Institut Galilée Filière M1

2020 - 2021

## DISTRIBUTIONS

Jacek Jendrej (CNRS et USPN) jendrej @ math. univ-paris 13. fr

(d'après les notes de cours du même titre par prof. Jean-Marc Delort, USPN)

CMIV, 23/03/2021

3. Support des distributions

Définition 6 Soient  $\Omega \subset \mathbb{R}^d$  un ouvert et  $\omega$  un ouvert non vide  $\omega \subset \Omega$ . Si  $T \in \mathcal{D}'(\Omega)$ , la restriction de T à  $\omega$ ,  $T_{|\omega|}$ , est définie comme la forme linéaire sur  $C_o^{\infty}(\omega)$  donnée par  $\langle T_{|\omega|}, \varphi \rangle := \langle T, \varphi \rangle$ ,  $\forall \varphi \in C_o^{\infty}(\omega)$ .

Comme  $C_0^{\infty}(\omega) \subset C_0^{\infty}(\Omega)$ , la définition a un sens.

Si K = w un compact, alors

 $\langle T_{l\omega}, \varphi \rangle = \langle T, \varphi \rangle$ ,  $\forall \varphi \in C_K^{\infty}(\omega) = C_K^{\infty}(\Omega)$ , donc la continuité de  $T_{l\omega}$  sur  $C_K^{\infty}(\omega)$  résulte directement de la continuité de T sur  $C_K^{\infty}(\Omega)$ , autrement dit  $T_{l\omega} \in \mathcal{D}'(\omega)$ .

On voit que, si w'cwc \(\Omega\), alors  $(T_{|\omega})_{|\omega} = T_{|\omega}$ .

Proposition (Propriété de faisceau). Soit  $\Omega \in \mathbb{R}^d$  ouvert et  $(\omega_j)_j$  une famille localement finie d'ouverts telle que  $\bigcup_{j=1}^d \omega_j = \Omega$ . Pour tout  $j \in \mathbb{N}^*$ , soit

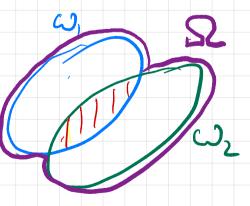
 $T_j \in \mathcal{D}(\omega_j)$  et supposons que,  $\forall$   $i,j \in \mathbb{N}^*$  tq  $\omega_i \cap \omega_j \neq \emptyset$ ,  $T_i \mid_{\omega_i \cap \omega_j} = T_j \mid_{\omega_i \cap \omega_j}$ . Alors, il existe une (et une seule distribution  $T \in \mathcal{D}'(S^2)$  telle que  $T \mid_{\omega_i} = T_j$ ,  $\forall j \in \mathbb{N}^*$ .

Démonstration

Existence: Soit  $(\chi_j)_j$  une partition de l'unité subordonnée à la famille  $(\omega_j)_j$ , dont l'existence est garantée par le Théorème 4 du Chapitre II.

sa a un sens car
on peut voir φ comme
un élément de Co (Ω)
(en prolongeant par o
en clehors de ω).

Si  $\varphi \in C_{0}(\omega)$ alors  $\langle T_{1}\omega, \varphi \rangle = \langle T_{1}\varphi \rangle$   $\langle T_{1}\omega \rangle \langle \varphi \rangle = \langle T_{1}\varphi \rangle$   $\langle T_{1}\omega \rangle \langle \varphi \rangle = \langle T_{1}\varphi \rangle$ el. de  $C_{0}(\omega)$ 



