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COMPONENT MAPPING AUTOMATION FOR PARAMETRIC COMPONENT
REDUCED BASIS TECHNIQUES (RB-COMPONENT) *
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JEAN-BAPTISTE MONTAVON®, OLIVIER PANTZ® AND ANTHONY PATERA”

Abstract. The aim of this paper is to develop some techniques for automation of the mappings
(between working and reference domains) required by reduced basis methods: the development of
geometry mappings is indeed often a substantial impediment to the implementation of reduced basis
techniques, especially in the context of the reduced basis element method (RBEM) and the reduced
basis component method (RBCM). In the RBCM context, the geometry mappings are applied at the
level of components. The methods have been tested on various cases to understand the limits of the
approach and try to foresee and overcome the possible failures.

Résumé. Le but de cet article est de développer certaines techniques d’automatisation des transfor-
mations (entre domaine de travail et domaine de référence) requis par les méthodes des bases réduites:
le calcul de telles applications géométriques est en effet souvent une entrave importante a la mise en
ceuvre de méthodes des bases réduites, en particulier dans le contexte de la RBEM (Reduced Basis
Element Method) et de la RBCM (Reduced Basis Component Method). Dans le cadre des méthodes
RBCM, les transformation de la géométrie sont appliquées au niveau des composantes. Les méthodes
ont été testées sur divers cas pour appréhender les limites de ’approche et essayer de prévoir et de
surmonter les possibles failles.
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INTRODUCTION AND MOTIVATION

The objective of this project is to compute — in real-time — the solution to parameter dependent partial dif-
ferential equations (PDEs), where the parameters include geometrical factors generically denoted here as p. In
this paper, the PDE we consider as an example is the Laplace problems (1) set on the spatial domain Q, C R?
(d =2 or 3) with varying values of given sets of geometrical factors p : Find ¢ € H'(12,) such that

—Ap = 0 in Q,,
¢ = gy onTy, (1)
¢ = 0 onl',,

where the boundary 0€, is composed of two parts: 9, = I'f UI', with I', the parameter dependent boundary
of the parametrized domain and I'; the fixed boundary (possibly empty) and g; is an appropriate function.

Classical discretization techniques, such as finite element methods, may be too expensive if multiple reso-
lutions are required or real-time response is expected. In this perspective, the Reduced Basis (RB) method
[1,16,18] exploits the parametric structure of the PDE to construct fast and computationally efficient approxi-
mations.

To be even faster the RB method may be combined with Domain Decomposition and leads to component-
based RB approaches namely the reduced basis element method (RBEM) [14,15] and the reduced basis com-
ponent method (RBCM) [11,12,19]. In these versions of the reduced basis method, the domain of interest
Q, (where the PDE is set) is decomposed into a series of subdomains with simple shapes called components
Q, = UK Ck, [5,10]. Let us consider for example the case of Fig. 1 that represents the spatial domain of a
horn for which the length L and the radii ag and ameutn can vary [13].
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FIGURE 1.

The decomposition that is proposed in the frame of the RBCM is exemplified on Fig. 2.
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FIGURE 2

Each of the components featured in there is obtained by deformation of one reference component chosen
among a set of few reference components. Each reference component is provided with some basis functions
(reduced basis functions) that represent the behavior of the set of all the PDE solutions on such subdomains.
The restriction of the solution to (1) to every component is then sought as a linear combination of those basis
functions mapped onto the component from the associated reference component.

The objective of this RB-Component project is to rapidly propose the mapping that needs to be used
to transfer back and forth all the informations (mesh, reduced basis, geometrical factors) from the reference
components to each associated subdomain in €2, in order to solve the PDE of interest on the global domain (2,.

It is not uncommon to use the elasticity equation to lift boundary data into the interior for the purpose of
geometry mappings (for example, for ALE fluids calculations) or mesh generation, see [6,8, 20, 21].

In our approach we propose new strategies to generate these maps using the solution u to a linear elasticity
problem. Each new subdomain is obtained by deforming the appropriate reference component through a map
T :z +— Z + u(Z) that only has to send the boundary of the reference component onto the boundary of the
subdomain.

The different methods that have been tested differ from the way the displacements u are imposed on the com-
ponent boundary. The first technique that we have investigated, consists in simply imposing classical Dirichlet
boundaries conditions, but it requires an explicit parametric definition of the boundary component, which is
not always possible. The second approach that we have studied, consists in a penalization method which only
requires an implicit caracterization of the boundary; though this description of the boundary is less precise it
appears sufficient for our purpose.

