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Abstract. We consider classical scalar fields in dimension 1 ` 1 with a self-interaction
potential being a symmetric double-well. Such a model admits non-trivial static solutions
called kinks and antikinks. A kink cluster is a solution approaching, for large positive
times, a superposition of alternating kinks and antikinks whose velocities converge to 0
and mutual distances grow to infinity.

The aim of this note is to present results on asymptotic behaviour of kink clusters.
Our results are partially inspired by the notion of “parabolic motions” in the Newtonian
n-body problem. We present this analogy and mention its limitations. We also explain
the role of kink clusters as universal profiles for formation of multi-kink configurations.

1. Scalar fields in dimension 1 ` 1

We study scalar field equations in dimension 1`1, which are associated to the Lagrangian
action

L pϕq “

ż 8

´8

ż 8

´8

´1

2
pBtϕq2 ´

1

2
pBxϕq2 ´ Upϕq

¯

dx dt,

where the self-interaction potential U : R Ñ r0,`8q is a given smooth function. The un-
known field ϕ “ ϕpt, xq is assumed to be real-valued. The resulting Euler-Lagrange equa-
tion is

B2
t ϕpt, xq ´ B2

xϕpt, xq ` U 1pϕpt, xqq “ 0, pt, xq P R ˆ R, ϕpt, xq P R. (1.1)

For simplicity, we set

Upϕq :“
1

8
p1 ´ ϕ2q2,

which yields the so-called ϕ4 model, but almost all our results are true for any non-
degenerate double-well potential, namely any U satisfying the following conditions:

‚ U is an even function,

‚ Upϕq ą 0 for all ϕ P p´1, 1q,

‚ Up´1q “ Up1q “ 0 and U2p1q “ U2p´1q “ 1.

The zeros of U are called the vacua. Linearisation of (1.1) around each of the vacua 1 and
´1, ϕ “ ˘1 ` g, yields the free linear Klein-Gordon equation of mass 1:

B2
t gLpt, xq ´ B2

xgLpt, xq ` gLpt, xq “ 0.

Apart from the ϕ4 model, another well-known example of (1.1) satisfying the hypotheses
above is the sine-Gordon equation obtained for Upϕq :“ 1

π2

`

1 ` cospπϕq
˘

. Unlike the ϕ4

equation, the sine-Gordon equation is completely integrable, which means that in principle
the Cauchy problem can be solved explicitly.
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The equation (1.1) can be rewritten as a system of first order in t:

Bt

ˆ

ϕpt, xq

9ϕpt, xq

˙

“

ˆ

9ϕpt, xq

B2
xϕpt, xq ´ U 1pϕpt, xqq

˙

. (1.2)

The potential energy Ep, the kinetic energy Ek and the total energy E of a state are given
by

Eppϕ0q “

ż `8

´8

´1

2
pBxϕ0pxqq2 ` Upϕ0pxqq

¯

dx,

Ekp 9ϕ0q “

ż `8

´8

1

2
p 9ϕ0pxqq2 dx,

Epϕ0, 9ϕ0q “

ż `8

´8

´1

2
p 9ϕ0pxqq2 `

1

2
pBxϕ0pxqq2 ` Upϕ0pxqq

¯

dx.

Denoting ϕpt, xq :“ pϕpt, xq, 9ϕpt, xqq, the system (1.2) can be reformulated in the Hamil-
tonian form as

Btϕptq “ JDEpϕptqq, (1.3)

where J :“

ˆ

0 1
´1 0

˙

is the standard symplectic form and D is the Fréchet derivative for

the L2 ˆ L2 inner product. In particular, E “ Epϕq “ Epϕ, Btϕq is a conserved quantity.
We only consider fields of finite energy.

