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Chapter 1

The wave equation

The wave equation is

∂2tu(t, x) − c
2∆u(t, x) = 0, (1.0.1)

where t ∈ R is interpreted as a moment time, x ∈ Rd as a position in the d-dimensional Euclidean

space, c > 0 is a constant parameter (the propagation speed of the waves) and u(t, x) is a real or

complex scalar. We will always denote ∆ := ∂2x1 +∂
2
x2
+ . . .+∂2xd the Laplace operator with respect

to the spatial variables.

1.1 Mechanical derivations of the wave equation

1.1.1 String vibration using Newton's second law

Recall how the wave equation is derived in elementary dynamics. Suppose a string is described by

the graph of a function u of a single variable x ∈ R. We will assume that the string is almost at

rest, so that |∂xu(t, x)| is small for all t and x. Under this assumption, it is reasonable to assume

that each part of the string is subject to a force of constant magnitude F > 0 along the direction

of the string.

Fix a time t and consider a part of the string contained between x and x+ dx. Using the small

slope assumption again, we realize that the vertical force acting on it is at main order given by

F∂xu(t, x+ dx) − F∂xu(t, x) ∼ F∂
2
xu(t, x)dx.

Since the acceleration in the vertical direction is given by ∂2tu(t, x), denoting µ the mass density

per unit length and applying Newton's 2nd law, we obtain

µ∂2tu(t, x)dx = F∂
2
xu(t, x)dx,

which is (1.0.1) with c :=
√
F/µ.

1.1.2 String vibration using a Lagrangian

We �x again t and consider the part of the string contained between x and x + dx. The kinetic

energy of this part is given by 1
2µ(∂tu(t, x))

2 dx. The potential energy is given by F multiplied by
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the extension of the string. By Pythagore's theorem, this extension equals at main order

dx
(√
1+ (∂xu(t, x))2 − 1

)
∼
1

2
(∂xu(t, x))

2dx.

We thus obtain the Lagrangian density 1
2µ(∂tu(t, x))

2 − 1
2(∂xu(t, x))

2. The corresponding Euler-

Lagrange equation is (1.0.1) with c :=
√
F/µ.

1.1.3 Drum vibration using Newton's second law

Analogous reasoning can be done for d ≥ 2. In this case, we assume that every part of the drum

is subject to a force directed in the normal direction, whose magnitude per (d − 1)-dimensional

volume is constant and equal to F.

Fix a time t and consider a part of the drum in the ball B(x,dx). The force acting on it is at

main order given by

F

∫
∂B(x,dx)

∂nu(t, y)σ(dy) = F

∫
B(x,dx)

∆u(t, y)dy ∼ vol(B(x,dx))F∆u(t, x).

The rest of the argument is exactly the same as for d = 1.

1.1.4 Drum vibration using a Lagrangian

The area extension of the part of the drum in the ball B(x,dx) is given at main order by

vol(B(x,dx))
(√
1+ |∇u(t, x)|2 − 1

)
∼
1

2
|∂xu(t, x)|

2 vol(B(x,dx)).

The rest of the argument is the same as for d = 1.

Remark 1.1.1. The physical theory where the wave equation appears the most frequently is

probably the classical theory of the electromagnetism.

1.2 The Cauchy problem

In the remaining part of the lectures, we let c := 1. Intuitively, the movement of a vibrating string

or drum should be uniquely determined by the initial positions and velocities of its parts. We are

thus led to considering the so-called Cauchy problem

∂2tu(t, x) − ∆u(t, x) = 0, (t, x) ∈ R× Rd,
u(0, x) = u0(x), ∂tu(0, x) = 
u0(x), x ∈ Rd.

(1.2.1)

the functions u0 and 
u0 are called the initial data or initial conditions.

Remark 1.2.1. If the spatial domain is not the Euclidean space, then appropriate boundary

conditions have to be imposed.
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1.2.1 A solution using Fourier series

Assume that u0 and 
u0 are trigonometric polynomials:

u0(x) = (2π)−d
∑
|k|≤n

a0(k)e
ik·x,


u0(x) = (2π)−d
∑
|k|≤n


a0(k)e
ik·x

(we use the standard notation |k| :=
∑d
j=1 |kj|). We look for a solution of (1.2.1) of the form

u(t, x) = (2π)−d
∑
|k|≤n

a(t, k)eik·x. (1.2.2)

Substituting into (1.2.1) and comparing the coe�cients of the polynomials on both sides, we obtain

for all k ∈ Zd such that |k| ≤ n

∂2ta(t, k) + |k|2a(t, k) = 0, for all t

a(0, k) = a0(k), ∂ta(0, k) = 
a0(k).

The solution is given by

a(t, k) = a0(k) cos(|k|t) + 
a0(k)
sin(|k|t)

|k|
. (1.2.3)

Plugging into (1.2.2), we have solved the Cauchy problem.

The last result is frequently written in a �functional� way as follows. We introduce the dif-

ferential operator Dj :=
1
i∂xj . We write D = (D1, D2, . . . , Dd), which is a d-tuple of di�erential

operators. Then

u(t) = cos(|D|t)u0 +
sin(|D|t)

|D|

u0. (1.2.4)

Let us explain where this notation comes from. First, we use the standard convention that u(t)

should be interpreted as the function x 7→ u(t, x). Next, denote Pn the linear space of trigonometric

polynomials of degree at most n and observe that Dj : Pn → Pn is a linear operator whose matrix

is diagonal in the basis {eik·x : |k| ≤ n}, with the corresponding eigenvalues equal to kj. It follows

from (1.2.3) that

u(t) = S(t)u0 + 
S(t) 
u0,

where S(t) and 
S(t) are linear maps Pn → Pn. The matrix of S(t) is diagonal in the basis {eik·x :

|k| ≤ n}, with the numbers cos(|k|t) on the diagonal. By the standard notation of Linear Algebra,

we can thus write S(t) = cos(|D|t). Analogously, 
S(t) = sin(|D|t)
|D|

.

Remark 1.2.2. Let m : Zd → C, and for any trigonometric polynomial v(x) =
∑

|k|≤n b(k)e
ik·x set

(Tv)(x) :=
∑
|k|≤n

m(k)b(k)eik·x.

The operator T is called a Fourier multiplication operator and m the Fourier multiplier. As

justi�ed by the discussion above, we write in this case T = m(D). The operators S(t) and 
S(t) are

thus Fourier multiplication operators.
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It will be important later to generalize (1.2.1) by allowing a non-zero forcing term and consider

the problem
∂2tu(t, x) − ∆u(t, x) = f(t, x), (t, x) ∈ R× Rd,
u(0, x) = u0(x), ∂tu(0, x) = 
u0(x), x ∈ Rd.

(1.2.5)

If f(t) is a trigonometric polynomial of degree ≤ n for all t:

f(t, x) = (2π)−d
∑
|k|≤n

c(t, k)eik·x,

then proceeding as above we �nd

∂2ta(t, k) + |k|2a(t, k) = c(t, k), for all t

a(0, k) = a0(k), ∂ta(0, k) = 
a0(k).

If we assume that for every k the function t 7→ c(t, k) is locally integrable, then the solution is

given by the variation of constants formula (or the Duhamel formula)

a(t, k) = a0(k) cos(|k|t) + 
a0(k)
sin(|k|t)

|k|
+

∫ t
0

c(s, k)
sin(|k|(t− s))

|k|
ds,

which is usually written as

u(t) = cos(|D|t)u0 +
sin(|D|t)

|D|

u0 +

∫ t
0

sin(|D|(t− s))

|D|
f(s)ds. (1.2.6)

If, instead of assuming that the initial data are given by trigonometric polynomials, we assume

instead that u0 and 
u0 are functions which are 2π-periodic in each variable, then they can be

expanded in Fourier series

u0(x) = (2π)−d
∑
k∈Zd

a0(k)e
ik·x,


u0(x) = (2π)−d
∑
k∈Zd


a0(k)e
ik·x,

and we can de�ne the solution of (1.2.2) by the formula

u(t, x) = (2π)−d
∑
k∈Zd

a(t, k)eik·x, (1.2.7)

where a(t, k) is given by (1.2.3). Some conditions have to be imposed on u0 and 
u0 in order for

the series (1.2.7) to converge in some sense, or one should interpret (1.2.7) in the sense of periodic

distributions. We will not enter into these considerations. Whenever (1.2.7) is meaningful, by

analogy with the case of trigonometric polynomials we express the solution using the notation

(1.2.4).
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1.2.2 A solution using Fourier transform

In the non-periodic case, a similar procedure is made possible using the Fourier transform, which

we brie�y recall.

Let µ be a complex-valued Borel measure on Rd of �nite total variation. We de�ne its Fourier

transform:

(Fµ)(ξ) = µ̂(ξ) :=
∫
Rd

e−ix·ξµ(dx), ∀ξ ∈ Rd.

We see that µ̂ is a bounded continuous function. If f ∈ L1(dx), we set Ff := F(fdx).

De�nition 1.2.3. The Schwartz space S(Rd) is the space of complex-valued functions f ∈ C∞(Rd)
such that for any multi-indices α,β ∈ Nd

xα∂βf ∈ L∞(Rd).

We say that a sequence fn ∈ S(Rd) converges to f ∈ S(Rd) if for any multi-indices α,β

lim
n→∞ ∥xα∂β(fn − f)∥L∞ = 0.

We recall without proofs a few standard facts about the Fourier transform.

Proposition 1.2.4. The Fourier transform F is continuous S(Rd) → S(Rd) and onto. For

any f, f1, f2 ∈ S(Rd):

� (Fourier transform and derivatives)

(i∂)αf̂(ξ) = F(xαf)(ξ), for all α ∈ Nd,

(iξ)αf̂(ξ) = F(∂αf)(ξ), for all α ∈ Nd,

� (Fourier inversion formula)

f(x) =

∫
Rd

f̂(ξ)eix·ξ
dξ

(2π)d
, ∀x ∈ Rd,

� (Plancherel's formula)

∥Ff∥L2(Rd) = (2π)
d
2 ∥f∥L2(Rd),

� (Fourier transform and convolutions)

F(f1 ∗ f2) = (Ff1)(Ff2),

where

(f1 ∗ f2)(x) :=
∫
Rd

f1(x− y)f2(y)dy.

Remark 1.2.5. It is convenient to introduce the space of continuous linear functionals S(Rd) → C,
which is called the space of tempered distributions S ′(Rd), and extend the Fourier transform to

S ′(Rd). We will not discuss these topics here.
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Assume that u0 and 
u0 are in S(Rd). We can thus write

u0(x) =

∫
Rd

a0(ξ)e
iξ·x dξ

(2π)d
, 
u0(x) =

∫
Rd


a0(ξ)e
iξ·x dξ

(2π)d
,

where a0 = Fu0 ∈ S(Rd) and 
a0 = F 
u0 ∈ S(Rd). For every ξ ∈ Rd, let t 7→ a(t, ξ) be the solution

of the ODE
∂2ta(t, ξ) + |ξ|2a(t, ξ) = 0, for all t

a(0, ξ) = a0(ξ), ∂ta(0, ξ) = 
a0(ξ),

in other words

a(t, ξ) = a0(ξ) cos(|ξ|t) + 
a0(ξ)
sin(|ξ|t)

|ξ|
.