In what follows we shall focus on a single component, in the sense that we do not perform any domain
decomposition. There is thus only one reference component and the corresponding deformed component. In
Sec. 1, we tested these different approaches to build an automatized mapping in order to solve Laplace problems
as (1) over different kinds of geometry. Then, in Sec. 2 we present the mapping used in a reduced basis method
context.

1. COMPUTATION OF THE DISPLACEMENT FIELD FOR THE MAPPING AND RESOLUTION OF
THE LAPLACE EQUATION ON THE DEFORMED DOMAIN

Let p be a set of geometrical factors used to parameterize the geometry of the unique component C , = Q,
and et the reference domain. The aim of this paper is to propose automatized techniques to build a mapping T’
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from the domain €,ef to the domain €2,. We consider here only the two-dimensional case (d = 2): we denote by

(Z1,T2) the coordinates of the point Z in the reference domain Q.f, (1, 22) the coordinates of the associated
point x in £2,. We choose a mapping T as follows

X _ Tl(.’i’) _ _ T +U1(.’i)
xr = = T xTr) = _ =X + ulxr) = _ _ 2
(952 > ) < Ty(z) ) @) ($2+u2(:1:) (2)
where u(Z) = (u1(Z), u2(Z)) is the displacement. As said above, we choose that the displacement is the solution

of a linear elasticity problem over the reference domain €2ef:
Find u € V such that

/ dpe(u) : e(v) + Adiv (u) div (v) d& = 0, Yo € (H(Qwer))?, 3)
Qret

where V is a space that is in some sense defined as (the precise definition being given hereafter)

Ve~ {v=(v1,v2) € (H (er))?; v=00nTy; Z+v(Z) €T, V& € et}

\p) = ((l-i-l/ﬁlf—QV)’ 2(1]3-1/)) are the Lamé coeflicients, with E the Young’s modulus and v the Poisson’s ratio,
and e is the linearized strain tensor given by

€11 (’U,) = 851’LL1,
exn(u) = 0Ozus, (4)
612(11') = 621( ) = %(aw2u1 + 8x1 Ug)

with the notation e(u Z e;;(u)e; ;(

It is classical, and will be 1nstrumenta1 for our approach, to remind that problem (3) is linked to the problem

of minimizing the energy
/ Adiv ()2 + 21 e (w)?)dz. (5)
xef Z]

and the first choice of space V, in line with this minimization process, is called here an explicit version (called
also “pointwise”) : assuming that s — Z(s) (resp. s — (s)) is a one-to-one parametrization of I'iet (resp. of
r,):

V = Vixplicit = {v = (v1,v2) € (H(Qer))?; v =0o0n I'y; v(Z(s)) = z(s) — 2(s), Vs}.

At this level it is interesting to recall that there are two ways to impose Dirichlet boundary conditions: the
strong one where the discrete solution belongs to V and the weak one where the boundary condition is satisfied
through a penalization formulation. In what follows we will first test these two ways and then focus on the
weak one that appears much more simple to implement. In addition the weak formulation only requires an
implicit caracterization of the boundary which is generally much more simple than having a parametrization
(especially in higher dimension that will be dealt in a future paper 2, € R?). This leads us to introduce an
implicit version (called also “slippery”) of the space V : assuming that I', is defined as the set of points & in
R? such that F,(z) = 0:

V= Vvimplicit = {’U = (’Ul,’Ug) S (Hl(Qref))Q; v=0o0n Ff; Fp(.’i -‘r’l)((i‘)) =0, Vx € Fref}.

Let us now proceed to the use of the map from the reference domain: a simple change of variables leads to

/ Vo - Vvdx—o—/ KV3z(¢poT) -Vz(voT)dx
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with
K=7'77"J], (6)

where J is the Jacobian matrix of T':
g ( Omwr Onay \ _ [ O (T1(z))
\ On, 72 Oz,ma )\ 0, (T2(Z))

and J is det(J), more precisely, this reads

K==L ( (0z,(T2(%)))* + 05, (T1(2))* —(0z,(T2(x)) Oz, (T2(%)) + 0z, (T1()) Oz, (T1(2))) >
[T]\ —(0z, (T2(2)) Oz ? ))?

with J = 0z, (T1(Z)) Oz, (T2(Z)) — Oz, (T1(2)) Oz, (T2(Z)).

