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Résumé

On examine l’asymptotique en temps petit sur le lieu de coupure d’une variété riemannienne.
D’abord les développements asymptotiques du noyau de la chaleur sur le cercle, le cylindre
2-dimensionnel et la sphère 2-dimensionnelle sont calculés explicitement. Ces exemples mon-
trent que sur le lieu de coupure le développement asymptotique a une forme différente que
hors du lieu de coupure. De plus, l’ordre du premier terme de ce développement change si
le point considéré est à la fois dans le lieu de coupure et dans le lieu conjugué.

Après on étudie les 2-sphères de révolution, qui est la classe la plus simple de variétés
riemanniennes de dimension 2 ayant une forme générique du lieu de coupure et du lieu
conjugué. On détermine l’ordre de dégénération de l’application exponentielle près de leur
point commun et on présente des consequences de ce résultat pour l’asymptotique du noyau
de la chaleur en temps petit en ce point.

Abstract

We investigate the small time heat kernel asymptotics on the cut locus of Riemannian man-
ifolds. First, we compute explicitly the asymptotic expansion of the heat kernel on the cut
locus of the circle, the 2-dimensional cylinder and the 2-sphere. These examples show that
at the cut locus the asymptotic expansion has a different form than away from the cut locus
and that the order of the leading term of this expansion depends on whether the considered
point of the cut locus is also conjugate.

Then we study 2-spheres of revolution, which is the simplest class of 2-dimensional Rie-
mannian manifolds with a generic shape of the cut-conjugate locus. We determine the
degeneracy of the exponential map near a cut-conjugate point and present consequences of
this result to the small time heat kernel asymptotics at this point.
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1 Introductory material

1.1 Basic definitions

Let M be a smooth manifold (where “smooth” always means C∞). We denote by TM
the tangent bundle and by T ∗M the cotangent bundle. Both canonical projections will be
denoted π, so we have π : TM → M or π : T ∗M → M , depending on the context. The
elements of TM are called vectors, whereas the elements of T ∗M are called covectors. For
q ∈M we have the fibers TqM := {v ∈ TM : π(v) = q} and T ∗qM := {λ ∈ T ∗M : π(λ) = q}.
When v ∈ TqM (respectively λ ∈ T ∗qM), q is called the base point of v (resp. λ). The natural
pairing between TqM and T ∗qM is denoted 〈·, ·〉.

The space of differential k-forms on M is denoted ΛkM and the space of smooth vector
fields on M is denoted Vec(M). For X ∈ Vec(M) the flow of X after time t ∈ R is denoted
etX : M →M . We say that (X1, . . . , Xn) is a local orthonormal frame if there exists an open
subset U ⊂ M such that X1, . . . , Xn ∈ Vec(U) and (X1(q), . . . , Xn(q)) is an orthonormal
base of TqM for all q ∈ U . If v ∈ TqM , q ∈ U ⊂ M and f ∈ C∞(U), the directional
derivative of f in the direction v is denoted vf . For V ∈ Vec(U) and f ∈ C∞(U) we define
C∞(U) 3 V f := q 7→ V (q)f .

Let M,N be smooth manifolds. A diffeomorphism Φ : M → N induces a linear isomor-
phism Φ∗ : Vec(M) → Vec(N) defined by the formula Φ∗(X)(q) := DΦ(Φ−1(q))X(Φ−1(q))
for X ∈ Vec(M), q ∈ N . A smooth map Ψ : M → N induces a linear operator Ψ∗ :
ΛkN → ΛkM defined by the formula Ψ∗(ω)(p)(v1, . . . , vk) := ω(DΨ(p)v1, . . . , DΨ(p)vk) for
ω ∈ ΛkM , p ∈M , vi ∈ TpM .

Definition 1.1. Let M be a smooth manifold, X, Y ∈ Vec(M) and ω ∈ ΛkM . We define
the Lie derivative of Y with respect to X by the formula

Vec(M) 3 LXY :=
d

dt

∣∣∣∣
t=0

(
e−tX

)
∗ Y.