By elementary arguments, the set of finite energy states ϕ0 “ pϕ0, 9ϕ0q is the union of
the following four affine spaces:

E1,1 :“ tpϕ0, 9ϕ0q : Epϕ0, 9ϕ0q ă 8 and lim
xÑ´8

ϕ0pxq “ 1, lim
xÑ8

ϕ0pxq “ 1u,

E´1,´1 :“ tpϕ0, 9ϕ0q : Epϕ0, 9ϕ0q ă 8 and lim
xÑ´8

ϕ0pxq “ ´1, lim
xÑ8

ϕ0pxq “ ´1u,

E1,´1 :“ tpϕ0, 9ϕ0q : Epϕ0, 9ϕ0q ă 8 and lim
xÑ´8

ϕ0pxq “ 1, lim
xÑ8

ϕ0pxq “ ´1u,

E´1,1 :“ tpϕ0, 9ϕ0q : Epϕ0, 9ϕ0q ă 8 and lim
xÑ´8

ϕ0pxq “ ´1, lim
xÑ8

ϕ0pxq “ 1u.

Each of them is parallel to the energy space

E :“ H1pRq ˆ L2pRq.

2. Kinks, antikinks, multi-kink configurations and kink clusters

Equation (1.3) admits static solutions. They are the critical points of the potential energy.
The trivial ones are the vacuum fields ϕpt, xq “ ˘1. The solution ϕpt, xq “ 1 (resp.
ϕpt, xq “ ´1) has zero energy and is the ground state in E1,1 (resp. E´1,´1).

There are also non-constant static solutions ϕpt, xq connecting the two vacua, that is

lim
xÑ´8

ϕpt, xq “ ¯1, lim
xÑ8

ϕpt, xq “ ˘1. (2.1)

One can easily find all these solutions: they are given by the formula ϕpt, xq “ ˘Hpx´ aq

for some a P R, where Hpxq :“ arctanpx{2q. The translates of H are called the kinks and
are the ground states in E´1,1. The translates of ´H are called the antikinks and are the
ground states in E1,´1. Thanks to this variational characterisation, one obtains orbital
stability of kinks and antikinks (up to translations), see [15].

Proposition 2.1. The vacuum solutions, the kinks and the antikinks are the only static
solutions of (1.1).
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Remark 2.2. Even if we will not use them explicitly, we note that moving kinks can be
constructed by means of the Lorentz transformation. If β P p´1, 1q and a P R, then

ϕpt, xq :“ Hpγβpx ´ a ´ βtqq, where γβ :“ p1 ´ β2q´1{2,

is a solution of (1.1), a travelling wave whose velocity equals β.

The condition (2.1) defines a topological class, since for any continuous path of finite
energy states, either none or all of them satisfy (2.1). In general, minimizers of the energy in
a topological class that does not contain vacua are called topological solitons. Topological
solitons were introduced in the physics literature by Skyrme as candidates for particles in
classical field theories; see [49, 33]. Kinks and antikinks are one dimensional examples, and
in higher dimensions examples include vortices, harmonic maps, monopoles, Skyrmions,
and instantons.

Our main object of study are solutions which resemble (in a sense to be specified)
a superposition of a finite number of stationary states. We thus introduce the so-called
multi-kink configurations, which are defined as follows (see Figure 1). For a⃗ “ pa1, . . . , anq

such that a1 ď . . . ď an, we denote

H p⃗aq :“ 1 `

n
ÿ

k“1

p´1qk
`

Hp¨ ´ akq ` 1
˘

(we chose the “additive ansatz”, see [51, Section 1.7] for a comparison with a different
“product ansatz”, which we could also use without introducing any changes in the state-
ment of our results below). It will always be assumed that ak`1 ´ ak is sufficiently large
for all k P t1, . . . , n´ 1u. Note that the vacuum 1 is obtained for n “ 0, and the antikinks
for n “ 1. From Proposition 2.1, we see that for n ě 2 the multi-kink configurations are
not static states, which is due to the nonlinear character of the equation (1.1).

By the variational characterisation of H and its translates as the ground states in E´1,1,
one can informally view them as the transitions between the two vacua ´1 and 1 having
the minimal possible energy E “ EppHq. Given a natural number n, we are interested in
solutions of (1.1) containing, asymptotically as t Ñ 8, n such transitions. Since energy
EppHq is needed for each transition, we necessarily have Epϕ, Btϕq ě nEppHq. We call
kink clusters the solutions for which equality holds.