By di�erentiating under the integral, we see that

u(t, x) =

∫
Rd

a(t, ξ)eiξ·x
dξ

(2π)d

is a solution of the Cauchy problem. By analogy with the case of trigonometric polynomials, we

express this solution in the form (1.2.4).

Remark 1.2.6. Let us check that the energy

E =
1

2

∫
Rd

|∂tu(t, x)|
2 dx+

1

2

∫
Rd

|∇u(t, x)|2 dx

is conserved. By Plancherel's theorem we have∫
Rd

| 
u0(x)|
2 dx =

∫
Rd

| 
a0(ξ)|
2 dξ

(2π)d
,

∫
Rd

|∇u0(x)|2 dx =
∫
Rd

|ξ|2|a0(ξ)|
2 dξ

(2π)d

and ∫
Rd

|∂tu(t, x)|
2 dx =

∫
Rd

|∂ta(t, ξ)|
2 dξ

(2π)d
,

∫
Rd

|∇u(t, x)|2 dx =
∫
Rd

|ξ|2|a(t, ξ)|2
dξ

(2π)d
.

For every ξ the function t 7→ 1
2 |∂ta(t, ξ)|

2 + 1
2 |ξ|

2|a(t, ξ)|2 is constant, hence the conservation of

energy follows by integrating in ξ.

Remark 1.2.7. If we allow a forcing term, we get analogously the formula (1.2.6) for the solution

of the Cauchy problem. In this case, instead of the energy conservation, one can similarly obtain

the energy inequality√
∥∂tu(t)∥2L2 + ∥∇u(t)∥2

L2
≤

√
∥ 
u0∥2L2 + ∥∇u0∥2L2 +

∫ t
0

∥f(s)∥L2 ds. (1.2.8)

Remark 1.2.8. Let m ∈ S(Rd), and for any v ∈ S(Rd) set

(Tv)(x) := F−1
(
ξ 7→ m(ξ)(Fv)(ξ)

)
.

The operator T is called a Fourier multiplication operator and m the Fourier multiplier. We

write in this case T = m(D).

It follows from Proposition 1.2.4 that any Fourier multiplication operator can be expressed as

a convolution:

Tv = K ∗ v, where K := F−1m.
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1.3 A dispersive estimate

Intuitively, if d ≥ 2 and the initial data are localized, then for t ≫ 1 the wave should spread in

space, and thus decay in amplitude. The goal of this section is to prove the following estimate

quantifying this phenomenon.

Proposition 1.3.1. There exists C ≥ 0 such that for all v ∈ S(Rd) such that supp(Fv) ⊂ { 14 ≤
|ξ| ≤ 4} and all t ∈ R

∥ cos(t|D|)v∥L∞ ≤ C⟨t⟩−
d−1
2 ∥v∥L1 , (1.3.1)

∥sin(t|D|)

|D|
v∥L∞ ≤ C⟨t⟩−

d−1
2 ∥v∥L1 . (1.3.2)

The bound (1.3.2) is proved similarly as (1.3.1), so we will only focus on (1.3.1) in the discussion

below.

Let χ ∈ C∞(R) be such that χ(ρ) = 1 for 1
4 ≤ ρ ≤ 4 and χ(ρ) = 0 for ρ ≤ 1

8 or ρ ≥ 8. By our

assumption, we have

cos(|D|t)v = cos(|D|t)χ(|D|)v,

thus according to Remark 1.2.8 we can write(
cos(|D|t)v

)
(x) = (Kt ∗ v)(x),

where

Kt(x) :=

∫
Rd

eiξ·x cos(|ξ|t)χ(|ξ|)
dξ

(2π)d
.

Hence, it su�ces to show that

∥Kt∥L∞ ≲ ⟨t⟩−
d−1
2 . (1.3.3)

Changing to polar coordinates, ξ = ρη with η ∈ Sd−1, we �nd

Kt(x) =

∫∞
0

cos(tρ)χ(ρ)ρd−1
∫
Sd−1

eiρη·x
σ(dη)

(2π)d
dρ,

where σ is the surface measure of Sd−1. Assume �rst that r := |x| ≤ 1
2t. We change the order of

integration, express cos(tρ) as 1
2(e

itρ + e−itρ), and obtain

Kt(x) =
1

2

∫
Sd−1

( ∫∞
0

(ei(t+η·x)ρ + ei(−t+η·x)ρ)χ(ρ)ρd−1 dρ

)
σ(dη)

(2π)d
.

In the inner integral, we recognize the inverse Fourier transform of the function χ(ρ)ρd−1, which is

of Schwartz class. Since |±t+ η · x| ≥ 1
2t, the inner integral decays faster than any power of t.

We now assume that r ≥ 1
2t.

First method (using the theory of Bessel functions). By the formula for the inverse Fourier trans-

form of spherically symmetric functions, see for example [3, Theorem 3.3], we have

Kt(x) = (2π)−
d
2 r−ν

∫∞
0

cos(tρ)χ(ρ)Jν(rρ)ρ
d
2 dρ,
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where ν := d−2
2 ≥ 0 and Jν is the Bessel function of the �rst kind. It is well-known that Jν decays

like inverse square root, hence the result.

Second method (self-contained). If we parametrize Sd−1 as η = x
r sinϕ+ζ cosϕ, where −

π
2 ≤ ϕ ≤ π

2

and ζ ∈ Sd−2, we obtain∫
Sd−1

eiρη·xσ(dη) = vol(Sd−2)
∫ π

2

−π
2

(cosϕ)d−2eir sinϕ dϕ.

If k ∈ Z and k ≥ 2, then for any smooth function a(ϕ) an integration by parts yields∫ π
2

−π
2

(cosϕ)ka(ϕ)eir sinϕ dϕ = −
1

ir

∫ π
2

−π
2

(cosϕ)k−2ã(ϕ)eir sinϕ dϕ.

where ã(ϕ) := −(k− 1)a(ϕ) sinϕ+ a ′(ϕ) cosϕ is smooth.

If d = 2ℓ+ 3 is odd, then repeating this ℓ times, we arrive at∫ π
2

−π
2

(cosϕ)d−2eir sinϕ dϕ =
(−1)ℓ

(ir)ℓ

∫ π
2

−π
2

a(ϕ) cosϕ eir sinϕ dϕ,

where a is a smooth function. We integrate one last time by parts and obtain the decay of order

r−ℓ−1 = r−
d−1
2 .

If d = 2ℓ+ 2 is even, ℓ integrations by parts yield∫ π
2

−π
2

(cosϕ)d−2eir sinϕ dϕ =
(−1)ℓ

(ir)ℓ

∫ π
2

−π
2

a(ϕ)eir sinϕ dϕ,

where a is a smooth function. We are here in the setting of stationary phase : ϕ = −π
2 and ϕ = π

2

are the critical points of the phase sinϕ, preventing an integration by parts. The main contribution

to the value of the integral comes from a small neighborhood of these points. We set ϵ := r−
1
2 and

separate the integration region into three intervals [−π
2 ,−

π
2 +ϵ], [−

π
2 +ϵ, 0], [0,

π
2 −ϵ] and [π2 −ϵ,

π
2 ].

The contribution of the 1st and 4th is clearly at most of order ϵ. The 2nd and 3rd are similar, so

let us focus on the 3rd interval. An integration by parts yields∫ π
2
−ϵ

0

a(ϕ)eir sinϕ dϕ =
1

ir

∫ π
2
−ϵ

0

a(ϕ)

cos(ϕ)

d

dϕ
(eir sinϕ)dϕ

=
1

ir

(a(π/2− ϵ)eir sin(ϕ/2−ϵ)
cos(π/2− ϵ)

− a(0)
)
−
1

ir

∫ π
2
−ϵ

0

d

dϕ

( a(ϕ)

cos(ϕ)

)
eir sinϕ dϕ.

Since cos(π/2−ϵ) ≳ ϵ = r−
1
2 , the boundary term contributes at most r−

1
2 . Finally,

∣∣∣ d
dϕ

(
a(ϕ)
cos(ϕ)

)∣∣∣ ≲(
π
2 − ϕ

)−2
, so the last integral is bounded up to a constant by∫ π

2
−ϵ

0

(π
2
− ϕ

)−2
dϕ ≲ ϵ−1 =

√
r,

and again, after division by r, the contribution turns out to be at most of order r−
1
2 .
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Remark 1.3.2. One could resume the proof of (1.3.3) given above as follows: if |x| ≤ 1
2t, we use

oscillations in the radial direction and ignore oscillations on the concentric spheres. If |x| ≥ 1
2t, to

the contrary, we only exploit oscillations on the concentric spheres, and ignore the radial ones.

Remark 1.3.3. Using the stationary phase approximation is one of the typical ways of establishing

the asymptotic behaviour of the Bessel functions, hence the two methods above are in fact not very

di�erent.
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Chapter 2

Strichartz estimates

2.1 Results from real analysis

Lemma 2.1.1 (Three-line theorem, Phragmen-Lindelöf principle). Let F(x+ iy) be bounded and

continuous on the strip 0 ≤ x ≤ 1 and analytic inside. If |F(iy)| ≤M1 and F(1+ iy) ≤M2 for

all y, then

|F(x+ iy)| ≤M1−x
1 Mx

2, for all x ∈ [0, 1] and y ∈ R.

Proof. By multiplying the function F(z) by the analytic functionMz−1
1 M−z

2 , we reduce the problem

to the case M1 =M2 = 1. By considering the function F̃(z) := F(z)eϵ(z
2−1), we reduce to the case

limy→∞ |F(z)| = 0. The conclusion now follows from the Maximum Principle.

Proposition 2.1.2 (Riesz-Thorin interpolation theorem). Let (X, µ) and (X̃, µ̃) be measure spaces.

Let 1 ≤ p1, p2 ≤ ∞ and assume that Y ⊂ Lp1(X, µ) ∩ Lp2(X, µ) is dense in both Lp1(X, µ) and

Lp2(X, µ). Let T be a linear operator de�ned on Y taking its values in measurable functions

on (X̃, µ̃) and assume that 1 ≤ q1, q2 ≤ ∞, M1, M2 are such that

∥Tf∥
L
qj (X̃,µ̃)

≤Mj∥f∥Lpj (X,µ), for all f ∈ Y and j ∈ {1, 2}.

Then for all θ ∈ [0, 1]

∥Tf∥
Lq(X̃,µ̃)

≤Mθ
1M

1−θ
2 ∥f∥Lp(X,µ) for all f ∈ Y,

where
1

p
=
θ

p1
+
1− θ

p2
,

1

q
=
θ

q1
+
1− θ

q2
.