We define the Lie derivative of ω with respect to X by the formula

ΛkM 3 LXω :=
d

dt

∣∣∣∣
t=0

(
etX
)∗
ω.

It can be shown that for f ∈ C∞(M) we have (LXY )f = [X, Y ]f = X(Y f)− Y (Xf).

Definition 1.2. Let f ∈ C∞(U), U ⊂M , and let x be a critical point of f . The Hessian of
f is a bilinear form Hess f(x) : TxM × TxM → R defined by

Hess f(x)(v, w) = W (V f)(x),

where V,W ∈ Vec(U) are arbitrary vector fields such that V (x) = v and W (x) = w.

It is necessary to check that this definition does not depend on the choice of V and W .
It is clear that W (V f)(x) does not depend on the choice of W . Moreover, W (V f)(x) =
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V (Wf)(x) − [V,W ]f(x) = V (Wf)(x), because x is a critical point of f . Thus W (V f)(x)
does not depend on the choice of V . Also, we see that Hess f(x) is a symmetric form.

If the Hessian of f at a point x ∈M is a degenerate form, x is called a degenerate critical
point of f .

Let g be a Riemannian metric on M , so that M becomes a Riemannian manifold. If
v ∈ TqM , we say that λ ∈ T ∗qM is associated to v if λ(w) = g(v, w) for every w ∈ TqM . This
defines an isomorphism between TqM and T ∗qM . For a smooth function f : M ⊃ V → R the
gradient of f at a point q ∈ V is defined as the vector in TqM associated with df(q) ∈ T ∗qM .
It will be denoted ∇f(q).

A regular curve on M is a C1 function c : [a, b]→ M such that ċ(t) 6= 0 for t ∈ [a, b]. A
curve on M is a function c : [a, b]→M for which there exists a finite sequence a = t0 < t1 <
· · · < tn = b such that c|[ti,ti+1] is a regular curve. A smooth curve is a regular curve which
is C∞.

Definition 1.3. Let c : [a, b]→M be a curve.
The length of c is defined by

L(c) :=

∫ b

a

|ċ(t)| dt.

The energy of c is defined by

E(c) :=

∫ b

a

|ċ(t)|2 dt.

If |ċ(t)| = 1 for almost every t, we say that the curve c is parametrized by arc length.
It is immediate that L is invariant by reparametrizations, whereas E is not – it attains its
minimum precisely when c is parametrized proportional to arc length.

Definition 1.4. Let p, q ∈M . Let Cp,q be the set of piecewise C1 curves c : [a, b]→M such
that c(a) = p and c(b) = q. The Riemannian distance on M is defined as

dist(p, q) := inf
c∈Cp,q

L(c).

It can be shown that (M, dist) is a metric space (the part p 6= q ⇒ dist(p, q) > 0
is nontrivial) and the topology induced by dist cöıncides with the manifold topology [9,
Definition-Proposition 2.91].

1.2 Geodesics – Hamiltonian approach

The construction of a Hamiltonian vector field presented here is taken from [1, Chapter 4].

Definition 1.5. The tautological 1-form on T ∗M is the form s ∈ Λ1(T ∗M) defined by

〈s(λ), w〉 := 〈λ, π∗w〉

for w ∈ Tλ(T ∗M).
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Definition 1.6. The 2-form σ := ds is called the canonical symplectic structure on T ∗M .

Let (x1, . . . , xn, ξ1, . . . , ξn) be a canonical system of coordinates on T ∗M , which means
that if q = (x1, . . . , xn) and λ =

∑
i ξi dxi ∈ T ∗qM , then λ has the coordinate expression

(x1, . . . , xn, ξ1, . . . , ξn). Let λ =
∑

i ξi dxi ∈ T ∗qM . It is easily checked that in canonical
coordinates we have s(λ) =

∑
i ξi dxi ∈ Tλ(T

∗M). It is the same expression as for λ, but
now dxi is an element of Λ1(T ∗M). Thus, by differentiation, the expression of the canonical
symplectic structure on T ∗M is

σ =
n∑
i=1

dξi ∧ dxi. (1)

In particular σ is a non-degenerate form, which justifies the next definition.