Definition 2.3 (Kink n-cluster). Let n P t0, 1, . . .u. We say that a solution ϕ of (1.1) is a
kink n-cluster if Epϕ, Btϕq ď nEppHq and there exist real-valued functions x0ptq ď x1ptq ď

. . . ď xnptq such that

lim
tÑ8

ϕpt, xkptqq “ p´1qk for all k P t0, 1, . . . , nu.

Note that the kink 0-clusters are the constant solutions ϕ ” 1 and the kink 1-clusters
are the antikinks. The simplest non-trivial case is n “ 2. We will call kink 2-clusters

Figure 1. An example of a multi-kink configuration with a⃗ “ p´15, 5, 17q
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kink-antikink pairs. We say that ϕ is a kink cluster if it is a kink n-cluster for some
n P t0, 1, . . .u.

From the heuristic discussion above, the shape of each transition in a kink cluster has
to be close to optimal, that is close to a kink or an antikink, so that the whole field is close
to a multi-kink configuration. We have the following characterisation of kink n-clusters.

Proposition 2.4. A solution ϕ of (1.1) is a kink n-cluster if and only if there exist
continuous functions a1, . . . , an : R Ñ R such that

lim
tÑ8

´

›

›Btϕptq
›

›

2

L2 `
›

›ϕptq ´ H p⃗aptqq
›

›

2

H1 `

n´1
ÿ

k“1

e´pak`1ptq´akptqq
¯

“ 0.

In other words, kink clusters can be equivalently defined as solutions approaching, as
t Ñ 8, a superposition of a finite number of alternating kinks and antikinks, whose
mutual distances tend to 8 and which travel with speeds converging to 0. In contrast
to multikink solutions consisting of Lorentz-boosted kinks (travelling with asymptotically
non-zero speed) constructed in [3], the dynamics of kink clusters are driven solely by
interactions between the kinks and antikinks. Employing the term introduced by Martel
and Raphaël in [35], we are dealing with multi-kinks in the regime of strong interaction.
Proposition 2.4 implies in particular that the energy of a kink n-cluster equals nEppHq.

We also have the following characterisation of kink clusters as asymptotically static
solutions, by which we mean solutions whose kinetic energy converges to 0 as t Ñ 8.

Proposition 2.5. A solution ϕ of (1.1) satisfies limtÑ8 }Btϕptq}2L2 “ 0 if and only if ϕ
or ´ϕ is a kink cluster.

Remark 2.6. Let us stress that, according to our definition, kink clusters are solutions
approaching multi-soliton configurations in the strong energy norm, in other words we
address the question of interaction of solitons in the absence of radiation. Allowing for a
radiation term seems to be currently out of reach, the question of the asymptotic stability
of the kink being still unresolved, see for example [8, 28, 11, 13, 4, 31] for recent results
on this and related problems.

Remark 2.7. We emphasize that our definition of kink clusters concerns only one time
direction, and our study does not address the question of the behaviour of kink clusters
as t Ñ ´8, which goes by the name of the kink collision problem. We refer to [27] for an
overview, and to [40, 41] for recent rigorous results in the case of the ϕ6 model.

3. The n-body approximation

It is tempting to view the (anti)kink ˘Hp¨ ´ aq as a particle whose position is given
by a P R. From this viewpoint, a multi-kink configuration can be regarded as a set of
interacting particles. Therefore, describing the evolution of such an object should bear an
analogy with the n-body problem.

Remark 3.1. The particle-like character of solitons is a well-known phenomenon, see
[33, Chapter 1] for a historical account. The question of justification that the positions of
solitons in a field described by some wave equation satisfy an approximate n-body law of
motion was considered for instance in [50, 12, 9, 46].

Remark 3.2. The justification of an approximation of solutions of some PDE by a system
of point masses is a problem which appears in many contexts other than the wave equa-
tions. Let me mention the works on the Ginzburg-Landau gradient flow [25, 2], on the
equations of fluid mechanics [1], on Bose-Einstein condensates [24, 26], but this list is
of course far from being exhaustive.
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In view of the mass-energy equivalence, it is reasonable to define the mass of the kink

M :“ EppHq “
2

3
. (3.1)

The potential energy of a multi-kink configuration H p⃗aq is given by

rEpp⃗aq :“ EppH p⃗aqq.

