DM III: OPÉRATIONS SUR LES DISTRIBUTIONS

À RENDRE LE 29 MARS 2022, EN PERSONNE OU PAR COURRIEL

Exercice 1. Calculer la limite dans $\mathcal{D}'(\mathbb{R})$ de chacune des suites de distributions ci-dessous et dire (en le justifiant brièvement) quel est l'ordre de la limite :

- 1) $T_n = T_{f_n}$, où $f_n(x) = n \sin(nx) \mathbb{1}_{\{x \ge 0\}}$,
- 2) $T_n = T_{f_n}$, où $f_n(x) = \frac{\sin(nx)}{x}$,
- 3) $T_n = n(\delta_{1/n} \delta_{-1/n}),$
- 4) $T_n = n^2 (\delta_{1/n} + \delta_{-1/n} 2\delta_0),$
- 5) $T_n = n(\delta_{1/n} \delta_{-1/n})'$.

Exercice 2. Soit $\alpha > 0$ et $\alpha \notin \mathbb{N}$. Le but de l'exercice est de construire une distribution correspondante à la fonction $x_+^{-\alpha} = x^{-\alpha} \mathbb{1}_{\{x>0\}}$, qu'on notera pf $(x_+^{-\alpha})$ ("partie finie" de $x_+^{-\alpha}$).

1) Montrer que, pour toute fonction $\phi \in C_0^{\infty}(\mathbb{R})$, on peut écrire

$$\int_{\epsilon}^{\infty} x^{-\alpha} \phi(x) dx = P_{\phi}^{\alpha}(\epsilon) + R_{\phi}^{\alpha}(\epsilon), \quad \text{pour tout } \epsilon > 0,$$

où $P_{\phi}^{\alpha}(\epsilon)$ est une combinaison linéaire de puissances strictement négatives de ϵ et $R_{\phi}^{\alpha}(\epsilon)$ admet une limite lorsque $\epsilon \to 0^+$. Montrer qu'une telle décomposition est unique.

2) Montrer que la formule

$$\langle \operatorname{pf}(x_+^{-\alpha}), \phi \rangle := \lim_{\epsilon \to 0^+} R_{\phi}^{\alpha}(\epsilon), \quad \text{pour tout } \phi \in C_0^{\infty}(\mathbb{R}),$$

définit une distribution pf $(x_+^{-\alpha})$ d'ordre exactement $\lfloor \alpha \rfloor$ (le plus grand nombre naturel $\leq \alpha$).

3) Calculer les distributions $xpf(x_+^{-\alpha})$ et $\frac{d}{dx}pf(x_+^{-\alpha})$.

Exercice 3. 1) Pour tout R > 0, soit $E_R : \mathbb{R}^3 \to \mathbb{R}$ la fonction donnée par

$$E_R(x) = \begin{cases} -\frac{1}{4\pi|x|} & \text{si } |x| \ge R, \\ -\frac{1}{4\pi R} & \text{si } |x| \le R. \end{cases}$$

Montrer que ΔE_R (au sens des distributions) est la mesure uniforme sur la sphere \mathbb{S}_R de centre 0 et de rayon R, de masse totale 1. (Indication : pour une fonction test ϕ , écrire $\langle E_R, \phi \rangle$ comme une somme de deux intégrales, et utiliser la formule de Green pour chacune d'elles.)

2) Soit $E \in \mathcal{D}'(\mathbb{R}^3)$ la distribution correspondante à la fonction localement intégrable $x \mapsto -\frac{1}{4\pi|x|}$. Montrer que $\Delta E = \delta_0$. (Indication : on a $\lim_{R\to 0^+} E_R = E$ dans $\mathcal{D}'(\mathbb{R}^3)$.) Exercice 1

1) Soit $\varphi \in C_{\infty}^{\infty}(IR)$. Une integration par parties donne $\langle T_{fn}, \varphi \rangle = \int_{0}^{\infty} n \sin(nx) \varphi(x) dx =$ $= \int_{0}^{\infty} \cos(nx) \varphi'(x) dx + \varphi(0)$ $= -\frac{1}{n} \int_{0}^{\infty} \sin(nx) \varphi''(x) dx + \varphi(0) \xrightarrow{n \to \infty} \varphi(0) = \langle s_{0}, \varphi \rangle$,

donc $T_{fn} \to S_{\infty}$ dans D'(IR), qui est une distribution

2) Soit $\varphi \in C^{\infty}(\mathbb{R})$, supp $\varphi \subset [-\mathbb{R}, \mathbb{R}]$, $\mathbb{R} > 0$.