One convenient way to verify that the mapping as defined above is correct, with respect to our aim which
is to simulate partial differential equation on €, is to consider the Laplace problem (1) over Q, that we state
here under a weak formulation:

Find ¢ € W :={z € H'(Q,); z=gs onTy; 2=0onT,} such that, Vo € H}(Q,):

/V¢~Vvdx:0:/ Oz, Oy ¥ + O3, ¢ On, v dex. (8)
Q, Q,

In what follows we tested different approaches to compute the displacements w which will be used in the
mapping T for several test cases. All the simulations have been done using IP; finite element within Freefem++ [7].
Several examples are presented to compare different solution algorithms but also different treatments of F, (e.g.,
explicit versus implicit). More precisely, we first present in Sec. 1.1.1, a circular hole with pointwise Dirichlet
strong boundary conditions, which are the natural way to impose the displacement on the boundary I',. As
it is difficult to use strong Dirichlet conditions for the general case, and we propose instead to use a penalized
approach: we provide in Sec. 1.1.2 a comparison with penalized Dirichlet conditions. Then we consider a uniform
shear square (with linear F,) with strong (in Sec. 1.1.3), and penalized (in Sec. 1.2.1) Dirichlet conditions. The
conclusion is that we do not loose much when using a penalized formulation. Thus we use a penalized version
to treat increasingly more complex deformations: a non-uniform shear square (with nonlinear F,) in Sec. 1.2.2,
then a bell (with nonlinear and large amplitude F,) in Sec. 1.2.3, and finally a crescent moon with a cusp, in
Sec. 1.2.4.

1.1. Computation of the displacement using Dirichlet boundary conditions

1.1.1. Ezample 1: square with a circular hole and strong Dirichlet boundary conditions

In this example, we consider a generic component in the form of a square [-1,1] x [—1,1] where a disc of
radius a and centered in ¢ = (0,0) has been removed, the reference will have about the same shape except that
the removed disc will have a radius equal to a (see Fig. 3).
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L'y L'y

FIGURE 3. Left: reference domain {)..¢; Right: generic parameter dependent domain €2,.

In this example the set of parameter p is made up of the radius a. In the generic parameter dependent
domain €, the boundary I', represents the parameter dependent boundary I',. To compute a displacement u
that describes the mapping from the reference domain 2, to the generic domain ,, we solved a linear elas-
ticity problem with homogenous Dirichlet boundary condition on the fixed boundary I'y, and non homogenous

Dirichlet boundary condition

a _ a _

(a — 1)$1, U2 (5 — 1):]927

on I'yer — which represents the boundary of the reference domain that will be deformed in order to get the
generic boundary I', =T, :

Uy

u@) = (2-1)x forx el (9)

In what follows we choose to set the Young modulus to £ = 1 and the Poisson ratio to v = i.
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FIGURE 4. reference mesh Trer (left), deformed mesh Tiap (middle) and true mesh 7, of the
generic domain (right).

In Fig. 4 we represented the mesh T, — a regular triangulation with 200 vertices on I', and 50 vertices on
Tyt — associated to the reference domain (for @ = 0.2) (left), and meshes associated to the generic domain (for
a = 0.3): the deformation Tmap 0of Trer due to displacement u (middle) and the true mesh 7, of the generic
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domain , (right) built independently but similarly as 7ret. We observe that the deformed mesh fits well with
the objective (larger red circle represented on left and middle meshes of Fig. 4) and, at least from the eye point
of view, appears rather regular and quite similar to the mesh 7, with 200 vertices on I'y and 50 vertices on I',.

In order to better quantify the quality of a mesh, we produce in Table 1 below classical quantities associated
to the mesh. As usual, we denote by h, Amin, Pmean the maximum, minimum and average mesh size of Ty,
respectively. We also introduce or = Z—;, where pr is the diameter of the incircle of a triangle T' C 7T, and

for reference o = Z—;, where T is an equilateral triangle. Then o, oyin, Omean denote the maximum, minimum

and average of op for T' C Ty, respectively. These results highlight the regularity of the mesh obtained by our
transformation.

Mesh hmin h hmean Omin Omax Omean

Tret 0.0229928 | 0.0608276 | 0.0406712 | 1.0017 | 2.00469 | 1.22308
Tmap | 0.0211265 | 0.0605998 | 0.0404186 | 1.00072 | 3.08991 | 1.26059
Th 0.0313417 | 0.0662119 | 0.0471112 | 1.0045 | 2.02893 | 1.23075

TABLE 1. Example 1: classical quantities associated to the meshes Tref, Tmap and 7p,

We denote by X? the Py finite element approximation of H{ (9,) associated to the mesh 7}, and by X, the
PP; finite element approximation of X = {z € H'(2,); 2= fonTy; 2z =0onT,} associated to the mesh Tj.
Let ¢, € X}, be the solution of the true discrete approximation of (8)

Von-Vipde =0 Vi, € X}, (10)
Th

We denote by X7, the Py finite element approximation of Hj(Q,) associated to the mesh Tap and Xpap
the IP; finite element approximation of X associated to the mesh Tmap. Let ¢map € Xmap be the solution of the

following discrete approximation of (8)

KVz(pmapoT) - Vz(voT)dz =0, Yv € X9

Tref map’
re

where K is the mapping matrix defined by (6).

