En coure, on a montré que $T_f = 0$ f = 0 presque partout. C'est un cas particulier de l'exercice 1, parce que $T_f = 0 \Leftrightarrow supp T_f = \emptyset$ TD IV: SUPPORT, MULTIPLICATION, DÉRIVATION

25 MARS 2021

Exercice 1. Soit $\Omega \subset \mathbb{R}^d$ un ouvert, $f \in L^1_{loc}(\Omega)$ et T_f la distribution associée à f. Montrer que supp T_f coïncide avec le support essentiel de f.

Exercice 2. Soit $T, S \in \mathcal{D}'(\Omega)$ et $a, b \in C^{\infty}(\Omega)$. Montrer que

- 1) $\operatorname{supp}(aT) \subset \operatorname{supp}(a) \cap \operatorname{supp}(T)$,
- 2) (a+b)T = aT + bT,
- 3) a(T+S) = aT + aS,
- 4) a(bT) = (ab)T.

Exercice 3. Soit $T \in \mathcal{D}'(\mathbb{R})$ et $x_0 \in \mathbb{R}$.

- 1) Montrer que $(x-x_0)T=0$ si, et seulement si, il existe $\lambda \in \mathbb{C}$ tel que $T=\lambda \delta_{x_0}$.
- 2) Soit $k \in \mathbb{N}$. Donner une condition nécessaire et suffisante pour que $(x-x_0)^k T=0$.

Exercice 4. Soit $S \in \mathcal{D}'(\mathbb{R})$. Trouver toutes les distributions $T \in \mathcal{D}'(\mathbb{R})$ telles que xT = S.

Exercice 5 (*). Soit $S \in \mathcal{D}'(\mathbb{R})$ et $k \in \mathbb{N}$. Trouver toutes les distributions $T \in \mathcal{D}'(\mathbb{R})$ telles que $x^kT = S$.

Indication: Considérer la distribution T définie par

$$\langle T, \varphi \rangle := \left\langle S, \frac{\varphi(x) - \sum_{j=0}^{k-1} \frac{\varphi^{(j)}(0)}{j!} \theta(x)}{x^k} \right\rangle$$

où θ est une fonction cut-off.

Exercice 6. Montrer que $(\log |x|)' = \operatorname{vp}(1/x)$. Ensuite, montrer que

$$\left\langle \operatorname{vp}\left(\frac{1}{x}\right)', \varphi \right\rangle = \lim_{\epsilon \to 0} \left(\int_{|x| \ge \epsilon} \frac{\varphi(x)}{x^2} \, \mathrm{d}x - \frac{2\varphi(0)}{\epsilon} \right).$$

Exercice 7. Soit $T \in \mathcal{D}'(\mathbb{R})$. Calculer (xT)'. Ensuite, résoudre dans $\mathcal{D}'(\mathbb{R})$ l'équation différentielle xT' + T = 0.

Soit $\gamma \in C^{\infty}(\mathbb{R})$ define par $\gamma(x) = (x-x_0)\gamma(x)$. On a $\langle (x-x_0)T, \varphi \rangle = \langle T, (x-x_0)\varphi \rangle = \langle T, \psi \rangle$ $=\langle \chi S_{x_0}, \psi \rangle = \lambda \psi(x_0) = 0$

$$(x-x_0)$$
 φ signifie la fonction $\psi \in C_0^{\infty}(\mathbb{R})$ défine par $\psi(x) = (x-x_0) \varphi(x)$, donc $\psi(x_0) = 0$.

Exercice 1. Rappelons que, par définition, le support essentiel de f est le complémentaire du plus grand ouvert tel que f = 0 presque partout sur cet ouvert (ce qui a un sens parce que Rd a une base dénombrable de voisinages) Montrons d'abord que supp T_f C ess supp f (⇒ [(ess supp f) ⊂ [(supp T_f). ⇒ (T_f) ((ess supp f)) = 0. Soit $\varphi \in C_0^{\infty}(\Omega)$, supp $\varphi \subset \mathbb{C}$ (ess supp f). Alors $\int f \varphi = 0$, donc $(T_f)_{\mathbb{C}}(ess supp f) = 0$. $\Leftrightarrow \langle T_f, \varphi \rangle = 0$ $\Leftrightarrow C(ess supp f) \subset C(supp <math>T_f$). Montrous meintenant que $(sup T_f) \subset (ess supp f)$ Soit $U := \mathbf{C}(supp T_{\mathbf{f}}), g := f_{\mathbf{ju}} \in L_{bc}(\mathbf{u}).$ Alors $T_g \in \mathcal{D}'(u) = (T_f)|_{u} = 0$ donc d'après le cours g(x)=0 pour presque tout $z \in U$, donc $U \subseteq C$ (ess supp f). \Rightarrow 5i $\varphi \in C^{\infty}(U)$, alors $\langle T_g, \varphi \rangle = \langle (T_f)|_{U}, \varphi \rangle = \langle T_f, \varphi \rangle$ $\Rightarrow \varphi \in C^{\infty}(\Omega)$ S 9 4 = S f 4 Paprès le courr, (Te) [supp(Te) = 0 (Proposition, vii, avec F= supp Te)

Exercise 2.