Proof. The conclusion is obvious if θ = 0 or θ = 1, so assume 0 < θ < 1. If p1 = p2 = ∞,

then the theorem follows from the Hölder inequality, thus we may assume p1 < ∞ or p2 < ∞,

which allows us to consider only f being a step function with �nite set of values. Note that we can

assume that Y contains such functions (extending T by density if needed; we could also assume

that Y = Lp1 ∩ Lp2).
We need to estimate

sup{⟨Tf, g⟩ : ∥f∥Lp ≤ 1, ∥g∥Lq ′ ≤ 1},

10



with the supremum taken over step functions with a �nite set of values:

f =
∑
j

ajIAj
, g =

∑
k

bkIBk .

For 0 ≤ ℜz ≤ 1 we set

1

p(z)
:=
1− z

p1
+
z

p2
,

1

q ′(z)
:=
1− z

q ′
1

+
z

q2
,

ϕ(z) :=
∑
j

|aj|
p

p(z) ei arg ajIAj
, ψ(z) :=

∑
k

|bk|
q ′

q ′(z) ei arg bkIBk .

We apply the three-line theorem to the analytic function z 7→ ⟨Tϕ(z), ψ(z)⟩.

Proposition 2.1.3 (Minkowski inequality). If (X, µ), (Y, ν) measure spaces, 1 ≤ p ≤ q ≤ ∞ and

f : X× Y → R+ is measurable, then∥∥y 7→ ∥f(·, y)∥Lp(X)
∥∥
Lq(Y)

≤
∥∥x 7→ ∥f(x, ·)∥Lq(Y)

∥∥
Lp(X)

.

Proof. We can assume that f ≥ 0 and, upon replacing f by fp, also that p = 1. Let g ∈ Lq ′
(Y).

We have ∫
Y

g(y)

∫
X

f(x, y)dxdy ≤
∫
X

∥f(x, ·)∥Lq∥g∥Lq ′ dx

by Hölder inequality.

Recall that for f, g functions on Rd we denote

(f ∗ g)(x) :=
∫
Rd

f(x− y)g(y)dy,

whenever this expression makes sense.

Proposition 2.1.4 (Young's inequality). Let f ∈ Lp(Rd), g ∈ Lq(Rd). If

1

p
+
1

q
= 1+

1

r
,

then

∥f ∗ g∥Lr ≤ ∥f∥Lp∥g∥Lq .

Proof. If q = 1, this follows from Minkowski inequality. If q = p ′ and r = ∞, this follows from

Hölder inequality. The remaining cases follow from Proposition 2.1.2.

Corollary 2.1.5 (Bernstein's inequalities). If f ∈ S(Rd) is such that supp(Ff) ⊂ B(0, 4) and

1 ≤ p ≤ p̃ ≤ ∞, then ∥f∥Lp̃ ≲ ∥f∥Lp.

Proof. We taken the convolution with the inverse Fourier transform of a smooth function equal 1

on B(0, 4) and with support in B(0, 8).

We will need the following result, which we give without proof.
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Proposition 2.1.6 (Hardy-Littlewood-Sobolev inequality). If α ∈ (0, d) and (p, r) ∈ (1,∞) sat-

isfy
1

p
+
α

d
= 1+

1

r
,

then

∥| · |−α ∗ f∥Lr ≤ C∥f∥Lp .

Remark 2.1.7. If |x|−α belonged to L
d
α , then the Hardy-Littlewood-Sobolev inequality would

follow from Young's inequality. Of course, |x|−α is not in L
d
α due to logarithmic divergences.

2.2 Sobolev and Besov norms

De�nition 2.2.1. For any s ∈ R, the homogeneous Sobolev norm 
Hs is de�ned by

∥v∥2
Hs :=

∫
Rd

|ξ|2s|(Ff)(ξ)|2 dξ, v ∈ S(Rd).

Remark 2.2.2. The same argument as in Remark 1.2.6 shows that if u is a solution of (1.2.1),

then for any s the quantity

∥∂tu(t)∥2
Hs−1 + ∥u(t)∥2
Hs

is constant in time.

Proposition 2.2.3 (Sobolev embedding). For any 0 ≤ s < d
2 there exists C such that

∥v∥
L

2d
d−2s

≤ C∥v∥ 
Hs for all v ∈ S(Rd). (2.2.1)

Remark 2.2.4. The Lebesgue exponent p := 2d
d−2s is the only one for which (2.2.1) can hold. To

see this, we can use the scaling argument. Let 0 ̸= v ∈ S(Rd), λ > 0 and vλ(x) := v(x/λ). We

then have

∥vλ∥ 
Hs = λ
d
2
−s∥v∥ 
Hs , ∥vλ∥Lp = λ

d
p ∥v∥Lp .

If d2 − s ̸=
d
p ⇔ p ̸= 2d

d−2s , then we cannot have ∥vλ∥Lp ≤ C∥vλ∥ 
Hs both for small and large λ.

Proof. By duality, (2.2.1) is equivalent to

∥w∥ 
H−s ≤ C∥w∥
L

2d
d+2s

for all w ∈ S(Rd).

The principle of the proof is straightforward. Based on the formula for the Fourier transform of

spherically symmetric functions, see [3, Theorem 3.3], one can expect that

F(x 7→ |x|−d+s) = ξ 7→ C|ξ|−s,

the rigorous meaning of the formula being unclear for now. Assuming we can apply Proposi-

tion 1.2.4, we obtain

∥w∥2
H−s = ∥|ξ|−sFw∥2L2 = ∥F(C−1|x|−d+s ∗w)∥2L2 = C−2(2π)d∥|x|−d+s ∗w∥2L2 ,

and we conclude by invoking Proposition 2.1.6, since d+2s
2d + d−s

d = 1+ 1
2 .

We leave to the Reader the task of making this argument rigorous, by using tempered distri-

butions or a regularization argument.

We will need some elements of the Littlewood-Paley theory.
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2.3 Littlewood-Paley theory

Lemma 2.3.1 (Partition of unity over a geometric scale). There exists a radial nonnegative

function ψ ∈ C∞(Rd) such that suppψ ⊂ { 12 ≤ x ≤ 2} and

∞∑
j=−∞ψ(2

−jx) = 1, ∀x ̸= 0.

Proof. We take χ ∈ C∞ a radial non-increasing cut-o� function such that χ(x) = 1 for |x| ≤ 1 and
χ(x) = 0 for |x| ≥ 2. We set ψ(x) := χ(x) − χ(2x).

De�nition 2.3.2. For j ∈ Z we de�ne the homogeneous dyadic block 
∆j and the homogeneous

low-frequency cut-o� operator 
Sj:


∆ju := ψ(2−jD)u := F−1(ψ(2−jξ)û(ξ)) = 2jd
∫
Rd

(F−1ψ)(2jy)u(x− y)dy,


Sju :=
∑
j ′<j


∆j ′u = F−1(χ(2−jξ)û(ξ)) = 2jd
∫
Rd

(F−1χ)(2jy)u(x− y)dy.

Lemma 2.3.3. The operators 
∆j and 
Sj are bounded Lp → Lp for all p ∈ [1,∞], with bounds

independent of j.

Proof. We take the convolution with the inverse Fourier transform of a cut-o� function and use

the Young inequality for convolutions. We leave the details to an interested reader and refer to [1,

Section 2.1] for a detailed exposition.

Note that 
∆j and 
Sj are Fourier multiplication operators, and as such they commute with other

Fourier multiplication operators, like convolutions, derivatives, . . .

The formal homogeneous Littlewood-Paley decomposition is

Id =
∑
j∈Z


∆j,

but in what sense the series converges is, for now, unclear.

De�nition 2.3.4 (Homogeneous Besov norms). We denote S0(Rd) the set of functions u ∈ S(Rd)
such that supp û ⊂ Rd \ {0}. Let s ∈ R and p, r ∈ [1,∞]. For any u ∈ S0(Rd) we de�ne

∥u∥ 
Bsp,r
:=

(∑
j∈Z

2rjs∥ 
∆ju∥rLp
) 1

r
.

We call ∥ · ∥ 
Bsp,r
the homogeneous Besov norm.

Remark 2.3.5. We can think of the homogeneous Besov norms as follows. For each j ∈ Z, take
the Lp norm of 
∆ju, multiply it by 2js and take the ℓr norm of the resulting sequence.

Remark 2.3.6. One can check that, up to a constant, the de�nition of the Besov norm does not

depend on the choice of the function ψ.
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Proposition 2.3.7. For any p ∈ [2,∞) there exists Cp such that for all u ∈ S0(Rd)

∥u∥Lp ≤ Cp∥u∥ 
B0p,2
.

For any p ∈ (1, 2] there exists Cp such that for all u ∈ S0(Rd)

∥u∥ 
B0p,2
≤ Cp∥u∥Lp .

Proof of Proposition 2.3.7. We have to skip it. See [1, Theorem 2.40] for an elementary proof, or

[2, Problem 8.8] for a proof using a fundamental but di�cult result in Harmonic Analysis called

the Littlewood-Paley theorem.

2.4 The TT ∗ method

In this section, we prove general Strichartz estimates. We follow [1, Section 8.2].

For f ∈ C∞(R,S(Rd)) and p, q ∈ [1,∞], we de�ne

∥f∥LpLq :=

( ∫
R
∥f(t, ·)∥pLq dt

) 1
p

.

Lemma 2.4.1. Let (pj, qj) ∈ [1,∞]2 and θj ≥ 0 with
∑m
j=1 θj = 1. Suppose that

1

p
=

m∑
j=1

θj

pj
,

1

q
=

m∑
j=1

θj

qj
.

Then

∥f∥LpLq ≤
m∏
j=1

∥f∥θj
L
pjL

qj , ∀f ∈ S(R× Rd).

Proof. Exercise.

De�nition 2.4.2. Let σ > 0. We say that a pair (p, q) is σ-admissible if

1

p
+
σ

q
=
σ

2
, (p, q, σ) ̸= (2,∞, 1).

If σ is known from the context, we can call such a pair admissible.

Remark 2.4.3. It is easy to see that in the case σ = 0 we do not obtain anything interesting. We

would be forced to admit (∞, 2) is the only 0-admissible pair.

Theorem 2.4.4. Let U(t) be a family of continuous operators, bounded for the L2(Rd) →
L2(Rd) norm, such that

∥U(t)U∗(s)u0∥L∞ ≤ C|t− s|−σ∥u0∥L1 , ∀t, s ∈ R, u0 ∈ S(Rd). (2.4.1)
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Let χ : R2 → C be a measurable function such that |χ(t, s)| ≤ 1 for all t, s. Then for all

σ-admissible pairs (p, q), (p1, q1), (p2, q2), u0 ∈ S(R) and f ∈ C∞(R,S(Rd))

∥U(t)u0∥LpLq ≤ C∥u0∥L2 , (2.4.2)∥∥∥∥ ∫
R
χ(t, s)U(t)U∗(s)f(s)ds

∥∥∥∥
Lp1Lq1

≤ C∥f∥
L
p ′
2L

q ′
2
, (2.4.3)

with C independent of χ.