In order to validate this mapping approach to solve our Laplace problem (8) with gy =1 and I'y =T',. We
have computed a true discrete approximation on the mesh 7 and approximation using the mapping approach
with @ = 0.2 and a = 0.3.

In Fig. 5 we show the solution ¢map (left) and the relative error measured in the L*-norm between ¢, and
I ¢map, where I, is the interpolation operator from Xy,.p into Xjp.

This error is on the order of h?, where h is the maximum mesh size of T, (see Table 1), as might be expected
from usual interpolant estimates, the order-unity derivatives for the data given, and the geometric factors.
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FIGURE 5. Left: solution ¢map; Right: relative error between ¢y and Ip¢map-

1.1.2. Ezample 2: square with a circular hole and penalized Dirichlet boundary conditions
In this section we replace, in the linear elasticity problem, the non-homogeneous Dirichlet boundary condition
on I', by
u—(@a—a)n=0.
This boundary condition is imposed in a weak form, using a (quadratic) penalty method: we replace the

constrained minimization problem

inf J(w), (12)

weVy; w—(a—a)n=0

by the unconstrained problem

. 1
wgéfvo <J(w5) + EG(wE)> , (13)
with
Vo ={v € H (Qer))?; vi =va =0o0n T} (14)
and
Glw.) =+ / lw. — (@ — a)n|2dT.
2 Tret

Let u be the solution of minimisation problem (12) and u. the solution of minimisation problem (13), we have
—u| — 0.
e —ul] — 0

Besides, finding a solution to the minimisation problem (13) is equivalent to finding a solution to the following
variational problem: Find u € Vj, such that Vv € Vj,

1
(VI (), 0y, v+ (VG @), 0y, v =0,
which can be rewritten as follows : Find u € Vj, such that Vv € Vj,

/ 2ue(u) :e(v) + Adiv (u) div (v) dz + 1/ (u—(@—a)n)-vdll =0, Vvel. (15)
Qref € Il
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FIGURE 6. Left: reference mesh Trer; Right: deformed mesh Tiap.-

In Fig. 6 we represented the mesh Tyo¢ associated to the reference domain (for a = 0.2) (left), and the mesh
associated to the generic domain (for a = 0.3) : the deformation of Trr due to displacement u (right), which
is very similar to the mesh obtained in the previous approach where we imposed non-homogenous Dirichlet

boundary conditions on I',

I'y. As done in the previous example, in order to better quantify the quality of a

mesh, we produce in Table 2 quantities associated to the mesh Tpap, obtained by our mapping (see Sec. 1.1.1).
The quantities associated to Trer and T, are already given in Table 1. Again, the results highlight the regularity
of Tmap. Moreover, we observe that the results of Table 1 and Table 2 are almost the same, and thus using

penalized conditions appears to be a good alternative to using strong boundary conditions.

Mesh

hmin

h hmean

Omin

Umax

Gmean

Tmap

0.0211276

0.0605997 | 0.0404187

1.0007

3.09102

1.26065

TABLE 2. Example 2: classical quantities associated to the mesh Tap

FIGURE 7. Left: solution ¢map; Right: relative error between ¢y and I ¢map-

1.00000e+00

0.9

0.15

—0.00000e+00

1.381e-03
EOOO]

—0.000e+00

We consider the same Laplace problem as in the previous example. In Fig. 7 we show the solution ¢map (left)
and the relative error measured in the L°°-norm between ¢, and Ij,¢map, Where I}, is the interpolation operator
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from Xyyap into Xj,. This error is on the order of h? (see Table 2), as might be expected from usual interpolant
estimates, the order-unity derivatives for the data given, and the geometric factors.

1.1.3. Ezample 3: deformed (uniform shear) square with strong Dirichlet boundary conditions

In this example we consider the deformation of the unit square [0,1] x [0, 1] as in Fig. 8.

(0,1) T3, (1,1) (0,1) rs (a+8,1)
Ff Qref 1:‘Iz‘ef Ff Qp Fi

0,0 = 1,0 0,0 .0

(0,0) P (1,0) 0.0 L (@0

FIGURE 8. Left: reference domain €,.¢; Right: generic domain €,,.