On sait que $\psi(x) = \frac{1}{2} (\varphi(x) - \varphi(0))$ est une fonction lisse (elle n'est pas, en général,

à support compact). On obtient

d'ordre O.

$$\begin{aligned} & \left\langle T_{fn}, \varphi \right\rangle = \int_{-R}^{R} \frac{\sin(nx)}{x} \varphi(x) dx = \\ & = \int_{-R}^{R} \frac{\sin(nx)}{x} \left(x \psi(x) + \varphi(0) \right) dx = \int_{-R}^{R} \sin(nx) \psi(x) dx \\ & + \varphi(0) \int_{-nR}^{nR} \frac{\sin(y)}{dy} dy. \end{aligned}$$

Par une IPP, la 1ère intégrale \rightarrow 0, et la deuxième converge vers l'intégrale généralisée $\varphi(0)$ $\int_{-\infty}^{\sin x} dx = \langle TT \delta_0, \varphi \rangle$, donc $T_{fn} \rightarrow TT \delta_0$ dans $\mathcal{D}'(R)$.

3) Soit
$$\varphi \in C^{\infty}(\mathbb{R})$$
.

 $\langle T_n, \varphi \rangle = r_1(\varphi(x_n) - \varphi(-x_n)) \rightarrow 2\varphi'(0)$, donc

 $T_n \rightarrow -28^\circ$, d'ordre 1.

4) $\langle T_n, \varphi \rangle = r^2(\varphi(x_n) + \varphi(-x_n) - 2\varphi(0)) \rightarrow \varphi''(0)$,
donc $T_n \rightarrow 8^\circ$, d'ordre 2.

5) On sait que $S_n \rightarrow S$ implique $S_n \rightarrow S^\circ$,
donc question 3) donne $T_n \rightarrow -28^\circ$, d'ordre 2.

Exercice 2 On procède par récurrence par rapport

 $\widehat{\alpha} = L\alpha J$, c'est- $\widehat{\alpha}$ -dire $k < \alpha < k + 1$.

Si $k = 0$, alors on pose

 $P_{\varphi}^{\alpha}(\varepsilon) = 0$, $P_{\varphi}^{\alpha}(\varepsilon) = \int_{\varepsilon}^{\varepsilon} x^{-\alpha} \varphi(x) dx$.

Soit $k \geqslant 1$. Une integration par parties donne

$$\int_{\varepsilon}^{\infty} x^{-\alpha} \varphi(x) dx = \frac{\varepsilon^{1-\alpha}}{\alpha - 1} \varphi(\varepsilon) + \frac{1}{\alpha - 1} \int_{\varepsilon}^{\infty} x^{-\alpha + 1} \varphi'(x) dx$$
.

$$= \frac{\varepsilon^{1-\alpha}}{\alpha - 1} \left(\varphi(0) + \varphi'(0) \varepsilon + \dots + \frac{\varphi(k-1)(0)}{(k-1)!} \varepsilon^{k-1} + \frac{\varepsilon^k}{(k-1)!} \int_{\varepsilon}^{\varepsilon} (k-1)^k \varphi''(\varepsilon) dt \right)$$

$$+ \frac{1}{\alpha - 1} P_{\varphi}^{\alpha - 1}(\varepsilon) + \frac{1}{\alpha - 1} P_{\varphi}^{\alpha - 1}(\varepsilon)$$
, on pose donc

$$P_{\varphi}^{\alpha}(\varepsilon) = \frac{\varepsilon^{1-\alpha}}{\alpha - 1} (\varphi(0) + \varphi'(0) \varepsilon + \dots + \frac{\varphi(k-1)(0)}{(k-1)!} \varepsilon^{k-1}) + \frac{1}{\alpha - 1} P_{\varphi}^{\alpha - 1}(\varepsilon)$$
où $P_{\varphi}^{\alpha}(\varepsilon) = \frac{\varepsilon^{1-\alpha}}{(\alpha - 1)(k-1)!} \int_{\varepsilon}^{\varepsilon} (1-\varepsilon)^{k-1} \varphi''(\varepsilon) dt + \frac{1}{\alpha - 1} P_{\varphi}^{\alpha - 1}(\varepsilon)$
où $P_{\varphi}^{\alpha - 1}$ et $R_{\varphi}^{\alpha - 1}$ existent par l'hypothèse de récurrence.