Remark 2.4.5. We can think of U(t) as the forward evolution operator (we will construct in the

next section an appropriate operator for the wave equation). Often U(t) is a unitary operator,

hence U∗(t) is the backward evolution. If we take χ to be the indicator function of {0 ≤ s ≤ t},

then we can recognize the Duhamel term in (2.4.3).

Remark 2.4.6. All the functions can be vector-valued.

Proof of Theorem 2.4.4 in the non-endpoint case. We will only treat the so-called non-endpoint

case p1, p2 > 2, which is considerably easier than the endpoint case and will be su�cient in these

lectures.

Step 1. For f, g ∈ C∞(R,S(Rd)) we de�ne

Tχ(f, g) :=

∫
R2

χ(t, s)⟨U(t)U∗(s)f(s), g(t)⟩dtds,

where ⟨·, ·⟩ is the L2 inner product. By duality, (2.4.3) is equivalent to

|Tχ(f, g)| ≤ C∥f∥
L
p ′
2L

q ′
2
∥g∥

L
p ′
1L

q ′
1
. (2.4.4)

Step 2. We show (2.4.4) with (p2, q2) = (p1, q1). Interpolating between (2.4.1) and the L2 → L2

bound we have

∥U(t)U∗(s)f(s)∥Lq ≤ |t− s|−σ
(
1− 2

q

)
∥f(s)∥Lq ′ ,

thus

⟨U(t)U∗(s)f(s), g(t)⟩ ≤ C|t− s|−σ
(
1− 2

q

)
∥f(s)∥Lq ′∥g(t)∥Lq ′ = C|t− s|−

2
p ∥f(s)∥Lq ′∥g(t)∥Lq ′ ,

and we conclude using Hardy-Littlewood-Sobolev inequality, using the fact that 2 < p <∞.

Step 3. We prove that ∥∥∥∥ ∫
R
U∗(t)f(t)dt

∥∥∥∥
L2

≤ C∥f∥Lp ′
Lq

′ . (2.4.5)

Denote T = Tχ with χ(t, s) = 1 for all t, s. Directly from the de�nition of Tχ we obtain

T(f, f) =

∥∥∥∥ ∫
R
U∗(t)f(t)dt

∥∥∥∥2
L2
,

so (2.4.5) follows from Step 1.

Step 4. We prove (2.4.4) for any σ-admissible pairs (p1, q1) and (p2, q2). By symmetry, without
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loss of generality we can assume q1 ≤ q2. Fixing t and using (2.4.5) with s instead of t and

χ(t, s)f(s) instead of f(t) we get∥∥∥∥ ∫
R
χ(t, s)U(t)U∗(s)f(s)ds

∥∥∥∥
L∞L2 ≤ C∥f∥

L
p ′
2L

q ′
2
.

Lemma 2.4.1 and (2.4.3) for (p1, q1) = (p2, q2) thus imply (2.4.3) in the general case.

Step 5. The bound (2.4.2) follows from (2.4.5) by duality.

2.5 Strichartz estimates for the wave equation

De�nition 2.5.1. We say that a pair (p, q) is wave-admissible if there exists 2 ≤ q̃ ≤ q such that

2

p
+
d− 1

q̃
=
d− 1

2
, (p, q̃, d) ̸= (2,∞, 3).

Theorem 2.5.2. Suppose that (p, q) and (a, b) are wave-admissible, ν > 0 and

1

p
+
d

q
=
1

a ′ +
d

b ′ − 2 =
d

2
− ν. (2.5.1)

Let u be the solution of (1.2.5). Then

∥u∥LpLq ≤ C
(
∥u0∥ 
Hν + ∥ 
u0∥ 
Hν−1 + ∥f∥La ′

Lb
′
)
.

Remark 2.5.3. The condition of wave-admissibility is related to the dispersion of the equation

under the assumption that the Fourier support of the data belongs to an annulus, and it frequently

happens in the applications that q̃ < q. The condition (2.5.1) is related to the scaling invariance

of the equation, see Remark 2.2.4 for a similar argument.

Proof. We �rst prove that the theorem is true if all the functions involved have spatial Fourier

transforms contained in { 12 ≤ |ξ| ≤ 2}. In order to use Theorem 2.4.4, we need to de�ne U(t). We

de�ne it as acting on functions with values in R2 (or C2 if complex-valued �elds are considered) in

the following way:

U(t)

(
w0

w0

)
=

(
cos(|D|t)χ(|D|)w0 + sin(|D|t)χ(|D|) 
w0
− sin(|D|t)χ(|D|)w0 + cos(|D|t)χ(|D|) 
w0

)
, (2.5.2)

where χ ∈ C∞(R) equals 1 on [ 12 , 2] and 0 outside of [
1
4 , 4]. Notice that the Fourier multipliers are

smooth thanks to the term χ(|D|). The adjoint U∗(t) is given by

U∗(t)

(
w0

w0

)
=

(
cos(|D|t)χ(|D|)w0 − sin(|D|t)χ(|D|) 
w0
sin(|D|t)χ(|D|)w0 + cos(|D|t)χ(|D|) 
w0

)
.

Assume that Fu0, F 
u0 and F(f(t)) for all t have their supports contained in [ 12 , 2]. Comparing

(2.5.2) with the solution formula (1.2.6), we notice that if u is given by (1.2.6), then(
|D|u(t)

∂tu(t)

)
= U(t)

(
|D|u0

u0

)
+

∫ t
0

U(t− s)

(
0

f(s)

)
ds

= U(t)

(
|D|u0

u0

)
+

∫ t
0

U(t)U∗(s)

(
0

f(s)

)
ds.
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Theorem 2.4.4 thus yields

∥t 7→ |D|u(t)∥LpLq̃ ≲ ∥|D|u0∥L2 + ∥ 
u0∥L2 + ∥f∥
La

′
Lb̃

′ ,

where q̃ and b̃ are given by De�nition 2.5.1 for the pairs (p, q) and (a, b) respectively. Using the

assumption about the Fourier supports and Corollary 2.1.5, we obtain

∥t 7→ u(t)∥LpLq ≲ ∥u0∥Hν + ∥ 
u0∥Hν−1 + ∥f∥La ′
Lb

′ . (2.5.3)

By scaling invariance, this implies that the conclusion holds if all the functions involved have

spatial Fourier transforms contained in {2j−1 ≤ |ξ| ≤ 2j+1} for some j ∈ Z.
The �nal step is to �glue the Littlewood-Paley pieces�. Let u0, 
u0 ∈ S(Rd) and f ∈ C∞(R,S(Rd)),

with no condition on the Fourier support. Let u(t) be given by (1.2.6). Since 
∆j commutes with

cos(|D|t) and sin(|D|t)
|D|

, (2.5.3) yields

∥t 7→ 
∆ju(t)∥LpLq ≲ ∥ 
∆ju0∥Hν + ∥ 
∆j 
u0∥Hν−1 + ∥ 
∆jf∥La ′
Lb

′ . (2.5.4)

For �xed t we can write

∥u(t)∥2
B0q,2
=

∑
j∈Z

∥ 
∆ju(t)∥2Lq ,

so the Minkowski inequality (used twice, both for the left and the right hand side) together with

(2.5.4) yield

∥u(t)∥Lp 
B0q,2
≲ ∥u0∥ 
Hν + ∥ 
u0∥ 
Hν−1 + ∥f∥La ′ 
B0

b ′,2
.

Finally, we use Proposition 2.3.7 on both sides.
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Chapter 3

Cauchy theory for wave equations

3.1 Cauchy problem for the cubic wave equation

In this chapter we are interested in equations of the form

∂2tu(t, x) = ∆u(t, x) + f(x, u(t, x)), (t, x) ∈ R1+d.

In order to illustrate two common techniques, we consider two cases:

� d = 3 and f(x, u) := ±u3,

� d = 4 and f(x, u) := ±u3.

As it often happens in the study of nonlinear PDEs, it is not immediate to construct smooth

solutions, even for smooth initial data. One generally constructs non-smooth solutions and the

study of their regularity is a separate question. The �rst problem which we have to face is thus to

de�ne what it means for a non-smooth function u to be a solution of the Cauchy problem

∂2tu(t, x) = ∆u(t, x) + f(x, u(t, x)), (t, x) ∈ R1+d,
u(0, x) = u0, ∂tu(0, x) = 
u0(x), x ∈ Rd.

(3.1.1)

There are several possibilities and we present one of them.

Let 0 ∈ I ⊂ R. It follows from (1.2.8) that the formula (1.2.6), seen as a linear operator

(u0, 
u0, f) 7→ u, can be extended by density as a continuous linear operator 
H1(Rd) × L2(Rd) ×
L1(I, L2(Rd)) → C(I, 
H1(Rd)).

De�nition 3.1.1. We say that a measurable function u : I × Rd → R solves (3.1.1) if (t, x) 7→
f(x, u(t, x)) belongs to L1(I, L2(Rd)) and

u(t) = cos(|D|t)u0 +
sin(|D|t)

|D|

u0 +

∫ t
0

sin(|D|(t− s))

|D|
f(·, u(s))ds

for all t ∈ I.

Theorem 3.1.2. Let d = 3 and f(x, u) = u3. For any (u0, 
u0) ∈ 
H1 × L2 there exists T > 0 and

a unique solution of (3.1.1) on the time interval [−T, T ].
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Proof. We will not need Strichartz estimates here. The so-called energy method is su�cient.

Denote I := [−T, T ], X := L1(I;L2(Rd)) and consider the map Φ : X → X de�ned as follows. For a

given f ∈ X, we de�ne Φ(f) := u3, where u is given by (1.2.6). We claim that Φ is a contraction

on the ball B(0, R) ⊂ X for R :=
√

∥ 
u0∥2L2 + ∥∇u0∥2L2 and T su�ciently small.

Let f ∈ B(0, R) and t ∈ I. The energy inequality (1.2.8) yields

∥∇u(t)∥L2 ≤ R+ ∥f∥X ≤ 2R.

By the Sobolev embedding (2.2.1), we have

∥u(t)∥3L6 ≤ CR3.

An integration in time yields

∥Φ(u)∥3X ≤ 2TCR3,

hence Φ(u) ∈ B(0, R) provided that T ≤ 1
2CR2

.

Let now f, f♯ ∈ B(0, R).

Theorem 3.1.3. Let d = 3 and f(x, u) = u3. For any (u0, 
u0) ∈ 
H1 × L2 there exists T > 0 and

a unique solution of (3.1.1) on the time interval [−T, T ].