One can check that

ˇ

ˇ

ˇ

rEpp⃗aq ´ nM ` 8
n´1
ÿ

k“1

e´pak`1´akq
ˇ

ˇ

ˇ
À max

1ďkăn
pak`1 ´ akqe´2pak`1´akq,

which allows to identify ´8
řn´1

k“1 e
´pak`1´akq as the main term of the interaction energy

between the n particles. We denote

ρp⃗aq :“
n´1
ÿ

k“1

e´pak`1´akq, (3.2)

which measures the size of the interaction energy. According to the principles of Classical
Mechanics, we obtain the force acting on the k-th particle:

Fk p⃗aq “ ´Bak
rEpp⃗aq “ 8

`

e´pak`1´akq ´ e´pak´ak´1q
˘

` . . . , (3.3)

where by convention a0 “ ´8 and an`1 “ 8. Recalling (3.1) and applying Newton’s
second law, we derive the following n-body problem with attractive nearest-neighbor ex-
ponential interactions:

a2
kptq “ 12

`

e´pak`1ptq´akptqq ´ e´pakptq´ak´1ptqq
˘

. (3.4)

According to the heuristics presented above, this system should be relevant for the evolu-
tion of states close to multi-kink configurations.

Observe the similarity of (3.4) with the well-known Toda system. The essential difference
lies in the sign of the interactions, which are attractive in (3.4) and repulsive in the Toda
system. Hénon [14] found n independent conservation laws, both for the Toda system and
for (3.4). Our arguments do not explicitly rely on the conservation laws related to the
complete integrability, and we expect that part of the analysis should be applicable also
in the cases where the modulation equations are not related to any completely integrable
system of ODEs.

Remark 3.3. In their work on blow-up for nonlinear waves, Merle and Zaag [38] obtained
a system of ODEs with exponential terms like in (3.4), but which was a gradient flow and
not an n-body problem. The dynamical behaviour of solutions of this system was described
by Côte and Zaag [7].

4. Classification of kink-antikink pairs

In the case n “ 2, one easily finds all the solutions of (3.4) such that the distance between
the two particles converges to 8 and their velocities converge to 0. They are given by

pa1ptq, a2ptqq “
`

a0 ´ logp2
?
3pt ´ t0qq, a0 ` logp2

?
3pt ´ t0qq

˘

.

where a0 and t0 are arbitrary real numbers. It turns out that the set of kink-antikink
pairs has a similar structure. The following theorem is the main result of [20], obtained in
collaboration with Kowalczyk.
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Theorem 1. There exist a C1 function aptq and a solution ϕp2qpt, xq of (1.1) such that
for all ϵ ą 0 and all t ě T0 “ T0pϵq

ˇ

ˇaptq ´ logp2
?
3tq

ˇ

ˇ ď t´2`ϵ,
ˇ

ˇa1ptq ´ t´1
ˇ

ˇ ď t´3`ϵ

and
›

›ϕp2qptq ´
`

1 ´ Hp¨ ` aptqq ` Hp¨ ´ aptqq
˘
›

›

H1

`
›

›Btϕp2qptq ` a1ptq
`

BxHp¨ ` aptqq ` BxHp¨ ´ aptqq
˘›

›

L2 ď t´2`ϵ.

Moreover, ϕp2q is the unique kink-antikink pair up to translation, i.e., if ϕpt, xq is any
kink-antikink pair, then there exist t0, a0 P R so that

ϕpt, xq “ ϕp2qpt ´ t0, x ´ a0q for all pt, xq P R2.

It is easy to check that the function ϕpt, xq “ 4
π arctanpt sechpxqq ´ 1 is a kink-antikink

pair for the sine-Gordon equation

B2
t ϕpt, xq ´ B2

xϕpt, xq ´
1

π
sinpπϕpt, xqq “ 0.

For the mKdV equation, existence of solutions converging to a superposition of 2 or 3 soli-
tons with asymptotically vanishing velocities was observed by Wadati and Ohkuma [52].
For a non-integrable model, the first construction of a two-soliton solution with trajectories
having asymptotically vanishing velocities was obtained by Krieger, Martel and Raphaël [29],
see also Martel and Raphaël [35], followed by [19, 44, 45], as well as [16]. The work [20]
was the first to consider the question of uniqueness.