Si  $\varphi \in C^{\infty}(\Omega)$ , alors  $\chi_{j} \varphi \in C^{\infty}(\omega_{j})$ et  $\langle T_j, \chi_j \varphi \rangle$  a un sens. On pose  $\langle T, \varphi \rangle := \sum_{j=1}^{\infty} \langle T_j, \chi_j \varphi \rangle.$  (\*) Comme supp q est un ensemble compact, l'ensemble  $\{j: \omega_j \cap \text{supp } \varphi \neq \emptyset\}$  est fini, donc la somme dans (\*) est finie. Exercice Montrer que  $T \in \mathcal{D}'(\Omega)$ . Montrons que  $T_{|C_j} = T_j$ ,  $\forall j \in \mathbb{N}^*$ . On doit vérifier que  $\langle T, \varphi \rangle = \langle T_j, \varphi \rangle$ ,  $\forall \varphi \in C_o^{\infty}(\omega_j)$ . Or,  $\langle T, \varphi \rangle = \sum_{i=1}^{\infty} \langle T_i, \chi_i \varphi \rangle$ Comme xiq ∈ Co (ωi n ωj) et que Ti |ωinωj = Tj |ωinωj) on a  $\langle T_i, \chi_i \varphi \rangle = \langle T_j, \chi_i \varphi \rangle$ , d'où  $\langle T, \varphi \rangle = \sum_{i=1}^{\infty} \langle T_i, \chi_i \varphi \rangle = \sum_{i=1}^{\infty} \langle T_i, \chi_i \varphi \rangle =$  $= \langle T_j, \sum_{i=1}^{\infty} \chi_i \varphi \rangle = \langle T_j, \varphi \rangle$ Unicité: Il suffit de voir que  $T_{l\omega_i} = 0$  pour tout i implique T=0. Mais, si  $\varphi \in C_o^{\infty}(\Omega)$ , alors il existe Io to  $\varphi = \sum_{i=1}^{\infty} \chi_i \varphi_i$ , donc  $\langle T, \varphi \rangle = \sum_{i=1}^{2} \langle T, \chi_i \varphi \rangle = \sum_{i=1}^{2} \langle T_{|\omega_i}, \chi_i \varphi \rangle = 0.$  $\langle T, \varphi \rangle = \langle T, \begin{pmatrix} \Xi_{i} \\ \Xi_{i} \\ \chi_{i} \end{pmatrix} \varphi \rangle = \rangle$ 

Idée: si "Tj=T" cette somme  $\sum \langle T, \chi, \varphi \rangle =$  $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array}$ F vois, a convert par un nombre frim de cy On en extrait un recouvrement fini. e parce que  $\sum_{i=1}^{\infty} \chi_i(x) = \sum_{i=1}^{\infty} \chi_i(x) = 1$ fx∈supp φ. Réduction! Si T' une autre dust. qui verifie les conditions, elon  $(\widetilde{T}-T)_{|_{\mathcal{O}_{\widetilde{V}}}}=0$   $\forall \widetilde{v}$ .  $(T_i - T_i)|\omega_i$ 

Définition On appelle le support de  $T\in \mathcal{D}'(\Omega)$ le complémentaire de la réunion de tous les ouverts  $\omega \subset \Omega$  tels que  $T_{|\omega} = 0$ . On le note supp (T).

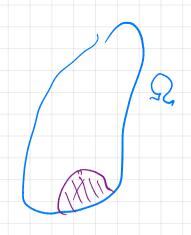
Proposition Soit  $T \in \mathcal{D}'(\Omega)$ .

- i) xo € supp T ⇒ ∃ V < Q ouvert tq xo ∈ V et TIV=0.
- ii)  $x_0 \in \text{supp } T \Leftrightarrow \forall V \subseteq \Omega \text{ ouvert to } x_0 \in V$  $\exists \varphi \in C_{\circ}^{\infty}(V) \quad \forall \varphi \langle T, \varphi \rangle \neq 0$
- iii) Si FC SZ un fermé, alors supp TCF (=) TIQNE = 0.

Démonstration i) est une réécriture de la définition.

- ii) Par la partie i), on a xo ∈ supp T ⇒ ∀ VC So ouvert to xo ∈ V, TIV ≠0. Mais TIV #0 signifie précisément qu'il existe φ∈ C°(V) tq ⟨T, φ⟩ ≠0
- iii) \ Si T | \Q \ = 0, alors, comme SIF est un ouvert, SIF = SI\supp T, autrement dit supp TCF.
  - $\Rightarrow$  Soit supp  $T \subset F$  et  $\varphi \in C_o^{\infty}(\Omega \setminus F)$ , donc q∈ C°(S\ supp T).

