TD III: NOTION D'UNE DISTRIBUTION

18 MARS 2021

Exercice 1. Soit $\Omega \subset \mathbb{R}^d$ et $T \in \mathcal{D}'(\Omega)$ d'ordre inférieur ou égal à k. Montrer qu'il existe une unique forme linéaire $\widetilde{T}: C_0^k(\Omega) \to \mathbb{C}$ telle que $\widetilde{T}|_{C_0^\infty(\Omega)} = T$ et $\widetilde{T}|_{C_K^k(\Omega)}: C_K^k(\Omega) \to \mathbb{C}$ est continue pour tout $K \subset \Omega$ compact.

Exercice 2. Montrer que $T \in \mathcal{D}'(\Omega)$ est une distribution d'ordre $\leq k$ si, et seulement si, pour tout $K \subset \Omega$ compact il existe un nombre positif C tel que

$$|\langle T, \varphi \rangle| \le C \sum_{|\alpha| \le k} \sup_{x \in K} |\partial^{\alpha} \varphi(x)|, \quad \text{pour tout } \varphi \in C_K^{\infty}(\Omega).$$

Exercice 3. Soit $T:C_0^\infty(\mathbb{R}) \to \mathbb{C}$ la forme linéaire définie par

$$\langle T, \varphi \rangle := \sum_{j=0}^{\infty} \varphi^{(j)}(j), \quad \text{pour tout } \varphi \in C_0^{\infty}(\mathbb{R}).$$

- Montrer que $T \in \mathcal{D}'(\mathbb{R})$.
- Montrer que T est d'ordre ∞ .

Exercice 4. Soit $\operatorname{vp} \frac{1}{x}$ la distribution sur \mathbb{R} définie par

$$\left\langle \operatorname{vp} \frac{1}{x}, \varphi \right\rangle := \lim_{\varepsilon \to 0^+} \int_{|x| > \varepsilon} \frac{\varphi(x)}{x} \, \mathrm{d}x.$$

Montrer que $\operatorname{vp} \frac{1}{x}$ est d'ordre exactement 1.

Exercice 5. Soit $K: \mathbb{R}^d \setminus \{0\} \to \mathbb{C}$ une fonction mesurable qui vérifie les conditions suivantes :

- 1) il existe $B \geq 0$ tel que $|K(x)| \leq B|x|^{-d}$ pour tout $x \in \mathbb{R}^d \setminus \{0\}$,
- 2) $\int_{r < |x| < s} K(x) dx = 0$ pour tous $0 < r < s < \infty$.

Montrer que la formule

$$\langle \operatorname{vp} K, \varphi \rangle := \lim_{\varepsilon \to 0^+} \int_{|x| \ge \varepsilon} K(x) \varphi(x) \, \mathrm{d} x, \qquad \text{pour tout } \varphi \in C_0^\infty(\mathbb{R}^d)$$

définit un élément vp $K \in \mathcal{D}'(\mathbb{R}^d)$, d'ordre ≤ 1 . Montrer que vp K est d'ordre exactement 1 si, et seulement si, $K \in L^1_{loc}(\mathbb{R}^d)$.