L'unicité résulte de l'observation suivante: Si a, a, a, ..., am eC, O< y, < y < < -- < ym et $\lim_{\varepsilon \to 0^+} (a_1 \varepsilon^{-\overline{v_1}} + a_2 \varepsilon^{-\overline{v_2}} + ... + a_m \varepsilon^{-\overline{v_m}})$ existe, alon $a_1 = a_2 = \dots = a_m = 0$ (En effet, si k le plus grand tel que ax≠0) alors on multiplie par E & et on a une contradiction) 2) On voit que lim $R^{\alpha}_{\phi}(\varepsilon) = \frac{1}{\alpha - 1} \lim_{\varepsilon \to 0^+} R^{\alpha - 1}_{\phi}(\varepsilon)$, et par récurrence on trouve $\lim_{\varepsilon\to 0^+} \mathcal{R}^{\alpha}_{\varphi}(\varepsilon) = \frac{1}{(\alpha-1)(\alpha-2)...(\alpha-k)} \mathcal{R}^{\alpha-k}_{\varphi(k)}(\varepsilon) =$ $=\frac{1}{(\alpha-1)...(\alpha-k)}\int_{0}^{\infty}x^{-\alpha+k}\varphi^{(k)}(x)dx.$ Il est clair que cette formule définit une distribution d'ordre au plus k. Pour voir que l'ordre n'est pas ≤ k-1, on peut considérer par exemple la suite des fonctions test $\varphi_n(x) = \gamma(nx), \text{ où } \gamma \in C^{\infty}_{(-1,1)}(\mathbb{R})$ est telle que $\int x^{-\alpha+k} \gamma^{(k)}(x) dx \neq 0$ (il faut justifier qu'une telle fonction existe, ce qui est assez facile).

On a alon max sup
$$|\varphi_{n}^{(j)}(x)| = O(n^{k-1})$$
, et $\int_{0}^{\infty} x^{-2kk} \varphi_{n}^{(k)}(x) dx = \int_{0}^{\infty} n^{2k-1} (nx)^{-2kk} n^{k} \gamma^{(j)}(nx) d(nx)$

$$= n^{2k-1} \int_{0}^{\infty} x^{-2kk} \gamma^{(k)}(x) dx >> n^{k-1}, \text{ purique } d > k.$$
La distribution n'est donc pas d'ordre $\leq k-1$.

3) En utilisant la formule
$$\langle pf(x_{+}^{-2}), \varphi \rangle = \frac{1}{(2k-1) - (2k+1)} \int_{0}^{\infty} x^{-2kk} \varphi^{(k)}(x) dx,$$
après un peu de calcul on arrive à
$$xpf(x_{+}^{-2}) = pf(x_{+}^{-2k+1}) \quad \text{si } d > 1$$

$$xpf(x_{+}^{-2}) = x_{+}^{-2k} \quad \text{si } d < 1$$

$$\frac{d}{dx} pf(x_{+}^{-2}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k-1}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k-1}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k-1}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k-1}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k-1}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k-1}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k-1}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k-1}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k-1}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k-1}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k-1}) = - d pf(x_{+}^{-2k-1}), \quad \forall d > 0.$$

$$\frac{d}{dx} pf(x_{+}^{-2k-1})$$

On Ecrit maintenant

$$\int_{\mathbb{R}^{3}} \Xi_{R}(x) \Delta \varphi(x) dx = -\frac{1}{4\pi R} \int_{|x| \leq R} \Delta \varphi(x) dx - \frac{1}{4\pi} \int_{|x| \geq R} \frac{1}{|x|} \Delta \varphi(x) dx$$

Rappelons la formule de Green:

$$\int_{\Omega} f(x) \Delta g(x) dx = \int_{\Omega} f(x) \partial_{n} g(x) \sigma(dx) - \int_{\Omega} \nabla f(x) \cdot \nabla g(x) dx,$$

où $\partial_n g(x) = \vec{n} \cdot \nabla g(x)$ est la dérivée de g dans la direction normale extérieure à S2, et σ est la mesure de Hausdorff.