Soit K := supp & C \( \supp \tau. \) Par la partie i), Yosek il existe wx C 2 ouvert to  $x_0 \in \omega_{x_0}$  et  $T_{|\omega_{x_0}|} = 0$ On en extrait une famille fini qui recouvre K. Soit a leur réunion.



i) xof supp T (=) zo∈ ouvert ω t9 T1 = 0.

TOEK => TO & Supp T

supp q = K C w

On a  $\varphi \in C_{\circ}^{\circ}(\omega)$  donc, par la Propriété de faisceau,  $\langle T, \varphi \rangle = 0$ .

Exemples · Soit  $f \in L_{loc}(\Omega)$ , et  $T_f$  la distribution associée. Alors supp T, est le support essentiel de f.

Dém: Exercice

· supp (∂d 8x0) = {x0}, Yd∈ Nd

Dém: Soit F:= {xo} dans la Proposition ci-dessus, iii)

Si  $\varphi \in C^{\infty}$  et supp  $\varphi \subset S2 \setminus \{x_o\}$ , alors cp est identiquement nulle sur un voisinage ouvert de  $x_o$ , en particulier  $\langle \partial^{\alpha} S_{x_o}, \varphi \rangle = (-1)^{|\alpha|} \partial^{\alpha} \varphi(x_o) = 0$ .

On a donc supp  $(\partial^{\alpha} \delta_{x_o}) \subset \{x_o\}$ .

Il suffit maintenant de vérifier que supp (2 Sxo) = 0, c'est à dire que de  $S_{x_0} \neq 0$ , autrement dit qu'il existe  $\varphi \in C_{\infty}^{\infty}(\Omega)$  telle que  $\langle \partial^{\alpha} \delta_{\alpha_{0}}, \varphi \rangle = (-1)^{|\alpha|} \partial^{\alpha} \varphi(\alpha_{0}) \neq 0$ Il suffit de prendre  $cp(x) := \chi(x)(x-x_o)^{\alpha}$ , où  $\chi \in C_o^{\infty}(\Omega)$  et  $\chi \equiv 1$  près de  $x_o$ .

Théorème Soit  $T \in \mathcal{D}'(\Omega)$  et  $x_0 \in \Omega$ .

Supposons que supp  $T = \{x_o\}$ . Il existe alors k∈ IN et des nombres complexes (ad) | d1≤k tels que

 $(*) T = \sum_{w \in \mathcal{V}} a_{\omega} \partial^{\alpha} \delta_{x_{\omega}}.$ 

Démonstration Par translation, on se ramène au cas  $x_0=0$ .

Soit r>0 tel que  $B(0,r) = \Omega$ . On sait qu'il existe

C>O et k∈ IN tels que, YOEC° avec supp O=B(O,r)

 $\Rightarrow T_{|\alpha} = 0.$ 

 $T_{\omega_{x_0}} = 0$ ,  $\forall x_0$ 

lère étape supp ( 2 8 x. ) < {x.}.

