EXAMPLE: test the advancing front program for two dimensional meshes

[N1,T1]=Mesh2d(1); [N1,T1]=RefineMesh(N1,T1); [N1,T1]=RefineMesh(N1,T1);
[N2,T2]=Mesh2d(2); [N2,T2]=RefineMesh(N2,T2); [N2,T2]=RefineMesh(N2,T2);

fig=figure(1); clf; set(fig,’DoubleBuffer’,’on’);
PlotMesh(N1,T1,’b’); PlotMesh(N2,T2,’r’);
xlabel(’x’); ylabel(’y’); title(’nonconforming grids in 2d’);

M=InterfaceMatrix(N1,T1,N2,T2);

The example uses three basic routines to generate, refine and plot meshes, namely Mesh2d,
RefineMesh and PlotMesh, which are given below:

function [N,T]=Mesh2d(p)
% MESH2D generates simple 2d triangular meshes
% [N,T]=Mesh2d(p); generates an initial coarse triangular mesh for
% each value of p. The result is a list of triangles T which points
% into the list of nodes N containing x and y coordinates. The
% triangle contains in entries 4 to 6 the neighboring triangle
% indices, and as a guard # of triangles + 1 if there is no
% neighbor.

if p==1
N=[0 1 0 1

0 0 1 1];
T=[1 2 4 3 3 2

1 4 3 1 3 3];
elseif p==2
N=[0 1 0 1 0.5

0 0 1 1 1];
T=[1 2 5 4 2 3

2 4 5 4 4 1
1 5 3 1 4 4];

end

function [Nr,Tr]=RefineMesh(N,T);
% REFINEMESH refines the mesh by a factor of 4
% [Nr,Tr]=RefineMesh(N,T); refines the mesh given by the nodes N and
% the triangles T by cutting each triangle into four smaller ones.
% The neighboring information in the triangles is also updated,
% and the boundary guard is still number of trianlges plus one,
% as in NewMesh.

Nr=N; % new node list starts with old one
nn=size(N,2);
Tr=[]; % triangles start from scratch
nt=0; % number of new triangles
ep=10*eps; % to check identical nodes
for j=1:size(T,1), % quadrisect all old triangles
i=T(j,1:3); n=N(:,i); % old nodes of current triangle
n(:,4)=(n(:,1)+n(:,2))/2; % 3 new nodes to be used
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n(:,5)=(n(:,1)+n(:,3))/2;
n(:,6)=(n(:,2)+n(:,3))/2;
for k=4:6, % insert new nodes in Nr if necessary

l=find(Nr(1,:)==n(1,k));
m=find(Nr(2,l)==n(2,k));
if isempty(m), % node not found, hence insert
nn=nn+1;
Nr(:,nn)=n(:,k);
i(k)=nn;

else
i(k)=l(m); % node was found

end;
end;
Tr(nt+1,:)=[i(1) i(4) i(5) -1 nt+2 -1];
Tr(nt+2,:)=[i(5) i(4) i(6) nt+1 nt+3 nt+4];
Tr(nt+3,:)=[i(6) i(4) i(2) nt+2 -1 -1];
Tr(nt+4,:)=[i(6) i(3) i(5) -1 -1 nt+2];
nt=nt+4;

end;
for j=1:size(T,1), % updating neighboring information
i=T(j,1:3);
ne=T(j,4:6);
if ne(1)==size(T,1)+1 % real boundary

Tr(4*(j-1)+1,4)=size(Tr,1)+1; Tr(4*(j-1)+3,5)=size(Tr,1)+1;
else

id=find(T(ne(1),1:3)==i(2));
if id==1
Tr(4*(j-1)+1,4)=4*(ne(1)-1)+3; Tr(4*(j-1)+3,5)=4*(ne(1)-1)+1;

elseif id==2
Tr(4*(j-1)+1,4)=4*(ne(1)-1)+4; Tr(4*(j-1)+3,5)=4*(ne(1)-1)+3;

else
Tr(4*(j-1)+1,4)=4*(ne(1)-1)+1; Tr(4*(j-1)+3,5)=4*(ne(1)-1)+4;

