DM écrit, à rendre vendredi le 2 octobre

Exercice 1 Pour tout t > 0 on définit le noyau de la chaleur $G_t \in \mathcal{S}(\mathbb{R})$ par

$$G_t(x) := \frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}}, \quad pour \ tout \ x \in \mathbb{R}.$$

- (i) Rappelons que si on définit $\Gamma(x) := e^{-\pi x^2}$, alors $\widehat{\Gamma}(\xi) = e^{-\pi \xi^2}$. Vérifier que $\widehat{G}_t(\xi) = e^{-4\pi^2 \xi^2 t}$ pour tout $\xi \in \mathbb{R}$.
- (ii) Soit $f \in \mathcal{S}'(\mathbb{R})$ et pour tout t > 0 posons $u_t := G_t * f$. Montrer que $u_{t+s}(x) = (G_t * u_s)(x)$ pour tout t, s > 0 et $x \in \mathbb{R}$.
- (iii) Montrer que si $1 \le p < \infty$ et $f \in L^p(\mathbb{R})$, alors $\lim_{t\to 0^+} \|u_t f\|_{L^p} = 0$. Montrer aussi que $\sup_{t>0} \|u_t\|_{L^p} = \|f\|_{L^p}$.
- (iv) (un peu difficile) Soit $f \in L^1_{loc}(\mathbb{R})$. Montrer que $|(G_t * f)(x)| \leq (Mf)(x)$ pour tout t > 0 et $x \in \mathbb{R}$, où Mf est la fonction maximale de Hardy-Littlewood de f.
- (v) Soit $1 \leq p < \infty$ et $f \in L^p(\mathbb{R})$. Montrer que $\lim_{t \to 0^+} u_t(x) = f(x)$ pour presque tout $x \in \mathbb{R}$ (par rapport à la mesure de Lebesgue).

Exercice 2 (Muscalu-Schlag, Exercise 7.4) On étudie dans cet exercice les transformées de Riesz doubles. Soit $d \in \{3, 4, 5, ...\}$.

(i) (un peu difficile) Soit $f \in \mathcal{S}(\mathbb{R}^d)$ et posons $u(x) := C \int_{\mathbb{R}^d} |x-y|^{2-d} f(y) \, dy$, où C = C(d) est une constante qu'il faudra déterminer. Montrer que, avec le bon choix de C, u vérifie

$$\Delta u = f$$
.

(ii) Soit toujours $u(x) := C \int_{\mathbb{R}^d} |x-y|^{2-d} f(y) \, dy$, et $1 \le i, j \le d$. Soit $K_{ij}(x) := \frac{x_i x_j}{|x|^{d+2}} - \frac{1}{d} \delta_{ij} \frac{1}{|x|^d}$, où $\delta_{ij} = 1$ si i = j et $\delta_{ij} = 0$ si $i \ne j$. Montrer que

$$\partial_{x_i}\partial_{x_j}u(x) = \widetilde{C}\int_{\mathbb{R}^d} K_{ij}(x-y)f(y)\,\mathrm{d}y + \frac{1}{d}\delta_{ij}f(x),$$

où il faut comprendre l'intégrale au sens de la valeur principale, c'est-à-dire $\lim_{\epsilon \to 0^+} \int_{|x-y| > \epsilon} K_{ij}(x-y) f(y) dy$, et $\widetilde{C} = \widetilde{C}(d)$.

- (iii) Vérifier que K_{ij} est un noyau de Calderón-Zygmund fort.
- (iv) (question bonus) Déduire de (i) la valeur de la constante $C(\alpha, d)$ dans l'Exercice 1.13 dans le poly, pour $\alpha = 2$ et $d \in \{3, 4, 5, \ldots\}$.