En point x de la surface de la boule B(0,R), le vecteur normal extérieur à cette boule est $\frac{x}{R}$. Par conséquent,

$$\int_{|x| \leq R} \Delta \varphi(x) dx = \int_{|x| = R} \frac{x}{R} \cdot \nabla \varphi(x) \sigma(dx),$$

$$\int_{|x| \ge R} \frac{1}{|x|} \Delta \varphi(x) dx = \int_{|x| = R} \frac{1}{R} \left(-\frac{x}{R} \right) \cdot \nabla \varphi(x) \delta(dx)$$

$$-\int_{|x|\geqslant R} \nabla \left(\frac{1}{|x|}\right) \cdot \nabla \varphi(x) dx, \quad donc$$

$$\int_{\mathbb{R}^{3}} \Xi_{\mathcal{R}}(x) \Delta \varphi(x) dx = \frac{1}{4\pi} \int_{|x| \ge \mathcal{R}} \nabla \left(\frac{1}{|x|}\right) \cdot \nabla \varphi(x) dx.$$

En appliquant encore une fois la formule de Green,

$$\int_{|x| \ge R} \nabla \left(\frac{1}{|x|}\right) \cdot \nabla \varphi(x) dx = -\int_{|x| = R} \frac{x}{R} \cdot \nabla \left(\frac{1}{|x|}\right) \varphi(x) \sigma(dx) - \int_{|x| \ge R} \Delta \left(\frac{1}{|x|}\right) \varphi(x) dx$$

Il suffit maintenant de calculer:
$$\nabla(\frac{1}{|x|}) = \nabla\left(\frac{1}{\sqrt{x_{1}^{2}x_{1}^{2}+x_{1}^{2}}}\right) = -\frac{x}{|x|^{3}}$$

$$\partial_{x_{1}}^{2}\left(\frac{1}{|x|}\right) = \partial_{x_{1}}\left(-\frac{x_{1}}{(x_{1}^{2}x_{1}^{2}+x_{2}^{2})^{2}x}\right) = -\frac{1}{|x|^{3}} + \frac{3x_{1}^{2}}{|x|^{5}}$$

$$donc \quad \Delta\left(\frac{1}{|x|}\right) = \left(\partial_{x_{1}}^{2} + \partial_{x_{2}}^{2} + \partial_{x_{3}}^{2}\right)\left(\frac{1}{|x|}\right) = 0 \quad \text{et}$$

$$\int_{\mathbb{R}^{3}} \mathbb{E}_{2}(x) \Delta \varphi(x) dx = -\frac{1}{4\pi} \int_{|x|=R}^{R} \left(-\frac{x}{|x|^{3}}\right) \varphi(x) \sigma(dx)$$

$$= \frac{1}{4\pi R^{2}} \int_{|x|=R}^{R} \varphi(x) \sigma(dx).$$
2) On voit que lim $\mathbb{E}_{2} = \mathbb{E}$ dans $\mathbb{L}_{loc}(\mathbb{R}^{3})$,
(on observe que la singularité de \mathbb{E} en 0 est intégrable), donc auxi lim $\mathbb{E}_{2} = \mathbb{E}$
dans $\mathcal{D}(\mathbb{R}^{3})$. La dérivation est une opération continue pour la convergence dans $\mathcal{D}(\mathbb{R}^{3})$, donc
$$\Delta \mathbb{E} = \lim_{R \to 0^{+}} \Delta \mathbb{E}_{2}.$$
Il reste à montrer que $\lim_{R \to 0^{+}} \frac{1}{4\pi R^{2}} \overline{\sigma}_{R} = \delta_{0}$,
où $\overline{\sigma}_{R}$ est la mesure de Hausdorff sur la sphère de centre 0 et de rayon R .

Soit $\varphi \in \mathcal{C}^{\infty}(\mathbb{R}^{3})$. On a

 $\left|\left\langle \frac{1}{4\pi R^2} \sigma_R - \delta_0, \varphi \right\rangle \right| = \frac{1}{4\pi R^2} \left| \sum_{|\mathbf{x}| = R} (\varphi(\mathbf{x}) - \varphi(0)) \sigma(d\mathbf{x}) \right|$

$$\leq \frac{1}{4\pi R^2} \int_{|x|=R} R \sup_{|y| \leq R} |\nabla \varphi(y)| \, \sigma(dx)$$