end;
end;
if ne(2)==size(T,1)+1 % real boundary

Tr(4*(j-1)+3,6)=size(Tr,1)+1; Tr(4*(j-1)+4,4)=size(Tr,1)+1;
else

id=find(T(ne(2),1:3)==i(3));
if id==1
Tr(4*(j-1)+3,6)=4*(ne(2)-1)+3; Tr(4*(j-1)+4,4)=4*(ne(2)-1)+1;

elseif id==2
Tr(4*(j-1)+3,6)=4*(ne(2)-1)+4; Tr(4*(j-1)+4,4)=4*(ne(2)-1)+3;

else
Tr(4*(j-1)+3,6)=4*(ne(2)-1)+1; Tr(4*(j-1)+4,4)=4*(ne(2)-1)+4;

end;
end;
if ne(3)==size(T,1)+1 % real boundary

Tr(4*(j-1)+4,5)=size(Tr,1)+1; Tr(4*(j-1)+1,6)=size(Tr,1)+1;
else

id=find(T(ne(3),1:3)==i(1));
if id==1
Tr(4*(j-1)+4,5)=4*(ne(3)-1)+3; Tr(4*(j-1)+1,6)=4*(ne(3)-1)+1;

elseif id==2
Tr(4*(j-1)+4,5)=4*(ne(3)-1)+4; Tr(4*(j-1)+1,6)=4*(ne(3)-1)+3;

else
Tr(4*(j-1)+4,5)=4*(ne(3)-1)+1; Tr(4*(j-1)+1,6)=4*(ne(3)-1)+4;

end;
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end;
end;

function PlotMesh(N,T,col);
% PLOTMESH plots a triangluar mesh
% PlotMesh(N,T); plots the mesh given by the nodes N and triangles
% T. The real boundaries are drawn in bold and for small meshes
% the node numbers are added as well.

axis(’equal’);
for i=1:size(T,1),
for j=1:3,
line([N(1,T(i,j)) N(1,T(i,mod(j,3)+1))], ...

[N(2,T(i,j)) N(2,T(i,mod(j,3)+1))],’Color’,col);
bc=mean(N(:,T(i,1:3))’)’;

end;
end;
m=size(N,2);
if m<10,
for i=1:m,
text(N(1,i)+.01,N(2,i)+.02,num2str(i));

end;
end;

B.4. Testing the Complexity

We give here an example code to compare the computing time of the new method with a
brute force algorithm, also given below:

% 2D COMPLEXITY compares the computing time for 2d projections

nr=3; % number of mesh refinements
np=20; % number of projection calculations
vtb=zeros(1,nr); vtn=zeros(1,nr); s=zeros(1,nr);
for k=1:nr
[N1,T1]=Mesh2d(1); [N2,T2]=Mesh2d(2);
for l=1:k
[N1,T1]=RefineMesh(N1,T1); [N2,T2]=RefineMesh(N2,T2);

end
tb=0;tn=0;
for i=1:np
N1(:,5:end)=N1(:,5:end)+(0.1*rand(size(N1(:,5:end)))-0.05);
N2(:,5:end)=N2(:,5:end)+(0.1*rand(size(N2(:,5:end)))-0.05);
t0=clock; M=InterfaceMatrix(N1,T1,N2,T2); tn=tn+etime(clock,t0);
t0=clock; Mb=InterfaceMatrixBruteForce(N1,T1,N2,T2); tb=tb+etime(clock,t0);

end
vtn(k)=tn; vtb(k)=tb; s(k)=size(T1,1);

end
c1=vtb(end)/s(end)^2; c2=vtn(end)/s(end); % align theoretical and numerical curves
loglog(s,vtb,’--o’,s,vtn,’--*’,s,c1*s.^2,’-o’,s,c2*s,’-*’);
legend(’Brute Force’,’New Method’,’O(n^2)’,’O(n)’,2);
xlabel(’number of triangles’); ylabel(’time for 20 projections’);

function M=InterfaceMatrixBruteForce(Na,Ta,Nb,Tb);
% INTERFACEMATRIXBRUTEFORCE projection matrix for nonmatching grids
% M=InterfaceMatrixBruteForce(Na,Ta,Nb,Tb); takes two triangular
% meshes Ta and Tb with associated nodal coordinates in Na and Nb
% and computes the interface projection matrix M using a brute
% force approach
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M=sparse(size(Nb,2),size(Na,2));
for i=1:size(Ta,1)
for j=1:size(Tb,1)