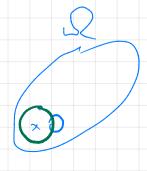


supp & compact,

xo € supp φ

=) Frois. de 20, V

V n Suppe = 0,



 $\binom{*}{*}$   $|\langle T, \Theta \rangle| \leq C \sum_{|\alpha| \leq k} \sup_{\alpha \in \mathbb{R}^d} |\partial^{\alpha} \Theta(\alpha)|.$ Proposition 1 iii),
page 33. Fixons une fonction cut-off  $\chi \in C^{\circ}$ , supp  $\chi \in B(\mathcal{O}_{\Gamma})$ . On montrera (\*) avec  $a_{\alpha} := \frac{(-1)^{|\alpha|}}{\alpha!} \langle T, x^{\alpha} \chi \rangle$ . Remarque Il fant pas Confordre Soit  $\varphi \in C_o^{\infty}(\Omega)$ ,  $\widetilde{\varphi}(x) := \varphi(x) - \sum_{|\alpha| \leq k} \frac{\partial^{\alpha} \varphi(\alpha)}{\alpha!} x^{\alpha} \chi(x)$ . 10°(2) On observe que, pour tout  $|\alpha| \le k$ ,  $\langle T, \widetilde{\varphi} \rangle = \langle T, \varphi \rangle - \sum_{|\alpha| \le k} (-1)^{|\alpha|} a_{\alpha} \partial^{\alpha} \varphi(0) =$ et Tlw  $= \left\langle T - \sum_{k \in F} a_k \partial^k \delta_{o,j} \varphi \right\rangle,$  $\chi = 1$  sur un voisinage de to donc il suffit de montrer que  $\langle T, \widetilde{\varphi} \rangle = 0$ . Pour cela, on observe que, Y 121≤k ∃ Co tq  $\langle T \rangle = \langle (x) \rangle$  $|\partial^{\alpha}\widetilde{\varphi}(x)| \leq C_{\alpha} |x|^{k+1-|\alpha|}, \quad \forall |x| \leq r. \quad \text{(Exercice)}$ Pour tout  $n \in \mathbb{N}^*$ , posons  $\varphi_n(x) := \widetilde{\varphi}(x) \chi(nx)$ .  $=\frac{\partial^2\varphi(0)}{\partial !}\left\langle T, \chi^2\chi(\chi)\right\rangle$ La formule de Leibniz donne, pour tout 1315k,  $\left|\partial^{\beta}\varphi_{n}(x)\right| \leq \sum_{\sigma \in \beta} {\beta \choose r} \left|\partial^{\sigma}\varphi(x)\right| \left|n^{|\beta|-|\sigma|}\partial^{\beta-\sigma}\chi(nx)\right|$ (-1) d! ad (-1) by 6 (1-) Si  $|x| \ge n^{-1}r$ , alors la somme vaut O. Si  $|x| \leq n^{-1}r$ , alors elle s'estime par indépendante de n. = < 26, 45.  $\sum_{r \leq B} {\binom{\beta}{r}} C_r (n^{-r})^{k+1-|r|} n^{|\beta|-|r|} \lesssim n^{|\beta|-k-1} \underset{n \to \infty}{\longrightarrow} 0,$ φ∈ C°(Ω) venfe  $\partial^{\alpha}\widetilde{\varphi}(0)=0$ donc  $\begin{pmatrix} * \\ * \end{pmatrix}$  implique  $\lim_{n \to \infty} \langle T, \varphi_n \rangle = 0$ . √ (21 ≤ k Mais supp  $(\tilde{\varphi} - \varphi_n) \geqslant 0$ , donc  $\langle T, \varphi_n \rangle = \langle T, \tilde{\varphi} \rangle$ , et on conclut que  $\langle T, \widetilde{\varphi} \rangle = 0$ .

Exercice 1) Soit 
$$x, y \in \mathbb{R}^d$$
 et u une fonction de classe  $C^{k+1}$  sur un Voisinage ouvert du segment reliant  $z$  à  $x+y$ . Démontrer la formule de Taylor: 
$$u(x+y) = \sum_{k \mid \leq k} J^{\alpha} J^{\alpha} u(x) + \sum_{k \mid = k+1} \frac{k+1}{\alpha!} y^{\alpha} \int_{0}^{\infty} (1-t)^{k} J^{\alpha} u(x+ty) dt$$

2) Soit u une fonction de classe  $C^{k+1}$  sur la boule de centre  $x_0$  et de rayon r>0, to  $\exists u(x_0)=0 \ \forall |\alpha| \leq k$ . Montrer qu'il existe C>0 to  $|\varphi(x)| \leq C|x-x_0|^{k+1}$ , pour tout x dans cette boule.

 $\Omega$ 

 $\Rightarrow$   $\exists$  vois. onvert de  $\circ$  sur lequel  $\varphi_n = \varphi$ .