Definition 1.7. Let h ∈ C∞(T ∗M). The Hamiltonian vector field associated with h is the

unique vector field ~h ∈ Vec(T ∗M) satisfying the identity

σ(·,~h) = dh(·).

Let ~h =
∑

i ai∂xi + αi∂ξi be the expression of the Hamiltonian vector field in canonical

coordinates. We have ai = σ(∂ξi ,
~h) = dh(∂ξi) = ∂h

∂ξi
and αi = −σ(∂xi ,

~h) = −dh(∂xi) = − ∂h
∂xi

,
which leads to the formula

~h =
n∑
i=1

∂h

∂ξi
∂xi −

∂h

∂xi
∂ξi . (2)

For λ ∈ T ∗qM we define the norm

‖λ‖ := sup
v∈TqM
g(v,v)=1

| 〈λ, v〉 |.

We define H : T ∗M → R by

H(λ) :=
1

2
‖λ‖2. (3)

It is clear that H ∈ C∞(T ∗M).

Definition 1.8. A regular curve γ : (a, b)→M is called a geodesic if γ(t) = π ◦ λ(t), where

λ : (a, b)→ T ∗M is a solution of the Hamiltonian equation λ̇(t) = ~H(λ(t)).

Notice that by the theorem of local existence and uniqueness of solutions of ordinary
differential equations, for every λ0 ∈ T ∗M there exists a unique maximal solution λ : (a, b)→
T ∗M of the Hamiltonian equation such that λ(0) = λ0.

A curve c : [a, b]→M is called minimal if L(c) = dist(c(a), c(b)). It is immediate that a
minimal curve is locally minimal. Notice also that minimal curves joining two given points
do not always exist (cf. Theorem 1.17).

Proposition 1.9. Let c : [0, T ]→M be a minimal curve from c(0) = q0 to c(T ) = q1. Then
c is a geodesic.
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This is a consequence of the following Pontryagin Maximum Principle for optimal control
problems [2, Theorem 12.3].

Theorem 1.10 (PMP). Let M be a manifold and consider a control system

q̇(t) = fu(q(t)), q(t) ∈M, u(t) ∈ U ⊂ Rn, (4)

q(0) = q0, q(T ) = q1, q0, q1 ∈M, T ∈ R+

with the cost functional

J(u) =

∫ T

0

φ(qu(t), u(t)) dt, (5)

where qu denotes the trajectory associated with the control u.
For λ ∈ T ∗qM,u ∈ U, µ ∈ R let

Hµ
u(λ) = 〈λ, fu〉+ µφ(q, u). (6)

Let ũ : [0, T ]→ U be an optimal control and let q̃ : [0, T ]→M be the associated trajectory.
Then there exist µ ≤ 0 and λ : [0, T ]→ T ∗M such that (µ, λ(t)) 6= 0 for all t and

λ̇(t) = ~Hµ
ũ(t)(λ(t)), (7)

Hµ
ũ(t)(λ(t)) = max

v∈U
Hµ
v (λ(t)). (8)

Remark 1.11. If U = Rn, condition (8) can be replaced by a weaker condition

∂

∂u
Hµ
ũ(t)(λ(t)) = 0. (9)

This is called the Weak Pontryagin Maximum Principle.

Proof of Proposition 1.9. Let (X1, . . . , Xn) be a local orthonormal frame on M . The problem
of finding minimal curves can be stated (locally) as an optimal control problem ċ(t) =∑n

i=1 ui(t)Xi(c(t)) with a control u(t) ∈ Rn and a cost functional J(u) =
∫ T

0
|u(t)|2 dt.