[P,nc,Mc]=Intersect(Nb(:,Tb(j,1:3)),Na(:,Ta(i,1:3)));
if ~isempty(P) % intersection found
M(Tb(j,1:3),Ta(i,1:3))=M(Tb(j,1:3),Ta(i,1:3))+Mc;

end
end

end

C. REMAINING 3D ROUTINES

We show in this appendix a possible Matlab implementation of the remaining 3d routines
from Section 3.

C.1. Precise Implementation of the 3d Advancing Front Algorithm

Here is the complete implementation of the algorithm in Figure 7 in 3d:

function InterfaceMatrix3d(Na,Ta,Nb,Tb);
% INTERFACEMATRIX3D projection matrix for nonmatching thetrahedra grids
% M=InterfaceMatrix3d(Na,Ta,Nb,Tb); takes two tetrahedra meshes Ta
% and Tb with associated nodal coordinates in Na and Nb and
% computes the projection matrix M. As a precondition, the first
% thetrahedra in Ta and Tb need to intersect.

bl=[1]; % bl: list of tetrahedra of Tb to treat
bil=[1]; % bil: list of tetrahedra Ta to start with
bd=zeros(size(Tb,1)+1,1); % bd: flag for tetrahedra in Tb treated
bd(end)=1; % guard, to treat boundaries
bd(1)=1; % mark first tetrahedra in b list.
while length(bl)>0
bc=bl(1); bl=bl(2:end); % bc: current tetrahedra of Tb
al=bil(1); bil=bil(2:end); % tetrahedra of Ta to start with
ad=zeros(size(Ta,1)+1,1); % same as for bd
ad(end)=1;
ad(al)=1;
n=[0 0 0 0]; % tetrahedra intersecting with neighbors
while length(al)>0

ac=al(1); al=al(2:end); % take next candidate
[P,nc,H,v]=Intersection3d(Nb(:,Tb(bc,1:4)),Na(:,Ta(ac,1:4)));
if ~isempty(P) % intersection found
t=Ta(ac,4+find(ad(Ta(ac,5:8))==0));
al=[al t]; % add neighbors
ad(t)=1;
n(find(nc>0))=ac; % ac is starting candidate for neighbor

end
end
tmp=find(bd(Tb(bc,5:8))==0); % find non-treated neighbors
idx=find(n(tmp)>0); % only if intersecting with Ta
t=Tb(bc,4+tmp(idx));
bl=[bl t]; % and add them
bil=[bil n(tmp(idx))]; % with starting candidates Ta
bd(t)=1;

end
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C.2. Remaining Geometric Primitives

For the remaining geometric primitives TriangleLineIntersection, InsertPoint,
RemoveDuplicates, NewFace, OrderPoints and PyramidVolume, a possible implementa-
tion in Matlab is given below:

function p=TriangleLineIntersection(X,Y);
% TRIANGLELINEINTERSECTION intersection of a line and a triangle
% p=TriangeLineIntersection(X,Y); computes for a given line X in 3d,
% and a triangle Y in 3d, the point p of intersection in the
% triangle, and otherwise returns p=[];

p=[];
b=Y(:,1)-X(:,1);
A=[X(:,2)-X(:,1) Y(:,1)-Y(:,2) Y(:,1)-Y(:,3)];
if rank(A)==3 % edge and triangle not parallel
r=A\b;
if r(1)>=0 & r(1)<=1 & r(2)>=0 & r(3)>=0 & r(2)+r(3)<=1
p=X(:,1)+r(1)*(X(:,2)-X(:,1));

end;
end;

function p=PointInTetrahedron(X,Y);
% POINTINTETRAHEDRON check if a point is inside a tetrahedron
% p=PointInTetrahedron(X,Y); checks if the point X is contained in
% the tetrahedron Y.