The set of varying parameters p is made of the coefficient & and . In the generic domain §2,, the parameter
dependent boundary I, is made of the union of I}, 1 < i < 3 and respectively Iyt is made of the union of Il ,
1<i<3.

In order to compute the displacement that describe the mapping from the reference domain Qe to the
generic domain €2, we associate the following Dirichlet boundary conditions to the linear elasticity problem

up = (a—1)z; onT}
up = (a+Tf—1)T; on F?),
up = (a+p-1)x4 on Ff;
up = 0 onl'y,
uy = 0 on 05,,.

In Fig. 9 we represented the mesh 7y — a regular triangulation with 50 vertices on I'y and each Ff), 1<:<3
— associated to the reference domain (left) and the deformed mesh Tpap for @ = 2 and § = 1 (right). As
previously, we observe that the mapped mesh fits well with the objective (in green).

FIGURE 9. Left: reference mesh 7.ef; Right: deformed mesh Tpap.

In Fig. 10, the mesh 7}, of the generic domain €, with o = 2 and 3 = 1 is represented.
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FIGURE 10. mesh 7}, of generic domain €, with « =2 and 8 =1
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FIGURE 11. Left: solution ¢map; Right: relative error between ¢, and Ij,¢map-

We consider now the Laplace problem (8) with g = (1 — x2)z2. In Fig. 11 we show the solution ¢,,p (left)
and the relative error measured in the L°°-norm between ¢, and Ij,¢map, Where I}, is the interpolation operator
from Xap into Xp. This error is approximately O(h?) where h is the mesh size of 7j, . As expected, the error
is on the order of h? as in the previous examples.

1.2. Computation of the displacement using a penalty method

The technique that we have investigated in section 1.1 consisted in simply imposing Dirichlet boundary
conditions in order to control the displacements « on the component boundary such that the deformation of
the reference domain €. matches with the generic domain 2,. However, this approach requires an explicit
parametric definition of the boundary component, which is not always possible. The second approach, that
we now present, only requires an implicit caracterization of the boundary I',. This is done by the use of a
functional F), defined such that

F,(x) =0, on I',.

The idea is to compute a displacement u such that F,(Z +u(x)) = 0 on the boundary I'\c, which leads to the
following constrained minimization problem

inf J(w), (16)

weVp,
Fp(2+w)=0 on Tygf

in which J(w) and Vj are respectively given by (5) and (14). Nevertheless, we decided to weakly impose the
constraint F,(Z +u(Z)) = 0 using a penalty approach, which leads to the following unconstrained problem

ot <J(w6) +%/F (Fp(z—i—we))zdF) , (17)

ref
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which leads to solving the following variational problem: Find uw € Vj, such that Yo € Vj,

/ dpe(u) : e(v) + Adiv (u) div (v) d& + 1/ (2F,(Z +u)(VE,@ +u),v)dl =0, VveVy.  (18)
Qret Cret

In what follows we consider different examples with affine or nonlinear function F,. In the nonlinear case,
we propose different approaches to solve the problem, using a fixed-point method or a steepest descent method.

1.2.1. Ezample 4: deformed (uniform shear) square

In this example we consider the deformation of the unit square [0, 1] x [0,1] as in Sec. 1.1.3 ( see Fig. 8). The
set of varying parameters p is the same as in Sec. 1.1.3. The reference domain and the associated mesh Tyef, the
generic domain and associated mesh 7; are also the same as in Sec. 1.1.3. The functional F, used to describe
the boundary I', is defined by:

To on F;
Fy(x):={ Bry—x1+a onl,
To — 1 on I‘;O;.

FIGURE 12. Left: reference mesh 7ref; Right: deformed mesh Tiap.

In Fig. 12 we represented the reference mesh (left) 7es and the deformed mesh Tap with o =2 and f =1
(right). As previously, we observe that the deformed mesh fits well with the objective in green.

We consider the same Laplace problem as in the example 1.1.3. In Fig. 13 we represented the solution of the
Laplace problem ¢,y (left) and the relative error measured in the L>-norm between ¢, and I, @map, where I,
is the interpolation operator from X, into Xj. As expected, this error is on the order of h%.
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FIGURE 13. Left: solution ¢map; Right: relative error between ¢, and Ij,¢map-
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1.2.2. Ezample 5: deformed (non-uniform shear) square

In this second example we still consider the deformation of the unit square [0, 1] x [0, 1]. The reference domain
and the associated mesh 7..f are the same as in Sec. 1.2.1. Besides, the functional Fp(.) on the boundaries F}J
and Ff’, is defined similarly as in Sec. 1.2.1. However, now on the boundary I‘?, the functional is nonlinear (see
Fig. 14) and defined by:

Fy(@)les := Ba — (21 — a) — A sin (2#“/; “),

In addition to the coefficients o and 3, the amplitude ¢ will also belong to the set of varying parameters p.