In this setting we have

Hµ
u(λ) =

n∑
i=1

ui 〈λ,Xi〉+ µ|u|2.

Now apply the PMP. Suppose that µ = 0. Equation (9) gives 〈λ(t), Xi(t)〉 = −2µui(t) = 0,
so λ(t) = 0, which is a contradiction with (µ, λ(t)) 6= 0. Thus µ < 0 and we can normalize
in such a way that µ = −1

2
, which gives

ui(t) = 〈λ(t), Xi(t)〉 . (10)

Notice that for λ ∈ T ∗qM and Y ∈ TqM we have

〈λ, Y 〉 =
n∑
i=1

g(Y,Xi) 〈λ,Xi〉 ≤

(
g(Y, Y )

n∑
i=1

〈λ,Xi〉2
)1/2

,
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and equality holds for Y =
∑

i 〈λ,Xi〉Xi. Thus ‖λ‖2 =
∑
〈λ,Xi〉2 and we get

Hµ
u(t)(λ(t)) =

n∑
i=1

〈λ(t), Xi(t)〉2 −
1

2
〈λ(t), Xi(t)〉2 =

1

2

n∑
i=1

〈λ(t), Xi(t)〉2 =
1

2
‖λ(t)‖2,

so equation (7) states exactly that λ(t) is the required lift of c(t).

Remark 1.12. From equation (10) we obtain g(ċ(t), Xi) = ui(t) = 〈λ(t), Xi〉. Thus λ(t) is
the covector associated with ċ(t). Thus for Riemannian manifolds parameterizing geodesics
by covectors is equivalent to parameterizing by vectors. In particular for every q ∈ M and
v ∈ TqM there exists exactly one maximal geodesic γ : (a, b) → M such that γ(0) = q and
γ′(0) = v. This geodesic will be denoted γv.

However, in sub-Riemannian geometry there is no canonical isomorphism between TqM
and T ∗qM and the natural approach is parameterizing geodesics by covectors (see [1]).

We will show that Definition 1.8 is equivalent to the classical definition of a geodesic as a
regular curve γ : (a, b)→M satisfying the equation Dγ̇(t)γ̇(t) = 0, where D is the covariant
derivative associated with the Riemannian metric g.

Fix on M a system of local coordinates (x1, . . . , xn). Let G = (gij) be the matrix of the
first fundamental form in these coordinates, i.e. gij = g(∂xi , ∂xj). Let G−1 = (gij). The
Christoffel symbols are defined by the formula

Γijk :=
1

2

∑
l

gil(∂xjgkl + ∂xkglj − ∂xlgjk), i, j, k ∈ {1, . . . , n}.

Proposition 1.13. A regular curve γ : (a, b)→ M,γ(t) = (x1(t), . . . , xn(t)) is a geodesic if
and only if it satisfies the system of differential equations

ẍi +
n∑

j,k=1

Γijkẋjẋk = 0, i = 1, . . . , n. (11)

Proof. Consider the canonical coordinates (x1, . . . , xn, ξ1, . . . , ξn) on T ∗M . Let λ = (x, ξ) be
a covector, where x = (x1, . . . , xn) and ξ = (ξ1, . . . , ξn) are considered as column vectors.
Let B be a positive-definite matrix such that G = B2. We have

‖λ‖ = sup
|Bx|=1

(B−1ξ)T (Bx) = |B−1ξ| = (ξTG−1ξ)1/2.

Hence H(λ) = 1
2
ξTG−1ξ.

We will denote Gxi := ∂xiG. Notice that ∂xi(G
−1) = −G−1GxiG

−1. Thus the Hamilto-
nian equations can be written as

ẋ =
∂H

∂ξ
= G−1ξ (12)

ξ̇i = −∂H
∂xi

= −1

2
ξTG−1GxiG

−1ξ = −1

2
ẋTGxiẋ, (13)
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where the third equality in (13) follows from (12).
Differentiating (12) gives

ẍ = G−1ξ̇ −G−1ĠG−1ξ =
1

2
G−1ξ̇ −G−1

n∑
j=1

ẋjGxj ẋ.