Proof. The method of the previous proof fails here. We consider the same map Φ as in the previous

proof, but this time we will need a Strichartz estimate in order to prove that it is a contraction.
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Chapter 4

Cauchy theory for equivariant wave maps

4.1 Equivariant wave maps

We will study wave maps ψ : R1+2 → S2 ⊂ R3. Recall that they are critical points for the

Lagrangian ∫ t2
t1

∫
R2

(1
2
|∂tψ|

2 −
1

2
|∇xψ|

2
)
dx.

The equation can be written explicitly:

∂2tψ− ∆ψ = (|∂tψ|
2 − |∇ψ|2)ψ.

This equation is di�cult to study. We will consider a particular class of solutions. Take k ∈ {1, 2, . . .}

and consider initial data of the form

ψ0(r cos θ, r sin θ) =
(
sin(u0(r)) cos(kθ), sin(u0(r)) sin(kθ), cos(u0(r))

)
.

The evolution preserves this particular form of initial data and we obtain a simple equation for the

scalar-valued function u(t, r):

∂2tu = ∂2ru+
1

r
∂ru−

k2 sin(2u)

2r2
. (4.1.1)

The subsequent chapters of these lectures will be exclusively devoted to the study of (4.1.1).

There is the conserved energy given by

E(u0) := 2π

∫∞
0

(1
2
( 
u0)

2 +
1

2
(∂ru0)

2 +
k2 sin(u0)

2

2r2

)
rdr.

We see that our problem is energy-critical.

For m,n ∈ Z we de�ne

Em,n := {u0 : E(u0) <∞, lim
r→0u(r) = mπ, lim

r→∞u(r) = nπ}.
Exercise 4.1.1. Prove that if E(u0) <∞, then there exist m,n ∈ Z such that limr→0 u0(r) = mπ
and limr→∞ u0(r) = nπ.
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The sets Em,n are a�ne spaces and play the role of the critical space. They are parallel to the

linear space E := E0,0. We de�ne the critical norm:

∥u0∥2E :=

∫∞
0

(

u20 + (∂ru0)

2 +
k2

r2
u20

)
rdr.

We also denote the part corresponding to the potential energy

∥u0∥H :=

∫∞
0

(
(∂ru0)

2 +
k2

r2
u20

)
rdr.

4.1.1 Strichartz estimates for the linearized problem

The key to solving (4.1.1) will be to have appropriate Strichartz estimates for the following problem

analogous to (1.2.5):

∂2tu(t, r) − ∂
2
ru(t, r) −

1

r
∂ru(t, r) +

k2

r2
u(t, r) = f(t, r), (t, r) ∈ R× (0,∞),

u(0, r) = u0(r), ∂tu(0, r) = 
u0(r), r ∈ (0,∞).

(4.1.2)

Here, in general k ∈ Z, but we as mentioned above we assume k ≥ 1. It is worth noting that (4.1.2)

appears by considering a Fourier series decomposition in the angular variable of solutions of (1.2.5)

in dimension d = 2. Namely, if (u, f) is a complex-valued solution of (1.2.5) and we decompose

u(t, reiθ) =
∑
k∈Z

u(k)(t, r)eikθ, f(t, reiθ) =
∑
k∈Z

f(k)(t, r)eikθ,

then (u(k), f(k)) solves (4.1.2).

We introduce the following notation for the solution operator related to (4.1.2). Let u0 =

(u0, 
u0) ∈ E and let u be the solution of (4.1.2) with f = 0. We then denote

U(t)u0 := u(t), 
U(t)u0 := ∂tu(t), U(t)u0 := u(t) = (u(t), ∂tu(t)).

The conservation of energy for the wave equation in space dimension 2 implies that U(t) is a

unitary operator from E to itself. Note that the operators U(t) and U(t) are di�erent than the one

introduced by (2.5.2).

For any I ⊂ R, we de�ne the following �Strichartz norm� adapted to the study of (4.1.1):

∥u∥S(I) :=
( ∫

I

( ∫∞
0

u(t, r)6

r3
dr
) 1

2

) 1
3

.

We write S instead of S(R).

Lemma 4.1.2. Let u be a solution of (4.1.2). Then

∥u∥L∞(I;E) + ∥u∥S(I) ≤ C
(
∥u0∥E + ∥f∥L1(I;L2)

)
.

21



Proof. The energy bound follows from the energy inequality (1.2.8) in space dimension 2.

In order to get the Strichartz bound, we use a somewhat arti�cial trick. Let P : R4 → R be any

homogeneous harmonic polynomial of degree k− 1 and consider

v(t, x) := u(t, r)r−kP(x), g(t, x) := f(t, r)r−kP(x)

where r := |x| and x ∈ R4. A computation shows that

∂2tv− ∆v = g,

∥u0∥E ≃ ∥v0∥ 
H1×L2(R4),

∥f∥L1(I;L2) ≃ ∥g∥L1(I;L2(R4)),

and it su�ces to apply Theorem 2.5.2.

Remark 4.1.3. It is likely that one could prove directly Strichartz estimates by adapting the

material presented in Chapter 2 and using the Hankel transform instead of the Fourier transform.

This would perhaps require a considerable amount of work, since one would have to de�ne an

analogue of Besov spaces and prove the relevant embeddings.

The following estimate will also be useful.

Lemma 4.1.4. Let u be a solution of (4.1.2) with f = 0. Then

∥u∥S ≤ C∥u0∥
11
12
E ∥u∥

1
12

L∞L∞ .
Proof. The Hölder inequality yields∫

u6

r3
dr ≤ ∥u∥

1
2

L∞
( ∫

u20/3

r11/3
dr
) 3

4
( ∫

u2

r
dr
) 1

4
.

We take the square root and integrate in t. The proof of the previous lemma with the pair of

exponents (5/2, 20/3) instead of (3, 6) yields∫
R

( ∫
u20/3

r11/3
dr
) 3

8
≲ ∥u0∥

5
2
E .

4.1.2 Local well-posedness

The case of the initial data in E is easier, so we discuss it �rst. By analogy with the case of a power

nonlinearity, we say that a measurable function u : I × (0,∞) → R is a solution of (4.1.1) if the

function

f(t, r) :=
k2u

r2
−
k2 sin(2u)

2r2

belongs to L1(I;L2(rdr)) and (4.1.2) holds. It is convenient to denote Z(u) := (2k2u−k2 sin(2u))/(2u3),

which is an analytic function, bounded for u ∈ R. We then have f(t, r) = Z(u(t, t))u(t, r)3r−2, in

particular u ∈ S(I) implies f ∈ L1(I;L2).
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Proposition 4.1.5. For any u0 ∈ E there exists a unique solution. It satis�es (u, ∂tu) ∈
C(I; E).

Proof.

Lemma 4.1.6. For all M > 0 there exist η0 = η0(M) > 0 and C = C(M) > 0 which have the

following property. Let 0 ∈ I ⊂ R. Let ∥u0∥E ≤M with ∥U(·)u0∥S(I) = η ≤ η0. Then there is a

unique strong solution u ∈ L∞(I; E) of the problem (4.1.1). This solution satis�es

sup
t∈I

∥u− ul∥E + ∥u− ul∥S(I) ≤ Cη3,

where ul(t) = U(t)u0.

Proof. For ρ ≥ 0, let

Bρ := {u : ∥(u, ∂tu) − (ul, ∂tul)∥L∞(I;E) + ∥u− ul∥S(I) ≤ ρ}.

Denote Lk := −∂2r −
1
r∂r +

k2

r2
. We consider the map F which to u ∈ Bρ associates v = F(u), the

solution of the problem

∂2tv+ Lkv = Z(u)
u3

r2
, (v(0), ∂tv(0)) = (u0, 
u0),

so w := v− ul solves the problem

∂2tw+ Lkw = Z(u)
u3

r2
, (w(0), ∂tw(0)) = (0, 0),

By Lemma 4.1.2,

∥(w, ∂tw)∥L∞(I;E) + ∥w∥S(I) ≲ η3 + ρ3,

so if we take ρ = Cη3 with C a su�ciently large constant, the ball B(ρ) will be invariant.

Similarly, for η0 su�ciently small, F is a contraction on Bρ, for the norm L∞(I; E) + S(I). Let

u, ũ ∈ Bρ, v := F(u), ṽ := F(ũ), w := ṽ− v. Then

∂2tw+ Lkw = f(u, ũ) := Z(ũ)
ũ3

r2
− Z(u)

u3

r2
, (w(0), ∂tw(0)) = (0, 0).

We see that

∥f(u, ũ)∥L1L2 ≲ (∥ũ− u∥L∞E + ∥ũ− u∥S)(η2 + η3),

and we conclude using Lemma 4.1.2.

By Picard's theorem there exists the unique application u ∈ Bρ such that F(u) = u. Since

C(I; E) is complete, we see that u ∈ C(I; E).

Proposition 4.1.7. If u0 ∈ E, then there exists a unique strong solution u ∈ L∞(Imax; E) of the
equation (4.1.1), de�ned on the maximal interval of existence Imax = Imax(u) := (T−(u), T+(u))

such that u(0) = u0. It has the following properties.

� u ∈ C(Imax; E),
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� for any compact interval J ⊂ Imax, u is continuous with respect to the initial data u0,

for topologies E → L∞(J; E),

� for any compact interval J ⊂ Imax we have

∥u∥S(J) <∞,
� if

∥u∥S([0,T+)) <∞,
then T+ = ∞ and u scatters as t→ ∞, which means that there exists u+ ∈ E such that

∥u(t) −U(t)u+∥E → 0 as t→ ∞,
� conversely, if u scatters for t→ ∞, then

∥u∥S([0,∞)) <∞,
� an analogous statement for negative times.

Proof. The �rst part is a direct consequence of the preceding lemma.

The second point results from the following general principle for the linear equation. If f ∈
L1L2([0, T+)) and u is solution of ∂2tu+ Lku = f, then

� in the case T+ <∞, the strong limit in E , limt→T+(u(t), ∂tu(t)), exists,
� in the case T+ = ∞, u scatters when t→ ∞.

Let vτ be the solution of ∂2tvτ + Lkvτ = 0 with initial data (vτ(τ), ∂tvτ(τ)) = (u(τ), ∂tu(τ)), and

sigma ≥ τ. Then

∥(vσ(0), ∂tvσ(0)) − (vτ(0), ∂tvτ(0))∥E = ∥(vσ(τ), ∂tvσ(τ)) − (vτ(τ), ∂tvτ(τ))∥E
= ∥((vσ − u)(τ), ∂t(vσ − u)(τ))∥E ≤ ∥f∥L1L2([τ,σ]) → 0

when σ, τ → T+, which implies that the limit (v0, v1) := limτ→∞(vτ(0), ∂tvτ(0)) exists, and we

obtain

lim
t→T+ ∥(u(t), ∂tu(t)) − S(t)(v0, v1)∥E = 0.