(0,1) T3, (1,1) (0,1) r (a+8,1)
Ty Qrer D et L'y Q, r

0,0 = 1,0 0,0 .0

(0,0) T (1,0) ©0 (a,0)

FIGURE 14. Left: reference domain Q,ef; Right: generic domain €2,.

Because of the nonlinearity of F),, we use a Picard fixed-point algorithm to solve problem (18) that can be
rewritten under the form
At (u,v) + f(u,v) =0, YoV,
or equivalently, defining the solution operator A by A,.f(Ag,v) = —(g,v), Yo € V} for a given g,

u = F(u),
with F(u) :== A~'F(u), and (F(u),v) = f(u,v), Yo € V.
Starting from an initial guess u°, we solved iteratively the following problem for n = 1,--- , Zyax.
Find u™ € V}, such that
u" = Fu" "),

that is, find u” € Vj, such that Vv € Vj,

€

1
/ dpe(u™) : ew) + Adiv (u") div (v) dz + -/ (2F,(& +u" ) (VE (& +u"1),v))d =0, Vv e Vp.
Qref Trer

In Fig. 15 we show the reference mesh Trer (left), and the deformed mesh Tyap for o =1, §=0.7, and £ = 0.1
(right). We observe that the deformed mesh fits well with the objective in green.

FIGURE 15. Left: reference mesh 7;.¢; Right: deformed mesh Tiap.
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A better quantification of the quality of the meshes, using quantities associated to the mesh as in Sec. 1.1.1,
is given in Table 3. These results highlight the regularity of the mesh obtained by our transformation, for a
non-uniform shear square (with nonlinear F),).

Mesh hmin h hmean Omin Omax Omean

Trof 0.00919903 | 0.0303365 | 0.0182829 | 1.00117 | 2.07062 | 1.19964
Tmap | 0.00961286 | 0.0642076 | 0.0227618 | 1.00129 | 3.52419 | 1.31929
Th 0.00828206 | 0.0338312 | 0.0192272 | 1.00132 | 2.12118 | 1.21547

TABLE 3. Example 1: classical quantities associated to the meshes Tier, Tmap and Tj

In this example, we consider a Laplace problem (1) where gy is set to g7 () = z2(1 —z2) on I'y. In Fig. 16 we
show the solution of the Laplace problem ¢map (left) and the relative error measured in the L>-norm between
¢n and IpPmap. As previously, this error is on the order of h? (see Table 3), as in the previous examples.

2.500e-01
0.23
0.2

4,034e-04

0.00036

0.0003

‘o
IS
8
S
R

HWH HHH\HM

FIGURE 16. Left: solution ¢map; Right: relative error between ¢, and Ip,¢map-

1.2.3. Exzample 6: deformed square into a bell

In this third example we still consider the deformation of the unit square [0, 1] x [0, 1]. The reference domain
and the associated mesh T.cr are the same as in Sec. 1.2.2. The functional ¥, on the boundaries F}) and I‘fﬁho
is also defined similarly as in Sec. 1.2.2. However, now on the boundary 1"% the functional F), is defined by:

1
F . S
p($)|r§ 279 + acos(2rxy)’

where the coefficient « represents the set of varying parameters p (see Fig. 17).

(07 1) IT?ef (17 1) F/27
(0,a) (L,a)
rs rt
ref Qref ref Qp
Iy Ty

FIGURE 17. Left: reference domain Q,e; Right: generic domain €2,.
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To treat the nonlinearity of F),, we choose to use a steepest-descent method with step size ¢ > 0 to solve

problem (18). Starting from an initial guess u®, we iteratively compute for n = 0,1, - - -

) nmax

n+1 __

)

+Cdn

=u"

u

Find d" € Vj, such that Yo € Vj,

where d” is the solution to the problem

v)dr,

(@ +u")(VE,(x+u")

p

/ E
Tret

2ue(w)

2

elas — —
€

(dn» 'U)elas = _(unv ’U)

iv (w)div (v)dz.

e(v) + Md

/Qref

s during the process, thus we propo

the method:

th (w,v)elas

W1

se the following alternatives for

Such approach may lead to inverted triangle

the term (d™,v)eias

improve

which

dz

B (2ue(d™) : e(v) + Adiv (d")div (v))

¢(F(x +dn

(dna v)elas,F = /
Qres

with v =7,

iv (v))dz,

d

iv (d™)

) (2ue(d”) : e(v) + Ad

1
1
PR

res O

J

¢, and  is the aspect ratio of triangles, defined by &

(dn7v)elas,m .