Now we have (
G−1ξ̇

)
i

=
n∑
l=1

gilẋTGxlẋ =
n∑

j,k=1

n∑
l=1

gil∂xlgjkẋjẋk,

(
G−1ẋjGxj ẋ

)
i

= ẋj

n∑
l=1

gil
n∑
k=1

∂xjgklẋk =
n∑
k=1

n∑
l=1

gil∂xjgklẋjẋk.

Notice that
n∑

j,k=1

n∑
l=1

gil∂xjgklẋjẋk =
1

2

n∑
j,k=1

n∑
l=1

gil(∂xjgkl + ∂xkglj)ẋjẋk.

Hence, using the definition of the Christoffel symbols, we see that (13) and (11) is in fact
the same equation.

If for each v ∈ TM the corresponding geodesic γv is defined on whole R, the manifold M
is called complete.

Definition 1.14. Let (M, g) be a complete Riemannian manifold. The exponential map
exp : TM →M is defined by

exp(v) := γv(1).

If p ∈M , expp : TpM →M is the restriction of exp : TM →M to TpM .

Remark 1.15. In sub-Riemannian geometry exp is defined on T ∗M (cf. Remark 1.12).

Theorem 1.16. The map exp : TM → M is smooth. For v ∈ TM define Φ(v) =
(π(v), exp(v)) ∈ M ×M . Then for every p ∈ M the map Φ is a diffeomorphism from a
neighborhood of 0p ∈ TM onto a neighborhood of (p, p) ∈M ×M .

Proof. The first part follows from the theorem on smooth dependence of solutions of ordinary
differential equations on the initial data.

The second part follows from the inverse function theorem, cf. [9, Proposition 2.88].

In particular for p ∈M there exists an ε > 0 such that expp : TpM ⊃ B(0, ε)→ B′ ⊂M is
a diffeomorphism. This defines a local system of coordinates called local geodesic coordinates.
Using these coordinates one can prove that geodesics are locally minimal [9, Theorem 2.92],
which together with Proposition 1.9 provides an alternative definition of geodesics as locally
minimal curves.

The following two results, called Hopf-Rinow Theorems, build a connection between
completeness and completeness as a metric space.
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Theorem 1.17 (Hopf-Rinow [12]). Any two points of a complete connected manifold can be
joined by a minimal geodesic.

Theorem 1.18 (Hopf-Rinow [12]). A Riemannian manifold M is complete if and only if it
is complete as a metric space with the Riemannian distance.

Each of these theorems is a relatively simple consequence of the other. Theorem 1.18
follows from Theorem 1.17 and the criterion for a finite time blowup of an ODE. Theorem 1.17
follows from Theorem 1.18 together with, for example, Filippov Theorem on the existence
of optimal controls [1, Theorem 3.25]. A short proof of Theorem 1.17, using Proposition 1.9,
was given by de Rham in [6, p. 341–343].

In the sequel we always assume that a manifold M is complete.

Definition 1.19. Let p ∈ M and v ∈ TpM . If d expp(v) : Tv(TpM)→ TpM is singular, the
point expp(v) is called conjugate to p along γv. We define the conjugate locus as

Conj(p) := {q ∈M : q is conjugate to p along some geodesic}.

1.3 Cut locus

In general geodesics fail to be globally optimal, which leads to the notion of the cut locus.
Recall that (M, g) is assumed to be complete.

Definition 1.20. Let v ∈ TM we define the cut time of the geodesic γv : R→M as

tc(v) := sup{t ∈ R : γ|[0,t] is minimal}.