D0=det([Y; ones(1,4)]);
D1=det([X Y(:,2:4); ones(1,4)]);
D2=det([Y(:,1) X Y(:,3:4); ones(1,4)]);
D3=det([Y(:,1:2) X Y(:,4); ones(1,4)]);
D4=det([Y(:,1:3) X; ones(1,4)]);
p=sign(D0)==sign(D1) & sign(D0)==sign(D2) & sign(D0)==sign(D3) & ...
sign(D0)==sign(D4);

function [k,P]=InsertPoint(p,P);
% INSERTPOINT inserts a new intersection point
% [k,P]=InsertPoint(p,P); inserts an intersection point p into
% the list of intersection points P. If the point p is already
% contained in P, the point is not inserted, and k is the index
% of the point found in the list. Otherwise, the new point is
% inserted, and k is its index in the list.

ep=10*eps; % tolerance for identical nodes
k=1;
while k<=size(P,2) & norm(p-P(:,k))>ep
k=k+1;

end;
if k>size(P,2) % new node is not contained in P
P(:,k)=p;

end;

function p=RemoveDuplicates(p)
% REMOVEDUPLICATES removes multiple entries
% p=RemoveDuplicates(p) removes duplicate entries from the vector
% p.

p=sort(p);
i=1;j=2; % remove duplicates
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while j<=length(p)
if p(i)<p(j)

i=i+1;p(i)=p(j);j=j+1;
else

j=j+1;
end;

end;
p=p(1:i);

function b=NewFace(H,id)
% NEWFACE checks if index set is contained already in H
% b=NewFace(H,id) checks if a permutation of the vector id is
% contained in a row of the matrix H.

n=size(H,1);
m=length(id);
A=zeros(n,m);
A(1:n,1:size(H,2))=H;
id=sort(id);
i=0;
b=1==1; % true
while b & i<n
i=i+1;
b=norm(sort(A(i,1:m))-id)>0;

end;

function [p,id]=OrderPoints(p,cm);
% ORDERPOINTS order points counterclockwise
% [p,id]=OrderPoints(p,cm); orders the points in a plane in 3d
% stored columnwise in the matrix p counterclockwise looking from
% the side opposite to the point cm outside the plane. There must
% be more than two points. p contains the reorderd points, and id
% contains the index reordering.

d1=p(:,2)-p(:,1); % two reference vectors
d2=p(:,3)-p(:,1);
if (cm-p(:,1))’*cross(d1,d2)<0 % good orientation ?
dr=d1/norm(d1); % ’x-axis’ unit vector
dn=d2-d2’*dr*dr;
dn=dn/norm(dn); % ’y-axis’ unit vector

else
dr=d2/norm(d2); % ’x-axis’ unit vector
dn=d1-d1’*dr*dr;
dn=dn/norm(dn); % ’y-axis’ unit vector

end;
for j=2:size(p,2)
d=p(:,j)-p(:,1);
ao(j-1)=angle(d’*dr+sqrt(-1)*d’*dn);

end;
[tmp,id]=sort(ao);
id=[1 id+1];
p=p(:,id);

function v=PyramidVolume(P,c)
% PYRAMIDVOLUME computes the volume of a pyramid
% v=PyramidVolume(P,c) computes for the pyramid in 3d with base
% polygone given by the nodes P stored columnwise and the top c
% its volume v.
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a=0; % area
for i=3:size(P,2)
a=a+norm(cross(P(:,i)-P(:,1),P(:,i-1)-P(:,1)))/2;

end;
no=cross(P(:,3)-P(:,1),P(:,2)-P(:,1));
no=no/norm(no);
h=(c-P(:,1))’*no;
v=abs(a*h/3);

C.3. Running an Example in 3d

Here is how to run the intersection algorithm in 3d

% 3D EXAMPLE test the advancing front program for three dimensional meshes

[N1,T1]=Mesh3d(1); [N2,T2]=Mesh3d(1); N2=(N2/1.5);

fig=figure(1); clf; set(fig,’DoubleBuffer’,’on’);
PlotMesh3d(N1,T1,’b’); PlotMesh3d(N2,T2,’r’);
xlabel(’x’); ylabel(’y’); zlabel(’z’); title(’nonconforming grids in 3d’);