Finally, if u scatters for t → ∞, then we see that if we take T0 to be large and ul(t) :=

S(t − T0)(u(T0), ∂tu(T0)), then ∥ul∥S < η0, so we can apply the previous lemma to the interval

[T0,∞).

Remark 4.1.8. The same proof shows that we can solve the Cauchy problem at in�nity. More

precisely, in the case I = [T0,∞), under the same hypotheses, there exists a single strong solution

u ∈ L∞(I; E) of the equation (4.1.1) such that

lim
t→∞ ∥(u(t), ∂tu(t)) − (ul, ∂tul)∥E = 0.
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To do this, simply de�ne v = F(u) as the solution to the problem

∂2tv+ Lkv = Z(u)
u3

r2
, lim

t→∞ ∥(v(t), ∂tv(t)) − S(t)(u0, 
u0)∥E = 0.

In the same way, we also solve the Cauchy problem for t→ −∞.

To conclude this chapter, we will prove a perturbation lemma.

Lemma 4.1.9. For all M > 0 there exists ε0 = ε0(M) and C = C(M) with the following

property. Let I = [0, T ] or I = [0,+∞), and let v be a function de�ned on I× (0,∞) such that

∥(v, ∂tv)∥L∞(I;E) + ∥v∥S(I) ≤M

solving the problem

∂2tv+ Lkv = Z(v)
v3

r2
+ h, (t, r) ∈ I× (0,∞),

(v(0), ∂tv(0)) = (v0, 
v0) ∈ E .

Let (u0, 
u0) ∈ E and ε ∈ (0, ε0]. Assume that

∥(u0, 
u0) − (v0, 
v0)∥E + ∥h∥L1L2 ≤ ε.

Then the solution u of the problem (4.1.1) with initial data (u0, 
u0) is de�ned on I and

∥(u(t), ∂tu(t)) − (v(t), ∂tv(t))∥L∞(I;E) + ∥u− v∥S(I) ≤ C(M)ε.

Remark 4.1.10. Due to the time reversibility, an analogous theoorem is true for negative times.

Remark 4.1.11. The meaning of this lemma is as follows. If we have an approximate solution v,

then the true solution u exists as long as v and remains close to it.

Proof. We �rst prove the result under the additional hypothesis that ∥v∥S(I) ≤ η0 is su�ciently

small. In this case, the conclusion is obtained by a continuity argument. Let I ′ ⊂ I an interval on

which u is de�ned and let's consider w := u − v, (w0, 
w0) := (u0 − v0, 
u0 − 
v0). The equation for

w is as follows:

∂2tw+ Lkw = f := Z(v+w)
(v+w)3

r2
− Z(v)

v3

r2
− h.

We see that

∥f∥L1L2(I ′) ≲ (∥w∥L∞(I ′;E) + ∥w∥S(I ′))(∥v∥2S(I ′) + ∥w∥2S(I ′) + ∥w∥3S(I ′)) + ∥h∥L1L2(I ′).

Applying Lemma 4.1.2, we obtain

∥w∥L∞(I ′;E) + ∥w∥S(I ′) ≲ ε+ (∥w∥L∞(I ′;E) + ∥w∥S(I ′))(∥v∥2S(I ′) + ∥w∥2S(I ′) + ∥w∥3S(I ′)).

If ∥w∥S(I ′) is small enough, then we can absorb the second term and conclude that ∥w∥S(I ′) ≲ ε.

The desired estimate is obtained by progressively enlarging I ′.

Now let n :=
[
M
η0

]
+ 1. Then there exists 0 = t0 < t1 < . . . < tn = T a sequence such that

∥v∥S(J) ≤ η0 for J = [tj, tj+1], j = 0, . . . , n−1. We repeat the argument on each interval [tj, tj+1].
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Chapter 5

Pro�le decomposition

In this chapter we present the method of pro�le decomposition, developed in the work of several

mathematicians, in particular Lions, Brézis and Coron, Gérard, Merle and Vega, Bahouri and

Gérard, . . . The abstract framework presented here was proposed by Schindler and Tintarev. Add

references.

5.1 Théorie abstraite

Let H be a separable Hilbert space and G a metric group acting on H through isomorphisms (a

unitary representation),

G ∋ g 7→ Tg ∈ U(H).

Remark 5.1.1. We can easily deal with the case where G does not act by isometries, but only in

a bounded manner, i.e.

G ∋ g 7→ Tg ∈ L(H), sup
g∈G

∥Tg∥L(H) <∞.
Indeed, replacing the ∥u∥H norm by the equivalent supg∈G ||Tgu∥H norm, we are reduced to the case

of of unitary applications. In practice, we are almost always dealing with a unitary representation.

We will usually write gu instead of Tgu.

De�nition 5.1.2. For a sequence gn ∈ G we write gn → ∞ or limn→∞ gn = ∞ if for any compact

set K ⊂ G we have gn /∈ K for n large enough. Two sequences gn and g̃n are said to be orthogonal

if g−1n g̃n → ∞.

De�nition 5.1.3. We say that a sequence un ∈ H converges to 0 weakly with concentration if

gnun ⇀ 0, ∀gn ∈ G.

We write in this case

un ⇀G 0.
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We observe that the topology of weak convergence with concentration on a ball ofH is metrizable

in the following way. Let ϕk be a dense sequence in the unit ball of H. We de�ne

∥u∥W :=

( ∞∑
k=1

⟨ϕk, u⟩2

2k

) 1
2

,

∥u∥G := sup
g∈G

∥gu∥W .

Lemma 5.1.4. If un ∈ H a bounded sequence, then after extraction of a sub-sequence there

exists a sequence gn ∈ G such that

gnun ⇀ u and ∥u∥H ≥ lim sup
n→∞ ∥un∥G.

Proof. By extracting a sub-sequence, there exists a sequence gn ∈ G such that

∞∑
k=1

2−klaϕk, gnun⟩2 → lim sup
n→∞ ∥un∥2G.

After a new extraction of a sub-sequence, gnun ⇀ u ∈ H, and we see that

∞∑
k=1

2−klaϕk, gnun⟩2 → ∞∑
k=1

2−klaϕk, u⟩2 ≤ ∥u∥2H,

which completes the proof.

Proposition 5.1.5. Let un ∈ H be a bounded sequence. Then

un ⇀G 0⇔ ∥un∥G → 0.

Proof. The implication ⇒ is a direct consequence of the de�nitions and the preceding lemma.

Conversely, if ∥un∥G → 0, then for all k we have supgn∈G⟨ϕk, gnun⟩ → 0. Let gn ∈ G be any

sequence. Since the sequence gnun is bounded in H, we obtain ⟨ϕ, gnun⟩ → 0. for all ϕ ∈ H, so
un ⇀G 0.

We make two more assumptions about the action of the group G:

� gn → ∞ implies ⟨u, gnv⟩ → 0 for all u, v ∈ H (decay of matrix coe�cients),

� for all u ∈ H the application G ∋ g 7→ gu ∈ H is continuous (strong continuity).

De�nition 5.1.6. Let un ∈ H be a bounded sequence. We say that un admits a pro�le decom-

position with the pro�les U(j) ∈ H, the displacements g
(j)
n ∈ G and the remainders w

(J)
n if the

sequences g
(j)
n and g

(k)
n are orthogonal for j ̸= k,

un =

J∑
j=1

g
(j)
n U

(j) +w
(J)
n , lim

J→∞ lim sup
n→∞ ∥w(J)

n ∥G = 0. (5.1.1)
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Proposition 5.1.7. If un a bounded sequence which admits a pro�le decomposition U(j) with

remainders w
(J)
n , then for all j the sequence

(
g
(j)
n

)−1
un converges weakly to U(j) and for all

J ∈ {1, 2, . . .} we have the Pythagorean expansion

∥un∥2H =

J∑
j=1

∥U(j)∥2H + ∥w(J)
n ∥2H + o(1), when n→ ∞. (5.1.2)

Proof. By the hypothesis un is a bounded sequence, so to show the �rst part it su�ces to verify

that for all j we have limn→∞ ∥∥big(g(j)n )−1
un −U(j)

∥∥
W

= 0. Let j be �xed and let ε > 0. We �rst

�nd J ≥ j such that

lim sup
n→∞

∥∥(g(j)n )−1
w

(J)
n

∥∥
W

≤ lim sup
n→∞

∥∥w(J)
n

∥∥
G
≤ ε.

Then, for k ∈ {1, 2, . . . , J}\ {j} we have limn→∞ ∥∥big(g(j)n )−1
g
(k)
n U

(k)
∥∥
W

= 0, therefore (5.1.1) implies

lim sup
n→∞

∥∥big(g(j)n )−1
un −U

(j)
∥∥
W

≤ ϵ.

To show (5.1.2), �x J, take j ∈ {1, . . . , J}, apply
(
g
(j)
n

)−1
to (5.1.1) and take the weak limit when

n→ ∞. From what we have just shown, we obtain that the left-hand side as well as the right-hand

side converge to the same element U(j), which implies that
(
g
(j)
n

)−1
w

(J)
n converges weakly to 0, in

particular

lim
n→∞⟨g(j)n U(j), w

(J)
n ⟩ = 0, for all j ∈ {1, . . . , J}.

We also have ⟨g(j)n U(j), g
(k)
n U

(k)⟩ =
〈(
g
(k)
n

)−1
g
(j)
n U

(j), U(k)
〉 → 0, so by taking ∥ · ∥2H from (5.1.1) we

get (5.1.2).

Theorem 5.1.8 (Schindler and Tintarev). For any bounded sequence un ∈ H possède a sub-

sequence that admits a pro�le decomposition. If ∥un|G → 0, then its only pro�le decomposition

is the trivial decomposition U(j) = 0 for all j.

Proof. To demonstrate the �rst part, we construct the U(j) pro�les one by one. Set w
(0)
n := un.

Assume that the sequences w
(0)
n , w

(J−1)
n , the displacements g

(1)
n , g

(J−1)
n and the pro�les U(j) are the

same. and the pro�les U(1), . . . , U(J−1) are de�ned, satisfying the following conditions:

� the sequences g
(1)
n , . . . , g

(J−1)
n are orthogonal,

�

(
g
(j)
n

)−1
w

(J−1)
n ⇀ 0 for j = 1, . . . , J− 1,

� ∥U(j)∥H ≥ lim supn→∞ ∥w(j−1)
n ∥G for j = 1, . . . , J− 1.

We'll �nd g
(J)
n and U(J), and the sequence w

(J)
n will be de�ned by the relation

w
(J−1)
n = g

(J)
n U

(J) +w
(J)
n .