One could expect that kink-antikink pairs could be threshold solutions (at least for
some choices of the self-interaction potential U) in the following sense. Small energy data
are topologically trivial and the corresponding evolution presents oscillatory behaviour
(scattering or modified scattering). When higher and higher energies are considered, at
some energy threshold a new type of dynamical behavior can appear. Of course the kinks
have a non-oscillatory behavior, but they do not provide the correct energy threshold,
because they are not topologically trivial. The correct threshold could equal in fact twice
the energy of the kink, and kink-antikink pairs would be topologically trivial solutions of
lowest possible energy locally converging (up to translations) to kinks.

From this perspective, uniqueness of strongly interacting two-solitons is an analog of the
results of Merle [37] on uniqueness of minimal mass blow-up solutions of the mass-critical
NLS, and the corresponding result of Raphaël and Szeftel [48] on non-homogeneous mass-
critical NLS. Let me stress however that in [37, 48] the solution develops one bubble.
The novelty of Theorem 1 with respect to these works is to consider solutions which are
superpositions of more than one kink.

The role of kink-antikink pairs as threshold elements remains an open problem for the
ϕ4 model. For the equivariant critical wave maps equation, see [21, 22] for the problem of
existence, uniqueness and threshold behaviour of two-bubble solutions, which are to some
extent analogous to kink-antikink pairs.

5. Asymptotic behavior of kink clusters

Theorem 1 yields in particular the asymptotic behavior of any kink-antikink pair at the
main order. In [23], we determined the leading order of any kink n-cluster for any n P N.
Before we state the main result of [23], we note that the system (3.4) has the following
explicit solution such that the distances between the particles converge to 8 and their
velocities converge to 0:

ak`1ptq ´ akptq “ 2 logp2tq ´ log
kpn ´ kq

3
, a1

kptq “
n ` 1 ´ 2k

t
(5.1)
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(these formulas determine akptq up to an arbitrary choice of the mass center).

Remark 5.1. In the study of the gravitational n-body problem, the solutions such that
the distances between the bodies grow to 8 and the velocities of the bodies converge to
0 are called parabolic motions.

Theorem 1 from [23] affirms that any kink n-cluster has quantitatively the same behavior
as t Ñ 8.

Theorem 2. If ϕ is a kink n-cluster, then there exist continuously differentiable functions
a1, . . . , an : R Ñ R such that gptq :“ ϕptq ´ H p⃗aptqq satisfies

lim
tÑ8

ˆ

max
1ďkăn

ˇ

ˇ

ˇ

ˇ

`

ak`1ptq ´ akptq
˘

´

´

2 logp2tq ´ log
kpn ´ kq

3

¯

ˇ

ˇ

ˇ

ˇ

` max
1ďkďn

|ta1
kptq ` pn ` 1 ´ 2kq| ` t}Btgptq}L2 ` t}gptq}H1

˙

“ 0.

Remark 5.2. The bound }Btgptq}L2 ` }gptq}H1 ! t´1 allows to treat the nonlinear terms
perturbatively and thus in principle improve the bounds above to any precision by standard
perturbation theory methods.

6. Modulation analysis for kink clusters

The starting point for proving Theorem 2 is the modulation method, frequently employed
in the study of solitons and multi-solitons. We present below this important tool.

The decomposition ϕptq “ H p⃗aptqq ` gptq used in the statement above is clearly not
unique. It is convenient to use a specific choice of a⃗ptq determined by the orthogonality
conditions

ż 8

´8

BxHpx ´ akptqqgpt, xqdx “ 0, for all k P t1, . . . , nu. (6.1)

This way, whenever ϕptq is close to a multi-kink configuration, the uniquely determined
number akptq indicates the “position” of the k-th kink. Before we give the precise statement
which guarantees the existence of of a⃗ptq satisfying (6.1), we introduce the following notion.

Definition 6.1 (Distance to a multi-kink configuration). For all pϕ0, 9ϕ0q P E1,p´1qn , the

distance from pϕ0, 9ϕ0q to the set of multi-kink configurations is defined by

δpϕ0, 9ϕ0q :“ inf
b⃗PRn

`

} 9ϕ0}2L2 ` }ϕ0 ´ H p⃗bq}2H1 ` ρp⃗bq
˘

,

where ρp⃗bq is given by (3.2).