4. Distributions à support compact.

Définition On dit que T∈D(S) est à support compact

si supp T < S2 est un ensemble compact.

On note E'(S2) l'ensemble des distributions à support compact.

Théorème Si SZ ⊂ IRd un ouvert et T∈D'(SZ),

alors  $T \in \mathcal{E}'(\Omega)$  si, et seulement si, il existe

 $\widetilde{T}: C^{\infty}(\Omega) \rightarrow \mathbb{C}$  une forme linéaire continue

telle que  $\overline{T}_{|C^{\infty}(\Omega)} = T$ 

Remarque On sait (Théorème 3, p. 29) que

L'ensemble  $G(\Omega)$  est dense dans  $C''(\Omega)$ , donc T,

si elle existe, est unique.

Démonstration du théorème

Supposons d'abord qu'il existe T: C°(\(\Omega\)→ C,

une extension continue de T. Par la Proposition 2, page 4,

il existe Kj ⊂ Q compact, k∈ N et C≥0 tels que

 $|\langle T, \varphi \rangle| = |\langle \widetilde{T}, \varphi \rangle| \leq C \sum_{|\alpha| \leq k} \sup_{x \in K_j} |\partial^{\alpha} \varphi(x)|, \forall \varphi \in C_{\infty}^{\infty}(\Omega).$ 

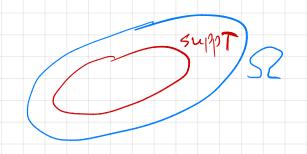
Montrons que supp T C Kj.

En effet, soit  $x_0 \notin K_j$ , et  $V \subseteq \Omega$  un ouvert  $\forall q x_0 \in V$ et  $V \cap K_j = \emptyset$ . Si  $\varphi \in C^{\infty}(\Omega)$  et supp $\varphi \subset V_j$ alors sup  $|\partial_x^{\alpha} \varphi(x)| = 0$  pour tout  $|\alpha| \leq k_j$ 

donc l'inégalité ci-dessus montre que (T, p>=0

Cela montre que xo € supp T,

autrement dit supp TC Kj.



Rge CO(S2) est un espace de Fréchet Inversement, supposons que  $T \in E'(\Omega)$ . Soit  $K_j \subseteq \Omega$  compact to supp  $T \subseteq K_j$ . Par la définition d'une distribution, page 33,  $T|_{C_K^{\infty}(\Omega)}: C_{K_j}^{\infty}(\Omega) \rightarrow C$  est continue, autrement dit il existe  $k \in \mathbb{N}$  et C > 0 to

 $|\langle T, \varphi \rangle| \leq C \sum_{|\alpha| \leq k} \sup_{x \in K_j} |\partial^{\alpha} \varphi(x)|, \forall \varphi \in C^{\infty}$   $|\alpha| \leq k \quad x \in K_j$ Vois ouvert

Fixons  $\chi \in C^{\circ}$  to  $\chi(x) = 1$ ,  $\forall x \in \text{du sup} T$ , supp  $\chi \in K_j$ . Soit  $\psi \in C^{\circ}(\Omega)$  et considérons  $\varphi := \chi \psi$ .

Par la règle de Leibniz, il existe  $C_{\chi} \ge 0$  tq  $\sum \sup |\partial^{\alpha}(\chi \psi)| \le C_{\chi} \sum \sup |\partial^{\alpha}\psi|$ .

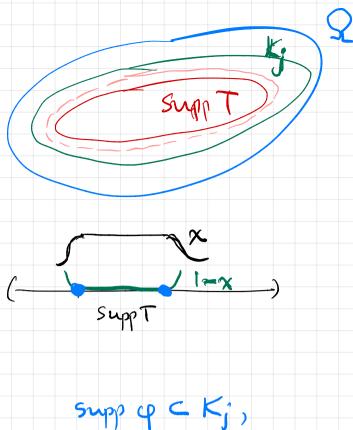
 $\frac{2}{|\alpha| \leq k} \sup_{x \in K_j} |\partial^{\alpha}(\chi \psi)| \leq C_{\chi} \sum_{|\alpha| \leq k} \sup_{x \in K_j} |\partial^{\alpha} \psi|.$ 