If limn→∞ ∥w(J−1)
n ∥G = 0, then we posit U(J) = U(J+1) = . . . = 0 and the proof is complete.
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Otherwise, by Lemma reflem:big-pro�le, after eventually extracting a sub-sequence, there exists

a sequence g
(J)
n ∈ G and U(J) ∈ H such that(

g
(J)
n

)−1
w

(J−1)
n ⇀ U(J), ∥U(J)∥H ≥ lim sup

n→∞ ∥w(J−1)
n ∥G > 0. (5.1.3)

Let's assume that g
(J)
n is not orthogonal to g

(j)
n for some j ∈ {1, . . . , J − 1}. After the extraction of

a sub-suite we will then have
(
g
(j)
n

)−1
g
(J)
n → g ∈ G. If ϕ ∈ H, then

(
g
(j)
n

)−1
g
(J)
n ϕ → gϕ (by the

hypothesis of strong continuity),
(
g
(j)
n

)−1
w

(J−1)
n ⇀ 0 and

(
g
(j)
n

)−1
g
(J)
n U

(J) → gU(J), so〈(
g
(j)
n

)−1
g
(J)
n ϕ,

(
g
(j)
n

)−1
w

(J−1)
n −

(
g
(j)
n

)−1
g
(J)
n U

(J)
〉 → ⟨gϕ, gU(J)⟩ = ⟨ϕ,U(J)⟩.

On the other hand,〈(
g
(j)
n

)−1
g
(J)
n ϕ,

(
g
(j)
n

)−1
w

(J−1)
n −

(
g
(j)
n

)−1
g
(J)
n U

(J)
〉
=

〈
ϕ,

(
g
(J)
n

)−1
w

(J−1)
n −U(J)

〉 → 0.

This is impossible because U(J) ̸= 0, which demonstrates orthogonality.

We see that for all J there is the Pythagorean expansion (5.1.2), in particular limJ→∞ ∥U(J)|H = 0,

so (5.1.3) implies limJ→∞ lim supn→∞ ∥w(J)
n ∥G = 0.

The second point is a consequence of the �rst conclusion of the Proposition 5.1.7.

Proposition 5.1.9. Weak convergence with concentration is characterized by the preceding

theorem, i.e. it is the only topology for which the theorem is true.

Proof. Exercise (we won't use it later).

5.2 Description of topology

To use the theorem we've just demonstrated, it's necessary to have, in each case, a description of

the topology of convergence, a description of the convergence topology with concentration in terms

of Lebesgue, Sobolev, Besov and other norms. Here's the simplest example of such a description.

Proposition 5.2.1. Let H := H1(R) and G := R act through translations: Txf := f(·−x). Then,
if un is a bornée sequence,

∥un∥G → 0 ⇔ ∥un∥L∞ → 0.

Remark 5.2.2. Both norms are invariant by translations, which bodes well.

Proof. If ∥un∥L∞ → 0, then for any sequence xn we get ∥Txnun∥L∞ = ∥un∥L∞ → 0, so Txnun ⇀ 0.

Conversely, suppose that un is a bounded sequence in H1(R) and that for any real sequence xn
we have Txnun ⇀ 0. In particular, let xn ∈ R be such that |un(−xn)| ≥ 1

2∥un∥L∞ , in other words

∥un∥L∞ ≤ 2|vn(0)|, où vn := Txnun.

Since vn ⇀ 0, Rellich's theorem implies |vn(0)| → 0, so ∥un∥L∞ → 0.

Note that this action veri�es the hypotheses of continuity and evanescence of matrix coe�cients.

We return to the framework of the previous chapter.
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Proposition 5.2.3. Let G = (0,∞) be the multiplication group acting on H (cf. previous

chapter) by change of scale, i.e.

(Tλu)(r) := uλ(r) = u(r/λ), for any λ ∈ (0,∞), u ∈ H.

Then, if un is a bounded sequence,

∥un∥G → 0 ⇔ ∥un∥L∞ → 0.

Proof. We are brought back to the previous result by the change of variable rk = ex, which de�nes

an isometry H ≃ H1(R), as we had seen. It's easy to check that the change of scale by a coe�cient

λ corresponds, through this change of variable, to translation by y = k log r.

Observe that this group action, being isomorphic to the action in the preceding example, also

veri�es the hypotheses of strong continuity and evanescence of matrix coe�cients, also veri�es the

hypotheses of strong continuity and evanescence of matrix coe�cients.

If (u0, 
u0) ∈ E and λ > 0, we write

(u0, 
u0)λ := r 7→ (u0(λ
−1r), λ−1 
u0(λ

−1r)).

We see that E((u0, 
u0)λ) = E((u0, 
u0)) and ∥(u0, 
u0)λ|E = ∥(u0, 
u0)∥E .
Consider the (non-commutative) group R× (0,∞) acting on E by

T(t,λ)(u0, 
u0) := S(−t)
(
(u0, 
u0)λ

)
= r 7→ (uL(−λ

−1t, λ−1r), λ−1∂tuL(−λ
−1t, λ−1r)),

où uL(t) = S(t)(u0, 
u0).

Remark 5.2.4. It's easy to verify that the group law is given by

(t2, λ2) · (t1, λ1) = (t2 + λ2t1, λ2λ1),

so

(t2, λ2)
−1cdot(t1, λ1) = (−t2/λ2 + t1/λ2, λ1/λ2),

which means that two sequences gn = (tn, λn) and g̃n = (̃tn, λ̃n) are orthogonal if and only if

lim
n→∞ λn

λ̃n
+
λ̃n

λn
+

|tn − t̃n|

λn
= ∞.

Proposition 5.2.5. If (u0,n, 
u0,n) ∈ E is a bounded sequence, then

∥(u0,n, 
u0,n)∥G → 0 ⇔ ∥uL,n∥L∞L∞ → 0 ⇔ uL,n∥S → 0.

Proof. The second condition implies the third by Lemma 4.1.4.

Suppose ∥S(t)(u0,n, 
u0,n)∥S → 0. This implies that for any sequence (tn, λn) we have∥∥S(t)(T(tn,λn)(u0,n, 
u0,n))∥∥S → 0

(since the S norm is invariant to the change of scale and by the linéaire �ow). In particular,

T(tn,λn)(u0,n, 
u0,n) ⇀ 0. (in fact, the function (v0, 
v0) 7→ ∥S(t)(v0, 
v0)∥S is continuous and convex).
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Finally, suppose ∥(u0,n, 
u0,n)∥G → 0. Let tn be a sequence such that

∥S(t)(u0,n, 
u0,n)∥L∞L∞ ≤ 2∥S(tn)(u0,n, 
u0,n)∥L∞ . (5.2.1)

Let (vn, 
vn) := S(tn)(u0,n, 
u0,n). We have (vn, 
vn)lambdan ⇀ 0. for any sequence λn ∈ ]0,∞[. By

conséquent, Proposition 5.2.3 implies ∥vn∥L∞ → 0, so (5.2.1) gives ∥S(t)(u0,n, 
u0,n)∥L∞L∞ → 0.

Remark 5.2.6. In other words, for any ϵ > 0 there exists δ > 0 such that ∥(u0, 
u0)∥E ≤ 1 and

∥(u0, 
u0)∥G ≤ δ implies ∥uL,n∥S ≤ ϵ, and conversely ∥(u0, 
u0)∥E ≤ 1 and ∥uL,n∥S ≤ δ implies

∥(u0, 
u0)∥G ≤ ϵ.

Combining the Theorem 5.1.8 with the Proposition 5.2.5 we have the following result.

Proposition 5.2.7. Let (u0,n, 
u0,n) ∈ E be a bounded sequence. Then, after possibly extracting

a sub-sequence,

(u0,n, 
u0,n) =

J∑
j=1

(
S(−tj,n/λj,n)(U

(j), 
U(j))
)
λj,n

+ (w
(J)
n , 
w

(J)
n ),

with

lim
J→∞ ∥S(t)(w(J)

n , 
w
(J)
n )∥S = 0.

Proof. We need to verify the hypotheses of the Theorem 5.1.8. Strong continuity is immediate. To

demonstrate the decay of matrix coe�cients, let's take (u0, 
u0) ∈ E and a sequence (tn, λn) → ∞.

It su�ces to show that every sub-suite of T(tn,λn)(u0, 
u0) has a sub-sequence that converges weakly

to 0 in E . We consider three cases.

Case 1: tn/λn → −∞. Let (vn, 
vn) := T(tn,λn)(u0, 
u0). We see that ∥S(t)(vn, 
vn)∥S([0,∞[) → 0,

which implies (vn, 
vn) ⇀ 0 by Fatou's propriété. (The functional (v, 
v) 7→ ∥S(t)(vn, 
vn)∥S([0,∞[) is

continuous E → R, convex and cancels only at v = 0).

Case 2: tn/λn → ∞. Let (vn, 
vn) := T(tn,λn)(u0, 
u0). We see that ∥S(t)(vn, 
vn)∥S(]−∞,0]) → 0,

which implies (vn, 
vn) ⇀ 0.

Case 3: tn/λn borné, | log λn| → ∞. Then {(ul(−tn/λn), ∂tul(−tn/λn))} is a compact set in E , so
the évanescence of the matrix coe�cients for the change of scale implies

T(tn,λn)(u0, 
u0) = (ul(−tn/λn), ∂tul(−tn/λn))λn ⇀ 0.

(We have seen the evanescence of matrix coe�cients for the change of scale in H; this is also true

in L2, as can be veri�ed either directly, or by reducing to the group of translations by the change

of variable rk = ex.)

Remark 5.2.8. In particular, this proof shows that for all (u0, 
u0) ∈ E we have

lim
t→±∞ |S(t)(u0, 
u0)∥L∞ = 0.
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By extracting a sub-suite once again, we can assume that for all j, we have one of the following

cases:

tj,n = 0, ∀n centered wave ,

tj,n

λj,n
to∞ incoming wave ,

tj,n

λj,n
→ −∞ outgoing wave .

This dénomination is intuitive if we think of (u0,n, 
u0,n) as a sequence of initial data which we

evolve by S(t).

5.3 Decomposition into non-linear pro�les

Pro�le-nonlinear decomposition is essentially a tool for calculating variations. We'll now turn our

attention to questions of propagation by non-linear �ow. There is no general theory for this type

of question, but for the equation (4.1.1) we can �nd satisfactory results.

Let (u0,n, 
u0,n) be a sequence of initial data having a decomposition into pro�les given by the

Proposition 5.2.7. For each pro�le (U(j), 
U(j)), we associate the corresponding non-linear pro�le

V(j) = V(j)(t, r), which is the solution to the equation (4.1.1) that satis�es

lim
n→∞ ∥(V(j)(−tj,n/λj,n), ∂tV

(j)(−tj,n/λj,n)) − S(−tj,n/λj,n)(U
(j), 
U(j))∥E = 0.

The existence and uniqueness of V(j) results from the Lemma re�em:cauchy and the Remark refrem:wave-

op.

We will write

V
(j)
n (t) := V(j)((t− tj,n)/λj,n)λj,n , U

(j)
n (t) :=

(
S((t−tj,n)/λj,n)(U

(j), 
U(j))
)
λj,n
.