InterfaceMatrix3d(N1,T1,N2,T2);

The example uses basic routines to generate and plot 3d meshes, namely Mesh3d and
PlotMesh3d, and one can also refine the mesh using RefineMesh3d. All these routines are
given below, including the routine FindFace used internally by RefineMesh3d:

function [N,T]=Mesh3d(p)
% MESH3d generates simple tetrahedra meshes
% [N,T]=Mesh3d(p); generates an initial coarse tetrahedra mesh for
% each value of p. The result is a list of tetrahedra T which points
% into the list of nodes N containing x and y coordinates. The
% tetrahedra contains in entries 5 to 8 the neighboring tetrahedra
% indices, and as a guard # of tetrahedra + 1 if there is no
% neighbor.

if p==1 % a cube
N=[0 1 0 0 1 1 0 1

0 0 1 0 0 1 1 1
0 0 0 1 1 0 1 1];

T=[1 2 3 4 6 5 6 6
2 6 3 8 6 6 5 6
2 8 4 5 5 6 6 6
3 4 8 7 5 6 6 6
2 3 4 8 1 4 3 2];

elseif p==2 % just one tetrahedra as default
N=[0 1 0 0

0 0 1 0
0 0 0 1];

T=[1 2 3 4 2 2 2 2];
end

function [Nr,Tr]=RefineMesh3d(N,T);
% REFINEMESH3D refines the mesh by a factor of 8
% [Nr,Tr]=RefineMesh3d(N,T); refines the mesh given by the nodes N and
% the tetrahedra T by cutting each tetrahedra into 8 smaller ones.
% The neighboring information in the tetrahedra is also updated,
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% and the boundary guard is still the number of tetrahedra plus one,
% as in NewMesh3d.

Nr=N; % new node list starts with old one
nn=size(N,2);
Tr=[]; % tetrahedra start from scratch
nt=0; % number of new tetrahedra
ep=10*eps; % to check identical nodes
for j=1:size(T,1), % divide all old tetrahedra
i=T(j,1:4); n=N(:,i); % old nodes of current tetrahedra
n(:,5)=(n(:,1)+n(:,2))/2; % 6 new nodes to be used
n(:,6)=(n(:,1)+n(:,3))/2;
n(:,7)=(n(:,2)+n(:,3))/2;
n(:,8)=(n(:,1)+n(:,4))/2;
n(:,9)=(n(:,2)+n(:,4))/2;
n(:,10)=(n(:,3)+n(:,4))/2;
for k=5:10, % insert new nodes in Nr if necessary

[i(k),Nr]=InsertPoint(n(:,k),Nr);
end; % new tetrahedra with known neighborinfo
Tr(nt+1,:)=[i(1) i(5) i(6) i(8) -1 nt+5 -1 -1 ]; % corner tetrahedra
Tr(nt+2,:)=[i(5) i(2) i(7) i(9) -1 -1 nt+6 -1 ];
Tr(nt+3,:)=[i(6) i(7) i(3) i(10) -1 -1 -1 nt+7];
Tr(nt+4,:)=[i(8) i(9) i(10) i(4) nt+8 -1 -1 -1 ];
Tr(nt+5,:)=[i(5) i(7) i(6) i(8) -1 nt+7 nt+1 nt+6]; % interior tetrahedra
Tr(nt+6,:)=[i(5) i(9) i(7) i(8) nt+2 nt+8 nt+5 -1 ];
Tr(nt+7,:)=[i(6) i(7) i(10) i(8) nt+3 nt+8 -1 nt+5];
Tr(nt+8,:)=[i(8) i(9) i(7) i(10) nt+6 -1 nt+7 nt+4];
nt=nt+8;

end;
nn=[1 2 3 5 % new neighbor indices

2 3 4 8
3 4 1 7
4 1 2 6];

for j=1:size(T,1), % updating remaining neighborinfo
ne=T(j,5:8);
if ne(1)==size(T,1)+1 % real boundary