En appliquant l'inégalité ci-dessus, on obtient  $|\langle T, \chi \psi \rangle| \leq CC_{\chi} \sum_{|\alpha| \leq k} \sup_{x \in K_{j}} |\partial^{\alpha} \psi(x)|.$ 

Comme supp  $((-\chi)\psi) \cap \text{supp } T = \emptyset$ ,  $\langle T, (-\chi)\psi \rangle = 0$  et  $|\langle T, \gamma \rangle| \leq CC_{\chi} \sum_{|\alpha| \leq k} \sup_{x \in K_{i}} |\partial^{\alpha}\psi(x)|, \forall \psi \in C_{o}^{o}(\Omega).$ 

On en déduit que T s'étend en une application continue  $T: C^{\infty}(\Omega) \rightarrow C$ .

Remarque I. En particulier, toute distribution à support compact est d'ordre fini.



supp 
$$\varphi \subset K_j$$
,  
 $\varphi = \psi$  sur supp  $T$ .

Chapitre IV: Opérations sur les distributions Rappel 1. Produit d'une distribution et d'une fonction C° Si  $T = T_f$ ,  $f \in L_{loc}$ , alors Théorème et Définition Soient  $T \in \mathcal{D}'(\Omega)$ ,  $a \in C^{\infty}(\Omega)$ . On définit at par  $\langle aT, \varphi \rangle := \langle T, a\varphi \rangle$ , pour tout  $\varphi \in C_o^{\infty}(\Omega)$ .  $\langle T_{f}, \varphi \rangle = \int_{\mathcal{Q}} f(x) \varphi(x) dx.$ Alors at  $\in \mathcal{D}'(\Omega)$ . Démonstration Si acco(Q), alon Si KCS2 compact, alors il existe C>0 et kein tq af E - wc  $|\langle T, \psi \rangle| \leqslant C \sum_{|\alpha| \leq k} \sup_{x \in K} |\partial^{\alpha} \psi(x)|, \quad \forall \psi \in C_{K}^{\infty}(\Omega).$ déposit de neuvire habitule Si  $\varphi \in C_K^{\infty}(\Omega)$ , abrs  $\alpha \varphi \in C_K^{\infty}(\Omega)$  aussi, donc (produit ponetuel) d'avoir  $|\langle T, aq \rangle| \leq C \sum_{|\alpha| \leq k} \sup_{x \in K} |\partial^{\alpha}(aq)(x)|$  $\langle aT_{f}, \varphi \rangle = \int_{\Omega} (af)(x) \varphi(x) dx$ at = Taf  $= \int a(x)f(x)\varphi(x)dx =$  $\leq C' \sum_{|x| \leq k} \sup_{x \in K} |\partial^{x} \varphi(x)|,$  $= \int_{\Omega} f(x) \left[ a(x) \varphi(x) \right] dx = \langle T_{\xi}, a\varphi \rangle.$ où la dernière inégalité est une conséquence de la formule de Leibniz. On a donc at:  $C_{\kappa}^{\circ}(\Omega) \rightarrow \mathbb{C}$  continue, coffd Rge Si T= Tf, felloc, alors Exercice Soit  $T, S \in \mathcal{D}'(\Omega)$  et  $a, b \in C^{\infty}(\Omega)$ . Montrer que: 1) supp (aT) < supp a n supp T equité? at = Taf 2) (a+b)T = aT+bTSi qe Co (D), alors 3)  $\alpha(T+5) = \alpha T + \alpha S$  $\langle a \delta_{x_o}, \varphi \rangle = \langle \delta_{x_o}, a \varphi \rangle =$ 4) a(bT) = (ab)T.Exemples .  $a \delta_{x_o} = a(x_o) \delta_{x_o}$  $= (a\varphi)(\chi_0) = a(\chi_0)\varphi(\chi_0) =$  $\cdot \qquad x \vee p \frac{1}{x} = 1.$  $= \alpha(\infty) \langle S_{\infty}, q \rangle$  $= \langle a(x_s) \delta_{x_s}, \varphi \rangle$ .