Note that, by Proposition 2.4, if ϕ is a kink n-cluster, then limtÑ8 δpϕptq, Btϕptqq “ 0.
We have the following static modulation lemma.

Lemma 6.2. There exist η0, η1, C0 ą 0 having the following property. For all pϕ0, 9ϕ0q P

E1,p´1qn such that δpϕ0, 9ϕ0q ă η0 there exists unique a⃗ “ a⃗pϕ0, 9ϕ0q P Rn such that

} 9ϕ0}L2 ` }ϕ0 ´ H p⃗aq}2E ` ρp⃗aq ă η1

and
xBxHp¨ ´ akq, ϕ0 ´ H p⃗aqy “ 0 for all k P t1, . . . , nu.

It satisifes

} 9ϕ0}2L2 ` }ϕ0 ´ H p⃗aq}2H1 ` ρp⃗aq ď C0δpϕ0, 9ϕ0q,

} 9ϕ0}2L2 ` }ϕ0 ´ H p⃗aq}2H1 ď C0pρp⃗aq ` Epϕ0, 9ϕ0q ´ nMq. (6.2)

Moreover, the map E1,p´1qn Q pϕ0, 9ϕ0q ÞÑ a⃗pϕ0, 9ϕ0q P Rn is of class C1.
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Proofs of similar results are contained for example in the articles by Gustafson and
Sigal [12, Proposition 3], Merle and Zaag [39, Proposition 3.1], and in my paper [18,
Lemma 3.3]. They are based on a quantitative version of the Implicit Function Theorem.

The map pϕ0, 9ϕ0q ÞÑ p⃗a, g :“ ϕ0 ´ H p⃗aq, 9ϕ0q given by the lemma above is a diffeomor-
phism from a neighborhood of the set of widely separated multi-kink configurations to a
manifold in Rn ˆ E of codimension n determined by the orthogonality conditions.

Remark 6.3. We stress that the position parameters determined by the orthogonality
conditions (6.1) do not necessarily achieve the infimum in Definition 6.1 but, as a conse-
quence of Lemma 6.2, they do achieve it up to a constant.

Let ϕ be a kink n-cluster, according to Definition 2.3. Lemma 6.2 yields a⃗ptq P Rn defined
for all t large enough, such that gptq :“ ϕptq´H p⃗aptqq satisfies (6.1). It can be checked that
t ÞÑ a⃗ptq is of class C1. By differentiating in time (6.1) and using the differential equation,
one arrives at a coupled system of differential equations for a⃗ptq and gptq. In general, one
tries to decouple this system as much as possible, in order to reduce the dynamics to an
ODE for a⃗ptq. The coercivity bound (6.2) is very useful in such a reduction, since it allows
to bound the size of the remainder pgptq, Btϕptqq in terms of a⃗ptq.

The crucial step in obtaining an approximate ODE for the position vector a⃗ptq is to
introduce an appropriate notion of momentum of each kink. We follow an idea used in a
similar context in [17] and introduce localised momenta, see also [48, Proposition 4.3].

Let χ P C8 be a decreasing function such that χpxq “ 1 for all x ď 1
3 and χpxq “ 0 for

all x ě 2
3 .

Definition 6.4 (Localised momenta). Let ϕ be a kink n-cluster and let a⃗ptq be the
positions of the kinks defined above (for t large enough). We set

χ1pt, xq :“ χ
´ x ´ a1ptq

a2ptq ´ a1ptq

¯

,

χkpt, xq :“ χ
´ x ´ akptq

ak`1ptq ´ akptq

¯

´ χ
´ x ´ ak´1ptq

akptq ´ ak´1ptq

¯

, for k P t2, . . . , n ´ 1u,

χnpt, xq :“ 1 ´ χ
´ x ´ an´1ptq

anptq ´ an´1ptq

¯

.

We define p⃗ “ pp1, . . . , pnq : I Ñ Rn by

pkptq :“ x´p´1qkBxHkptq ` χkptqBxgptq, 9gptqy.