Tr(8*(j-1)+nn(1,:),5)=size(Tr,1)+1;
else

fn=FindFace(T(j,1:3),T(ne(1),1:4));
Tr(8*(j-1)+nn(1,:),5)=8*(ne(1)-1)+fn;

end;
if ne(2)==size(T,1)+1 % real boundary

Tr(8*(j-1)+nn(2,:),6)=size(Tr,1)+1;
else

fn=FindFace(T(j,2:4),T(ne(2),1:4));
Tr(8*(j-1)+nn(2,:),6)=8*(ne(2)-1)+fn;

end;
if ne(3)==size(T,1)+1 % real boundary

Tr(8*(j-1)+nn(3,:),7)=size(Tr,1)+1;
else

fn=FindFace(T(j,[3 4 1]),T(ne(3),1:4));
Tr(8*(j-1)+nn(3,:),7)=8*(ne(3)-1)+fn;

end;
if ne(4)==size(T,1)+1 % real boundary

Tr(8*(j-1)+nn(4,:),8)=size(Tr,1)+1;
else

fn=FindFace(T(j,[4 1 2]),T(ne(4),1:4));
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Tr(8*(j-1)+nn(4,:),8)=8*(ne(4)-1)+fn;
end;

end;

function f=FindFace(X,Y)
% FINDFACE find face in tetrahedra
% f=FindFace(X,Y) finds face X in thetrahedra Y, where the face and
% tetrahedra are given by node indices.

f(1)=find(Y==X(1));
f(2)=find(Y==X(2));
f(3)=find(Y==X(3));
switch sum(f)
case 6 % face 1 2 3
f(4)=5;
case 9 % face 2 3 4
f(4)=8;
case 8 % face 3 4 1
f(4)=7;
case 7 % face 4 1 2
f(4)=6;

end;
f=f’;

function PlotMesh3d(N,T,col);
% PLOTMESH3D plots a tetrahedra mesh
% PlotMesh3d(N,T,col); plots the mesh given by the nodes N and
% tetrahedra T in color col. For small meshes the node numbers are
% added as well.

axis(’equal’);
view(-37.5+180,30);
for i=1:size(T,1),
PlotTetrahedron(N(:,T(i,1:4)),col);

end;
m=size(N,2);
de=0.05;
if m<10,
for i=1:m,
text(N(1,i)+de,N(2,i)+de,N(3,i)+de,num2str(i),’Color’,’b’);

end;
end;

C.4. Testing the Complexity

We give here an example code to compare the computing time of the new method with a
brute force algorithm:

% 3D EXAMPLE3D compares in computing time for three dimensional projections

nr=3; % number of mesh refinements
np=5; % number of projection calculations

vtb=zeros(1,nr); vtn=zeros(1,nr); s=zeros(1,nr);
for k=1:nr
[N1,T1]=Mesh3d(1); [N2,T2]=Mesh3d(1); N2=(N2/1.5);
for l=1:k
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[N1,T1]=RefineMesh3d(N1,T1); [N2,T2]=RefineMesh3d(N2,T2);
end
tb=0;tn=0;
for i=1:np

N2(:,1:end)=N2(:,1:end)+(0.02*rand(size(N2(:,1:end))));
t0=clock; InterfaceMatrix3d(N1,T1,N2,T2); tn=tn+etime(clock,t0);
t0=clock; InterfaceMatrix3dBruteForce(N1,T1,N2,T2); tb=tb+etime(clock,t0);

end;
vtn(k)=tn; vtb(k)=tb; s(k)=size(T1,1);

end;
c1=vtb(end)/s(end)^2; c2=vtn(end)/s(end); % align theoretical and numerical curves
loglog(s,vtb,’--o’,s,vtn,’--*’,s,c1*s.^2,’-o’,s,c2*s,’-*’);
legend(’Brute Force’,’New Method’,’O(n^2)’,’O(n)’,2);
xlabel(’number of triangles’); ylabel(’time for 20 projections’);
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