It is useful to note that for j su�ciently large ∥(U(j), 
U(j))∥E is small, so the Lemma reflem:cauchy

implies in particular that for j large V(j) exists for all t ∈ R and

sup
t∈R

∥(V(j)
n (t), ∂tV

(j)
n (t)) − (U

(j)
n (t), ∂tU

(j)
n (t))∥E + ∥(V(j)

n (t), ∂tV
(j)
n (t)) − (U

(j)
n (t), ∂tU

(j)
n (t))∥S

≲ ∥(U(j), 
U(j))∥3E ≲ ∥(U(j), 
U(j))∥2E .
(5.3.1)

Lemma 5.3.1. Let (u0,n, 
u0,n) be a sequence that admits pro�le decomposition, and suppose

that for all j the non-linear pro�le V(j) is de�ned for all times and ∥V(j)∥S <∞. Then for n

su�ciently large the solution of (4.1.1) for the initial data (u0,n, 
u0,n) exists for all times and

disperses.

Proof. The idea is to consider an approximate solution

v
(J)
n (t) :=

J∑
j=1

V
(j)
n (t) + S(t)(w

(J)
n , 
w

(J)
n )
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and show that for J su�ciently large, it's possible to use Lemma 4.1.9.

The function v
(J)
n (t) solves the equation

∂2tvn − ∂
2
rvn − r

−1∂rvn +
k2

2r2
sin(2vn) = hn :=

k2

2r2
sin

(
2

( J∑
j=1

V
(j)
n (t) + S(t)(w

(J)
n , 
w

(J)
n )

))

−
k2

2r2

J∑
j=1

sin
(
2V

(j)
n (t)

)
−
k2

r2
S(t)(w

(J)
n , 
w

(J)
n ).

To apply the Lemma reflem:perturbation, we need to verify that

� lim supn ∥(v
(J)
n , ∂tv

(J)
n )∥L∞(R;E) + ∥v(J)n |S(R) is bounded uniformly in J,

� limJ→∞ lim supn→∞ ∥hn∥L1L2 = 0.

The �rst point �ows from (5.3.1). Indeed, the Pythagorean expansion (5.1.2) we obtain

sup
J

lim sup
n

(
sup
t∈R

∥∥∥ J∑
j=1

V
(j)
n (t) −

J∑
j=1

U
(j)
n (t)

∥∥∥
E
+
∥∥∥ J∑
j=1

V
(j)
n (t) −

J∑
j=1

U
(j)
n (t)

∥∥∥
S

)
<∞,

but

sup
J

lim sup
n

(
sup
t∈R

∥∥∥ J∑
j=1

U
(j)
n (t)

∥∥∥
E
+
∥∥∥ J∑
j=1

U
(j)
n (t)

∥∥∥
S

)
≲ sup

J
lim sup

n

∥∥∥ J∑
j=1

(
U

(j)
n (0), ∂tU

(j)
n (0)

)∥∥∥
E

≤ sup
J

lim sup
n

(
∥(un,0, 
un,0)∥E + ∥(w(J)

n , 
w
(J)
n )∥E

)
<∞.

To show the second point, using the inequality∣∣ sin(α+ β) − sin(α) − β
∣∣ ≲ α2β+ β3

with α = 2
∑J
j=1 V

(j)
n (t) and β = 2S(t)(w

(J)
n , 
w

(J)
n ), we see that it's su�cient to verify that for J �xed

lim sup
n

∥∥∥∥ 1r2 sin
(
2

J∑
j=1

V
(j)
n (t)

)
−
1

r2

J∑
j=1

sin
(
2V

(j)
n (t)

)∥∥∥∥
L1L2

= 0.

We forget that V(j) is a solution of (4.1.1) and show this convergence for any sequence of functions

V(1), . . . , V(J) ∈ S (this trick is due to Bahouri and Gérard). By density, we can assume V(j) ∈
C∞
0 (R × (0,∞)). But then, for n large, the supports (in space-time) of the functions V

(j)
n for

j = 1, . . . , J are disjoint.

Sometimes you don't want to assume that all pro�les are globally de�ned and spread out. The

situation then becomes a little more complicated. We'll consider propagation for positive times,

which doesn't restrict the generality thanks to the time-reversibility.
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De�nition 5.3.2. Let u be a solution of (4.1.1). We'll say that a time sequence Tn is regular for

solution u if there exists an interval I ⊂ R such that Tn ∈ I for all n and ∥u∥S(I) <∞. We say that

a sequence of interval [an, bn] is regular if any sequence Tn ∈ [an, bn] is regular.

Lemma 5.3.3. Let u be a solution of (4.1.1), (tn, λn) → ∞ and τn a bounded sequence such

that the sequence Tn := τn−tn
λn

is regular. Then (u(Tn), ∂tu(Tn))lambdan ⇀ 0.

Proof. By extracting a sub-sequence, we can assume that the limits limn→∞ log λn ∈ [−∞,∞] and

limn→∞ Tn ∈ [−∞,∞] exist. If λn → 0 or λn → ∞, then we obtain the conclusion by considering

separately the three cases Tn → −∞, Tn → ∞ or Tn → T ∈ R.
If log λn is bounded, then |tn| → ∞, which implies |Tn| → ∞, since τn and bornée, so we also

get (u(Tn), ∂tu(Tn))lambdan ⇀ 0.

Lemma 5.3.4. Let f ∈ inC∞
0 (R×, (0,∞)), u be a solution of (4.1.1), (tn, λn) → ∞, un(t, r) :=

u((t−tn)/λn, r/λn) and In a sequence of intervals such that the sequence (In−tn)/λn is regular

for u. Then

lim
n→∞

∫
In

∫∞
0

(∂tun)f rdrdt = 0.

Proof. We integrate by parts in t. The boundary terms converge to 0 according to the preceding

lemma.

Proposition 5.3.5. Let (u0,n, 
u0,n) be a sequence in E which admits a pro�le decomposition

and let Tn be a sequence such that for all j the sequence (Tn − tj,n)/λj,n is régulière for V(j).

Let un be the solution of (4.1.1) for the initial data (u0,n, 
u0,n) and let

v
(J)
n (t) :=

J∑
j=1

V
(j)
n (t) + S(t)(w

(J)
n , 
w

(J)
n ).

Then for n su�ciently large un is de�ned for t ∈ In := [0, Tn[ and

lim
J→∞ lim sup

n→∞
(
∥(un, ∂tun) − (v

(J)
n , ∂tv

(J)
n )∥L∞(In;E) + ∥un − v(J)n ∥S(In)

)
= 0.

In addition, we have the Pythagorean expansion

lim
J→∞ lim sup

n→∞ sup
t∈[0,Tn[

∣∣∣||(un(t), ∂tun(t))∥2E −

J∑
j=1

∥(V(j)
n (t), ∂tV

(j)
n (t))∥2E − ∥S(t)(w(J)

n , 
w
(J)
n )∥2E

∣∣∣ = 0.
(5.3.2)

Proof. For the �rst part, the argument is the same as for Lemma reflem:tout-disperse, but at

the end, the V(j) pro�les are approximated by functions whose supports are compact subsets of

I(j)(0,∞).

To show the second part, simply estimate ∥(v(J)n (t), ∂tv
(J)
n (t))∥2E then use the �rst part. Calculate

the time distribution of the terms crossed. We write w
(J)
n (t) := S(t)(w

(J)
n , 
w

(J)
n ).

d

dt

(
⟨∂tV(j)

n , ∂tS(t)(w
(J)
n , 
w

(J)
n )⟩+ ⟨V(j)

n , LkS(t)(w
(J)
n , 
w

(J)
n )⟩

)
= ⟨Z(V(j)

n )(V
(j)
n )3/(r2), ∂tw

(J)
n ⟩.
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So we need to show that for any sn ∈ [0, Tn[∫ sn
0

⟨Z(V(j)
n )(V

(j)
n )3/(r2), ∂tw

(J)
n dt→ 0.

To do this, we integrate by parts in time and obtain:

−

∫ sn
0

〈
∂t
(
Z(V

(j)
n )(V

(j)
n )3/(r2)

)
, w

(J)
n

〉
+ edge terms.

The �rst integral is small using V(j) ∈ S, ∂tV(j) ∈ LinftyL2 and ∥w(J)
n ∥S ≪ 1. The boundary terms

are small thanks to the fact that (V(j))3/r2 ∈ L∞L1 and ∥w(J)
n ∥L∞L∞ ≪ 1.

Regarding the cross terms ⟨Z(V(j)
n )(V

(j)
n )3/(r2), ∂tV

(k)
n ⟩, Lemma 5.3.4 shows that they converge

to 0 as n→ ∞.

Remark 5.3.6. Thomas Duyckaerts pointed out to me that there was a faster way of proving

(5.3.2). Namely, we can show that if the sequence (Tn − t
(j)
n )/λ

(j)
n is regular for V(j) for all j, then

we can construct a linear decomposition of the sequence (un(Tn), ∂tun(Tn)) (where the new linear

pro�les will be close to the non-linear pro�les (V
(j)
n , ∂tV

(j)
n ) in E norm), and conclude using the

linear Pythagorean expansion.

To conclude this chapter, we give another application, also considered in the article by Bahouri

and Gérard, namely the weak continuity of the �ow in energy space. We need the following lemma.

Lemma 5.3.7. Let V(j) be a non-linear pro�le whose norm is small and suppose that the

sequence (t
(j)
n , λ

(j)
n ) is orthogonal to the constant sequence (0, 1). Then (V

(j)
n (t), ∂tV

(j)
n (t)) ⇀ 0

for all t ∈ R.

Proof. Without loss of generality, we can assume that t−t
(j)
n

λ
(j)
n

→ t0 ∈ [−∞,∞], and treat the three

cases separately, noting that the sequence (t
(j)
n − t, λ

(j)
n ) is orthogonal to (0, 1).

Proposition 5.3.8. There exists η > 0 such that the following is true. Let u : [0, T ] →
E be a strong solution of (4.1.1), and (u0,n, 
u0,n) ∈ E a sequence such that ∥(u0,n, 
u0,n) −
(u(0), ∂tu(0))∥E ≤ η for all n and (u0,n, 
u0,n) ⇀ (u(0), ∂tu(0)). Then for n large the solution

un of (4.1.1) exists for t ∈ [0, T ] and

(un(t), ∂tun(t)) ⇀ (u(t), ∂tu(t)), for all t ∈ [0, T ].

Proof. A sub-sequence of the sequence (u0,n, 
u0,n) admits a décomposition in pro�les. The �rst

pro�le, which corresponds to the trivial displacement (0, 1), is (u(0), ∂tu(0)), and all the others

are small. By an argument similar to that used in the proof of Lemma 5.3.1, the preceding lemma

yields the conclusion.
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