Exercice Soit  $T \in \mathcal{D}'(\mathbb{R})$ . Montrer que x T = 0si, et seulement si, il existe  $\lambda \in \mathbb{C}$  to  $T = \lambda \delta_0$ 

2. Dérivation des distributions

Définition et théorème Soit  $T \in D(\Omega)$ . On définit une forme linéaire  $\frac{\partial T}{\partial x_i}$  sur  $C_o^{\infty}(\Omega)$  en posant

$$\left\langle \frac{\partial T}{\partial x_{j}}, \varphi \right\rangle := -\left\langle T, \frac{\partial \varphi}{\partial x_{j}} \right\rangle, \quad \text{pour tout } \varphi \in C_{o}^{o}(\Omega).$$

Alors  $\frac{\partial T}{\partial x_i} \in \mathcal{D}'(\Omega)$ 

Démonstration Si K⊂\ compact, alors il existe k∈N et C≥O tels que  $|\langle T, \psi \rangle| \leq C \sum_{k \in k} \sup_{x \in k} |\partial^{\alpha} \psi(x)|, \quad \forall \psi \in C_{k}^{\infty}(\Omega),$ donc  $\left|\left\langle \frac{\partial T}{\partial x_{j}}, \varphi \right\rangle\right| \leq C \sum_{|\alpha| \leq k} \sup_{x \in k} \left|\partial^{\alpha} \partial_{x_{j}} \varphi(x)\right| \leq C \sum_{|\alpha| \leq k+1} \sup_{x \in k} \left|\partial^{\alpha} \varphi(x)\right|,$ donc  $\frac{\partial T}{\partial x_i} \in \mathcal{D}(\Omega)$ .

Propriétés i) Si T=T, avec f de classe C', alors  $\frac{\partial}{\partial x_j} T_{\xi} = T_{\frac{\partial \xi}{\partial x_i}}$ .

- ii)  $T \in \mathcal{D}^{\prime(k)}(\Omega) \Rightarrow \frac{\partial T}{\partial x_j} \in \mathcal{D}^{\prime(k+1)}(\Omega)$ iii) supp  $\frac{\partial T}{\partial x_j} \subset \text{supp } T$
- iv) si  $a \in C^{\infty}(\Omega)$ ,  $T \in D'(\Omega)$ ,  $\frac{\partial}{\partial x_i}(aT) = \frac{\partial a}{\partial x_i}T + a\frac{\partial T}{\partial x_i}$

Preuve Exercice

Remarque (dérivées d'ordre supérieur)

Si  $\alpha \in \mathbb{N}^d$ , on a  $\langle \partial^{\alpha} T, \varphi \rangle = (-1)^{|\alpha|} \langle T, \partial^{\alpha} \varphi \rangle$ .

Si q E Co (R), abrs  $\langle x v p \frac{1}{x}, \varphi \rangle = \langle v p \frac{1}{x}, x \varphi \rangle =$  $= \lim_{\epsilon \to \infty} \left( \int_{-\infty}^{\epsilon} \frac{1}{x} \chi \varphi(x) dx + \int_{z}^{1} \chi \varphi(x) dx \right)$  $= xb(x)p \sim \int_{\infty} (x)dx =$  $= \int_{\Omega} \int dx \varphi(x) dx$  $=\langle 1, \varphi \rangle$ .

T= Tp  $\langle \frac{\partial T_{f}}{\partial x_{j}}, \varphi \rangle = -\langle T_{f}, \partial_{x_{j}} \varphi \rangle =$ 

 $= - \int_{\Omega} f(x) \partial_{x_i} \varphi(x) dx$ 

 $= \int_{x_i} \partial_{x_i} f(x) \varphi(x) dx$ 

(par de terme de bord car  $\varphi \in C^{\infty}(\Omega)$ 

 $=\langle T_{21}, \varphi \rangle$ 

En particulier, indépend par rapport à l'ordre des dérivations le thu de Schwarz) est vrai.