We can now state the dynamical modulation lemma.

Lemma 6.5. There exists C0 such that for any kink n-cluster ϕ the following bounds hold
for all k P t1, . . . , nu and t large enough:

|Ma1
kptq ´ pkptq| ď C0ρp⃗aptqq, (6.3)

|p1
kptq ´ Fk p⃗aptqq| ď

C0ρp⃗aptqq

´ log ρp⃗aptqq
, (6.4)

where M and Fk are defined by (3.1) and (3.3).

Remark 6.6. If a⃗ptq is given by (5.1), then |p⃗ptq| » t´1, |F⃗ p⃗aptqq| » t´2 and ρp⃗aptqq » t´2,
hence the bounds (6.3) and (6.4) are reasonable in the sense that the bound of the error
is much smaller than the terms appearing on the left hand side.

Once Lemma 6.5 is established, the proof of Theorem 2 relies on an ODE-type analysis
partly inspired by classical techniques developed for the gravitational n-body problem, see
for instance [47].
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7. Existence of kink clusters

Our next result concerns the problem of existence of kink n-clusters. We prove that, for
any choice of n points on the line sufficiently distant from each other, there exists a kink n-
cluster such that the initial positions of the (anti)kinks are given by the n chosen points.
The result is inspired by the work of Maderna and Venturelli [32] on the gravitational
n-body problem.

Theorem 3. There exist C0, L0 ą 0 such that the following is true. If L ě L0 and a⃗0 P Rn

satisfies a0,k`1 ´a0,k ě L for all k P t1, . . . , n´ 1u, then there exists pg0, 9g0q P E satisfying

}pg0, 9g0q}2E ď C0e
´L and the orthogonality conditions

ż 8

´8

BxHpx ´ a0,kqg0pxqdx “ 0 for all k P t1, . . . , nu

such that the solution of (1.3) corresponding to the initial data

pϕp0q, Btϕp0qq :“
`

H p⃗a0q ` g0, 9g0
˘

is a kink cluster and satisfies δpϕptq, Btϕptqq ď C0{peL ` t2q for all t ě 0.

Remark 7.1. We expect that for a given choice of a⃗0 there is actually a unique pg0, 9g0q

in a small ball of E leading to a kink n-cluster. This is clearly true for n “ 1. In the
case n “ 2, uniqueness of pg0, 9g0q can be obtained as a consequence of Theorem 1. Partial
uniqueness results for n ą 2 will be proved in forthcoming work.

The overall proof scheme is taken fromMartel [34], see also the earlier work of Merle [36],
and contains two steps:

‚ for any T ą 0, prove existence of a solution ϕ satisfying the conclusions of Theo-
rem 3, but only on the finite time interval t P r0, T s,

‚ take a sequence Tm Ñ 8 and consider a weak limit of the solutions ϕm obtained
in the first step with T “ Tm.

The first step relies on a novel application of the Poincaré-Miranda theorem, which is
essentially a version of Brouwer’s fixed point theorem. We choose data close to a multi-kink
configuration at time t “ T and control how it evolves backwards in time. It could happen
that the multi-kink collapses before reaching the time t “ 0. For this reason, we introduce
an appropriately defined “exit time” T1. The mapping which assigns the positions of the
(anti)kinks at time T1 to their positions at time T turns out to be continuous and, for
topological reasons, surjective in the sense required by Theorem 3.

Remark 7.2. In the second step, it is crucial to dispose of some uniform estimate on
the sequence ϕm. In our case, the relevant inequality is δpϕmptq, Btϕmptqq À peL ` t2q´1

with a universal constant. The existence of such a uniform bound is related to what we
would call the “ejection property” of the system. Intuitively, once δpϕmptq, Btϕmptqq starts
to grow, it has to continue growing at a definite rate until the multi-kink configuration
collapses.

Remark 7.3. Brouwer’s theorem was previously used in constructions of multi-solitons,
but for a rather different purpose, namely in order to avoid the growth of linear unstable
modes, see [5, 6].