Observe that if w = av, where a ∈ R, then tc(w) = 1
|a|v. It can be proved that tc :

TpM → R+ is a continuous function [16, Theorem 7.3].
For p ∈ M we denote Up := {v ∈ TpM : tc(v) > 1}. It follows from the continuity of tc

that TpM ⊃ Up is an open neighborhood of the origin in TpM .

Definition 1.21. Let p ∈M . The cut locus of p is

Cut(p) := exp(∂Up).

The cut locus is thus the set of points where geodesics emanating from p lose global
optimality.

Denote Vp := exp(Up). In the following theorem we combine Proposition 2.113 and
Corollary 3.77 from [9].

Theorem 1.22. The manifold M is a disjoint union of Vp and Cut(p). The map expp :
Up → Vp is a diffeomorphism.

This theorem explains the name “cut locus”. It turns out that after “cutting” the mani-
fold along Cut(p), it can be diffeomorphically mapped onto a flat star-like open set Up ⊂ TpM .

The following proposition is a direct consequence of the definition of Up.
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Proposition 1.23. Let p, q ∈M and let γ : [0, 1]→M be a minimal geodesic from γ(0) = p
to γ(1) = q. Then γ ([0, 1)) ⊂ Vp.

Remark 1.24. Notice that here we do not assume that q ∈ Vp.

Proof. Let v ∈ TpM be such that γ = γv. We assumed that tc(v) ≥ 1, so av ∈ Up for
0 ≤ a < 1. Hence γ ([0, 1)) = {exp av : a ∈ [0, 1)} ⊂ expUp = Vp.

Finally we have the following easy consequence of Theorem 1.22.

Corollary 1.25. Let p ∈ M and q ∈ Vp. Then there exists exactly one unit-speed minimal
geodesic joining p and q.

Proof. Let v ∈ TpM be such that γv : [0, 1]→M is a minimal geodesic joining γ(0) = p and
γ(1) = q. Of course tc(v) ≥ 1. By assumption γ(1) /∈ Cut(p), so tc(v) 6= 1. Thus tc(v) > 1,

which means by definition that v ∈ Up. Hence v =
(
exp |Up

)−1
(q) is unique.

1.4 Energy and hinged energy

Definition 1.26. Let p ∈M . We define the energy function Ep : M → R by

Ep(q) :=
1

2
dist(p, q)2,

where dist is the Riemannian distance.

Proposition 1.27. Let q ∈ Vp and let v =
(
exp |Up

)−1
(q). Then ∇Ep(q) = γ′v(1) ∈ TpM .

Proof. Let w ∈ Tv (TpM). Then we have [7, p. 367, Lemma 2]

g(v, w) = g
(
d expp(v)v, d expp(v)w

)
, (14)

where we identify TpM ∼ Tv (TpM).
Notice that expp(v + tv) = expp ((1 + t)v) = γv(1 + t). Hence, d expp(v)v = γ′v(1).

Let q̃ ∈ Vp and let ṽ =
(
exp |Up

)−1
(q̃). Then Ep(q̃) = 1

2
g(ṽ, ṽ). Hence, for u ∈ TqM we

obtain, by the rule of differentiating quadratic functions,

〈dEp(q), u〉 = g
(
v, d

(
exp |Up

)−1
(q)u

)
.

Thus, substituting in (14) w = d
(
exp |Up

)−1
(q)u, we get

〈dEp(q), u〉 = g (γ′v(1), u) .

Remark 1.28. From the formula Ep(q̃) = 1
2
g(ṽ, ṽ) and the fact that exp |Up is smooth it

follows that Ep : M → R is smooth on Vp.
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Definition 1.29. Let p, q ∈M . We define the hinged energy function hp,q : M → R by the
formula

hp,q(z) := Ep(z) + Eq(z).

Observe that hp,q is smooth on Vp ∩ Vq.

Proposition 1.30. Let p, q ∈M and let γ : [0, 2]→M be a minimal geodesic from γ(0) = p
to γ(2) = q. Then minhp,q = 1

4
dist(p, q)2 and this minimum is attained at the point x := γ(1).