3. Exemples de dérivées au sens des distributions

Exemple 1. Soit  $u \in L_{loc}(\mathbb{R})$  et  $v(x) := \tilde{\int} u(t) dt$ .

Alors v est une fonction continue et la dérivée

de Tv au sens des distributions est Tu.

Preuve. On écrit u au lieu de Tu

et van lieu de Tv.

Soit  $\varphi \in C_o^{\infty}(\mathbb{R})$ . On a

$$\langle v', \varphi \rangle = -\langle v, \varphi' \rangle = -\int_{\mathbb{R}} \left( \int_{0}^{x} u(y) dy \right) \varphi'(x) dx.$$

On peut utiliser Fubini:

$$\langle v', \varphi \rangle = - \int_{\mathbb{R}} \left( \int_{\mathbb{R}} u(y) \varphi'(x) \mathbf{1}_{0 < y < x} dx \right) dy$$

$$+ \int_{\mathbb{R}} \left( \int_{\mathbb{R}} u(y) \varphi'(x) \mathbf{1}_{x < y < 0} dx \right) dy$$

$$=-\int_{\mathbb{R}}\left(\int_{y}^{+\infty}\varphi'(x)dx\right)\mathbb{1}_{y>0}u(y)dy+\int_{\mathbb{R}}\left(\int_{-\infty}^{y}\varphi'(x)dx\right)\mathbb{1}_{y<0}u(y)dy$$

$$=\int_{\mathbb{R}}\varphi(y)\,1_{y>0}\,u(y)dy+\int_{\mathbb{R}}\varphi(y)\,1_{y<0}\,u(y)dy=\langle u,\varphi\rangle.$$

Exemple 2. Soit  $H(x) = \mathbb{1}_{\{x>0\}}$ . Alors  $H' = S_0$ .

Exemple 3. Au sens des distributions,  $(\log |x|)^2 = \sqrt{p} \frac{1}{x}$ .

v'= u au sens des distributions.

fonction de Heaviside

$$\langle H', \varphi \rangle = -\langle H, \varphi' \rangle =$$

$$= -\int_{0}^{\infty} \varphi'(x) dx =$$

$$= -\int_{0}^{\infty} \varphi'(x) dx = \varphi(0).$$

Proposition Soit I CR un intervalle ouvert, T ∈ D'(I).

Alors  $T = const \Leftrightarrow T' = 0$ 

Démonstration => évident.

 $\Leftarrow$  Si T'=0, alors  $\langle T, \theta' \rangle = 0$ ,  $\forall \theta \in C^{\infty}(I)$ .

Fixons  $g \in C^{\infty}(I)$  avec  $\int_{R} g(x) dx = 1$ 

Si φ∈C°(I), soit

$$\psi(x) := \varphi(x) - g(x) \int_{\mathbb{R}} \varphi(y) dy \in C_{\infty}^{\infty}(\mathbf{I}).$$

Soit  $\Theta(x) := \int_{-\infty}^{\infty} \psi(y) dy$ 

Alors  $\Theta' = \psi$  et  $\Theta \in C^{\infty}(I)$ .

En effet, si a < b sont tels que

supp cp U supp & c [a, b] c I, alors

supp  $\theta \in [a,b]$ , puisque, si  $x \ge b$ ,

$$\Theta(x) = \int_{-\infty}^{x} (\varphi(z) - g(z)) \int_{\mathbb{R}} \varphi(y) dy dy = 0$$

$$= \int_{\mathbb{R}} (\varphi(z) - g(z) \int_{\mathbb{R}} \varphi(y) dy) dz = 0.$$

Par conséquent,  $\langle T, \Theta' \rangle = \langle T, \psi \rangle = 0$  donc

$$\langle T, \varphi \rangle = \langle T, p \rangle \int_{\mathbb{R}} \varphi(y) dy = C \langle J, \varphi \rangle,$$

où  $C := \langle T, g \rangle$ , donc T = C = const.