9
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8. Kink clusters as profiles of kink formation/collapse

Finally, we discuss the role of the kink clusters as universal profiles for the formation/collapse
of a multi-kink configuration. In this section, it will be convenient to use the Hamiltonian
formulation (1.3). We use boldface letters ϕ0 “ pϕ0, 9ϕ0q to denote elements of the phase
space.

Theorem 4. Let η ą 0 be sufficiently small and let ϕm be a sequence of solutions of (1.3)
defined on time intervals r0, Tms satisfying the following assumptions:

(i) limmÑ8 δpϕmpTmqq “ 0,

(ii) δpϕmptqq ď η for all t P r0, Tms,

(iii) δpϕmp0qq “ η.

Then, after extraction of a subsequence, there exist 0 “ np0q ă np1q ă . . . ă npℓq “ n, finite

energy states P
p1q

0 , . . . ,P
pℓq
0 and sequences of real numbers pX

p1q
m qm, . . . , pX

pℓq
m qm such that

(i) for all j P t1, . . . , ℓu, the solution P pjq of (1.3) for the initial data P pjqp0q “ P
pjq

0

is a cluster of npjq ´ npj´1q kinks,

(ii) for all j P t1, . . . , ℓ ´ 1u, limmÑ8

`

X
pj`1q
m ´ X

pjq
m

˘

“ 8,

(iii) limmÑ8

›

›

›
ϕmp0q ´

´

1 `
řℓ

j“1p´1qn
pj´1q`

P
pjq

0 p¨ ´ X
pjq
m q ´ 1

˘

¯›

›

›

E
“ 0.

Theorem 4 can be understood to mean that kink clusters have properties similar to the
stable/unstable manifolds of a hyperbolic stationary state. This analogy is most easily
understood in the case n “ 2, which we explain here.

If we artificially extended the phase space by a state H8 corresponding to the limit of
pHpa1, a2q, 0q as a2 ´ a1 Ñ 8, then the function δ gives a distance to H8 and the 2-kink
clusters satisfy limtÑ8 δpϕptqq “ 0, in other words they form the stable manifold of H8.
In this language, Theorem 4 characterizes the trajectories in the phase space that enter
(or in reverse time, exit) a small neighbourhood of the “critical point” H8, by affirming
that a such a trajectory, while still far away from the critical point, must be close to its
(un)stable manifold. For hyperbolic critical points, this property is a consequence of the
Hartman-Grobman theorem. In our setting, the soliton interactions play an analogous role
as exponential (in)stability in the hyperbolic case.

The analogy described above carries over to n ą 2, but is slightly more complicated,
since at the “exit” time t “ 0 the solution ϕmp0q is close to a superposition of well-
separated kink clusters, rather than to a single one. Intuitively, for n ą 2 it can happen
that only some of the neighbouring kinks “collapse”, while the distances between other
neighbouring kinks remain large.

Let us finish by sketching a proof of Theorem 4. The identification of the clusters
presents no difficulty: the positions of any two consecutive (anti)kinks at time t “ 0, after
taking a subsequence in m, either remain at a bounded distance or separate with their
distance growing to infinity as m Ñ 8. This dichotomy determines whether they fall into
the same cluster or to distinct ones. The next step is to again make use of the ejection
property, see Remark 7.2, in order to obtain bounds on δpϕptqq independent of m, for
any t ě 0. By standard localisation techniques involving the finite speed of propagation,
these bounds are inherited by each of the clusters. We mention that the proof of strong
convergence in Theorem 4 (iii) is based on a novel application of the well-known principle
from the Calculus of Variations affirming that, for a strictly convex functional F , if gm á g
and Fpgmq Ñ Fpgq, then gm Ñ g.

10
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Remark 8.1. Determining universal profiles of soliton collapse played an important role
in several works on dispersive equations related to the problem of Soliton Resolution. We
mention the study of centre-stable manifolds of ground states for various nonlinear wave
equations, see for instance [42, 43, 30], as well as the earlier work [10].
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Université Sorbonne Paris Nord
99 av Jean-Baptiste Clément
93430 Villetaneuse, France
jendrej@math.univ-paris13.fr

Andrew Lawrie
Department of Mathematics
Massachusetts Institute of Technology
77 Massachusetts Ave, 2-267
Cambridge, MA 02139, U.S.A.
alawrie@mit.edu

12