, where 7, is the radius of the

Tcirc
2%7in

1—e
bed circle, and 7, is the rad

where ¢(t)

ircle of the triangle.

f the inc

This idea of changing the inner product whereby a gradient is identified for J(w)
study of gradient flows; it amounts to an efficient preconditioning of the minimization problem (16); see e.g. [4]

about this point.
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In Fig. 18 we represented the reference mesh Trer (left), and the deformed meshes for a = 0.3

lar than the one obtained with (.,.)ciqs,F-
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and that the triangulation obtained with (.,.)
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1.2.4. Deformation of a crescent moon

In this example, we consider a generic component in the form of a square [—1,1] x [—1, 1] where a crescent
moon has been removed. The crescent moon is the intersection of the exterior of a disc of radius r; centered in
(c,0.5) with a disc of radius 7 centered in (0.5,0.5) (see Fig. 19), where the coefficients ¢, 1 and ry represent
the set of varying parameters p. In the generic domain §,, the parameter dependent boundary I', is made of

the union of '}, and I'2, and respectively Iy is made of the union of I'}; and I'Z.

(0,1) L'y (1,1) (0,1) L'y (1,1)
N\ \\It‘ 1291C
Ly Tl Ly Ly Ly
S
Qref
0,0 1,0 0,0 1,0
(0,0) r, (1,0) (0,0) r, (1,0)

FIGURE 19. Left: reference domain Q,e; Right: generic domain €2,.

The functional that describes the boundary I', is nonlinear and as follows:

Fp(z)h“}) = (x1 — ¢)* + (22 — 0.5)% — 72,
Fy@)r2 == (21 — 0.5)% + (w2 — 0.5)% — 3.

To treat the nonlinearity of F}, in (18) we choose to use one of previous steepest descent algorithm with (., .)erqs,x-
The reference mesh Tyer is a regular triangulation with 30 vertices on I'y, 20 vertices on I'l; and 40 on I'Z,
associated to the reference domain for ¢ = 0.4, 71 = v/0.22 4+ 0.12 = 0.22 and 72 = 0.2 . In Fig. 20 we represented
the reference mesh (left), and the deformed mesh for ¢ = 0.3, 71 = 0.35 and ro = 0.27 (right). We observe that

the mapped mesh fits well with the objective.
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FIGURE 20. Left: reference mesh Trer; Right: deformed mesh Trap using (., .)etas, -
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2. RECAP. ON THE REDUCED BASsiS METHOD

In this section we present the mapping used in a reduced basis method context. The implementation is then
decomposed in the following independent steps.

2.1. First step: construction of the manifold of deformations

Following one of the methods presented above, we are able to solve an elasticity problem, the solution of
which is a displacement that enables to go from €,¢r onto the domain of interest €2, and that maps the points
of each part I'%; of the boundary of ¢ into (actually onto) the associated part 7" of .

We compute such elasticity solutions for a large number N of values of p hopefully representing well the set
of all problems we shall be faced to (in our case N was set to 100). The displacements are denoted as U (p),
these are defined over ¢, the mapping from Q¢ onto Q, is Id + U(p).

Note that the restriction u™(p) = U(p)rm of U(p) on I'ly can be considered as a Dirichlet boundary
condition for an elasticity problem that maps €.; onto the domain of interest €2,. In opposition to what
generally happens for those Dirichlet boundary conditions, they are not imposed a priori but are obtained a
posteriori, after the problem has been solved.

It is expected, verified in our applications — and it would be good to prove it — that the set of all {u™(p)},
when p varies is a manifold with a small Kolmogorov n-width, which is the requirement for next building a

sensible reduced basis approach (see e.g. [9,17]).