2)
$$(a+b)T = aT+bT$$
.

Soit $\varphi \in C^{\infty}(\Omega)$. Alors

 $\langle (a+b)T, \varphi \rangle = \langle T, (a+b)\varphi \rangle = \langle T, a\varphi \rangle + \langle T, b\varphi \rangle$
 $= \langle T, a\varphi + b\varphi \rangle = \langle T, a\varphi \rangle + \langle T, b\varphi \rangle$
 $= \langle aT, \varphi \rangle + \langle bT, \varphi \rangle = \langle aT+bT, \varphi \rangle$
 $defaT$
 $\Rightarrow (a+b)T = aT+bT$.

1) Supp $(aT) \stackrel{?}{\subset} supp a \cap supp T$.

 $\Leftrightarrow [(supp a \cap supp T) \subset [(supp (aT))]$
 $f(supp a) \subset f(supp T)$
 $f(supp a) \subset f(supp (aT))$
 $f(supp a) \subset f(supp (aT))$

Ad a) It faut monther que

 $f(aT)[f(supp a) \subset f(supp (aT))]$

Ad a) It faut monther que

 $f(aT)[f(supp a) \subset f(supp (aT))]$
 $f(supp a) \subset f(supp (aT))$

Ad a) It faut monther que

 $f(aT)[f(supp a) \subset f(supp (aT))]$
 $f(aT) = f(supp a) \subset f(supp (aT))$

Ad a) It faut monther que

 $f(aT) = f(supp a) \subset f(supp (aT))$
 $f(supp a) = f(supp a)$
 $f(supp a$

Ad b) Il fant montrer que y φ∈ Cω(S) tq supp φ c C(supp T) $\langle aT, \varphi \rangle = 0$ Si supp φ C (supp T), alors supp (aφ) C (supp T) \Rightarrow $\langle T, aq \rangle = 0$, parce que $T_{1(supp T)} = 0$. Une autre manière de rédiger la solution: Soit so & suppa Il fant montrer que xod supp (aT) c'est à dire 3V vois de 20 tq (aT) 1, = 0, c'est-à-dite supp q c V $\Rightarrow \langle aT, \varphi \rangle = 0$ Prenons V vois-ouvert de 20 tq a(x)=0, Vx EV. Alon, si cp & Co(sc) to supply cV, on a ay =0, done 0= < t, ap > = < at, p>, done (aT) | v = 0, done x0 € supp (aT).

Exercice 3.

1) Il est clair que $(x-x_0)$ $\delta_{x_0} = 0$. Réciproquement, supposons que $(x-x_o)$ T=0. Montrons d'abord que supp $T \subset \{x_o\}$. Soit $\varphi \in C_o^{\infty}(\mathbb{R})$ t φ supp $\varphi \not \ni x_o$, c'est-à-dire q≡0 œu voisinage de xo. Alors $\frac{1}{x-x_0} \varphi \in C_0^{\infty}(\mathbb{R}), donc$ $\langle T, \varphi \rangle = \langle T, (x-x_o) \frac{1}{x-x_o} \varphi \rangle = \langle (x-x_o)T, \frac{1}{x-x_o} \varphi \rangle = 0.$ Daprès le cours, $T = \sum_{j=0}^{m} a_j S_{x_0}^{(j)}$, donc on veut et on aura $\lambda = a_0$. $\langle \tau, \varphi \rangle = \sum_{j=0}^{\infty} (-1)^{j} \alpha_{j} \varphi^{(j)}(x_{o})$ Soit $\varphi(x) = (x-x_0) \xi(x), \quad \xi \in G^{\infty}(\mathbb{R})$ On sait que $\langle T, \varphi \rangle = 0$. On peut prendre $\xi(x) = (x-x_0)^2 \Theta(x)$, 9 - fonction cut-off, c'est-à-dire $\Theta(x)=1$ au voisinage de ∞ , $0 \in G^{\infty}(\mathbb{R})$ Si on prend l=0, $F(x)=\Theta(x)$, done $\varphi(x) = (x-x_0) \Theta(x)$, on a $\varphi(x_0) = 0$, $\varphi'(x_0) = 1$, $\varphi^{(j)}(x_0) = 0$, si $j \ge 2$, donc $0 = \langle T, \varphi \rangle = -a_1 \longrightarrow a_1 = 0$ Si on prend l=1, $\xi(x)=(x-x_0)\Theta(x)$, $\varphi(x)=(x-x_0)^2\Theta(x)$ $\varphi(x)=(x-x_0)^2\Theta(x)$ $\varphi(x_0)=0$, $\varphi'(x_0)=0$, $\varphi''(x_0)=2$, $\varphi''(x_0)=0$, $\xi(x)=3$ $\varphi(x)=0$, $\varphi(x)=0$, $\varphi(x)=0$, $\varphi(x)=0$, $\xi(x)=0$,