2.2. Second step: extraction of a reduced basis for fast approximation of the deformations
for general parameters

We extract with a POD or a greedy procedure (see e.g. [9,17]) from this manifold {u™(p)} when p varies, a

(small) set of parameters pi, pa,...,Pn,... such that, for any given € > 0, there exists n = n(e) such that, for
any p, there exists components aq(p), aza(p), ..., an(p) such that
n
™ (p) =D cilp) w™(pi)l| e (900r) < € (19)

i=1
By linearity of the elasticity problem, the solution U(p) to the elasticity problem over ¢, with Dirichlet

n
boundary conditions u™(p) is thus close to Z a;(p)U(p;) with an error over ¢ that is bounded by Ce where
C' is some stability constant. =
Actually, the coefficients «;(p) can be found by many ways from the knowledge of the N solutions u™(p) that
were computed, but it is also possible to get them for parameters that do not belong to the set of parameters
that have been chosen in subsection 2.1. If these chosen values indeed represent well the set of all problems we
shall be faced to, then we can propose to define, for any p the {a;(p)}i=1,...» by least square applied to the
implicit caracterization F,(.) = 0 defining the boundary of Q,. This means that

n(im (o)

(20)

{ai(p)}i=1,..n = ar }min

iti=1,....n L2(8%er)

Having found these values {a;(p)}i=1,..n, an approximation of the elasticity problem that maps Qe over
Q, is thus also given by > | a;(p) U(p;).

The way we solve (19) and (20) is as follows : for (19), an EIM Greedy approach is used to identify the u and
hence the U. For (20), we used a standard matlab nonlinear least-squares solver (‘lsqnonlin’). Note that (20)
produces the optimal coefficients, and is thus not a POD approach that targets to find the optimal u™(p;).
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2.3. Third step: definition of the geometric factors

Once the fast and accurate approximation of the deformation u™(p) is obtained, we can easily deduce the
approximation of the Jacobian matrix J(p) and Jacobian determinant J(p) = detJ (p) that are

JI(p) = ZO@(P)J(M) (21)

and
J(p) = det [Z ai(p)T (m)} (22)

which is quadratic in the «;’s.

2.4. Fourth step: computation of the inverse of the Jacobian determinant

Looking back to (8) we have to evaluate rapidly the contributions in the 2x2 matrix
T T

that appear in K (see (7)) as a quadratic expression in the displacement — and thus that can be, like the
determinant above, be written in terms of a quadratic expression in the «;’s — divided by J.

Due to this, the complexity in the « is too large and, in order to express K rapidly, we refer to a further
Kl,l K1,2 L Kl,l(p) K1,2(P)
Ka1 Koo ) = ( Ko1(p) Kas(p) ), and each K, 4(p)
can thus be expressed in terms of a linear combination of K, 4(px), for well chosen parameter values pg,
k = 1,..., Ng not necessarily coinciding with the set p; used in the definition of the displacement reduced
basis.

Our purpose is thus to express K(p) as a linear combination of K (py)

set of approximation. The matrix K := K(p) = (

Ngk

K(p) =Y _ BK(py) (23)

k=1

and this is done through the Empirical interpolation method (EIM) [2] since, thanks to the approximation

n
Ul(p) ~ Z a;(p) U(p;), we can evaluate easily the gradient of U and then the value at N appropriate points
i=1
xj. These points can and are chosen in such a way that the prescription of the equality of (23) at N points
leads to a unique definition of the coefficients Sx. Note there are two options to approximate K(p); we can
develop an EIM approximation for each component of K(p), or we can treat the entire matrix with a single
EIM approximation. In this article we considered the first option. Note that, for a 2 x 2 matrix, there is not
much difference between the two options. Rather for a larger matrix, the first one is the only that is viable,
see [3] for implementation.

2.5. Numerical results

2.5.1. Square with a circular hole

We consider a simple 2D test case of a unit square with circular hole. The geometrical parameter are the
center and radius of the circular hole. In Fig. 21, we represented the solution of the Laplace problem (1) by
coupling the mapping method to the reduced basis method.
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RE solution, full field
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FIGURE 21. Solution of Laplace problem

During Online Stage Time to map surface = 0.041
Time to solve RB system = 9.3e-04 | Time to solve FE system = 0.18
Max diff due to EIM = 0.037 Max diff due to RB = 0.002

TABLE 4. Computational times and error

The Table 4 summarize the computational times and error of the reduced basis method. Here the errors are
absolute. However, the solutions are O(1) so relative and absolute are quite similar.

2.5.2. Case of a bell

We consider a 2D test case of a bell. The geometrical parameter is a (see Fig. 17). In Fig. 22 we represented
the solution of the Laplace problem (1) by coupling the mapping method to the reduced basis method.

14 RB solution, full field . RB solution, full field
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FIGURE 22. Solution of Laplace problem
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During Online Stage Time to map surface = 0.041
Time to solve RB system = 3.39e-04 | Time to solve FE system = 0.35
Max diff due to EIM = 0.005 Max diff due to RB = 7.15e-5

TABLE 5. Computational times and error

In Table 5, the computational times and error of the reduced basis method are shown. Here the errors are

absolute. However, the solutions are O(1) so relative and absolute are quite similar.
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