Every global minimum of hp,q is a midpoint of some minimal geodesic joining p and q.

Proof. Let z ∈ M , a := dist(p, x), b := dist(x, q), α := dist(p, z), β := dist(z, q). Then
a = b = 1

2
dist(p, q), so hp,q(x) = 1

2
a2 + 1

2
b2 = 1

4
dist(p, q)2.

From the triangle inequality we have α + β ≥ dist(p, q), so

hp,q(z) =
α2 + β2

2
≥
(
α + β

2

)2

≥ 1

4
dist(p, q)2.

Suppose that the equality holds. From α2+β2

2
=
(
α+β

2

)2
we infer that α = β. From α + β =

dist(p, q) we deduce that z lies on a minimal curve from p to q. This curve is a geodesic by
Proposition 1.9, and z is its midpoint.

Remark 1.31. Notice that the midpoint of a minimal geodesic lies in the “good” set Vp∩Vq
even if q ∈ Cut(p).

Remark 1.32. Take in particular z := γ(1 + t). Then hp,q(z) = 1
2
a2((1 − t)2 + (1 + t)2) =

1
4
dist(p, q)2(1 + t2). We obtain that Hesshp,q(z) is non-degenerate in the direction γ̇(1).

The reason to study the hinged energy function here is that the degeneracy of expp near
q is reflected by the behavior of h near the midpoint of a geodesic joining them, which is
assumed to lie in the “good” region. This relationship is given in the next proposition.

Proposition 1.33. Let p, q ∈ M and let α : (−ε, ε) → Vp ∩ Vq be a smooth curve. Assume
that x = α(0) is a critical point of hp,q. Suppose that k ∈ N is such that ∇hp,q(α(t)) = tku(t),
where u is a smooth vector field along the curve α with u(0) 6= 0.

Let γv(t) : R → M be the minimal geodesic from γv(t)(0) = p to γv(t)(1) = α(t). Let
β(t) := γv(t)(2).

Then β : (−ε, ε)→M is a smooth function, β(0) = q and

lim
t→0

β̇(t)

tk−1
= k d expx

(
γ̇v(0)(1)

)
u(0),

where in the last formula we identify Tα(0)M with Tγ̇v(0)(1)(Tα(0)M).

Remark 1.34. Observe that under our assumptions v(t) is a smooth curve (−ε, ε)→ TpM
and every such curve v(t) gives rise to the corresponding curve α(t) := γv(t)(1).

11



Proof. Most of this argument is taken from [4, proof of Theorem 21.]
First part is obvious, since β is a composition of smooth functions.
Let γw(t) : R → M be the optimal geodesic from γw(t)(0) = q to γw(t)(1) = α(t). Denote

X(t) := ∇hp,q(α(t)) ∈ Tα(t)M . It follows from Proposition 1.27 that

γ̇v(t)(1) = −γ̇w(t)(1) +X(t). (15)

We want to use the Taylor expansion of exp around γ̇v(0)(1) = −γ̇w(0)(1).
To this end we introduce on TM local canonical coordinates (x1, x2, v1, v2) around α(0)

and (q1, q2, w1, w2) around q. In these coordinates we write

γ̇v(0)(1) = −γ̇w(0)(1) = (0, 0, c1, c2),

γ̇v(t)(1) = (x1(t), x2(t), c1 + a1(t), c2 + a2(t)),

−γ̇w(t)(1) = (x1(t), x2(t), c1 + b1(t), c2 + b2(t)),

u(t) = (x1(t), x2(t), u1(t), u2(t)),

β(t) = (q1(t), q2(t)).

Let

exp(q1, q2, c1 + h1, c2 + h2) = d exp(0,0,c1,c2)(q1, q2, h1, h2)t

+ φ2

(
(q1, q2, h1, h2)t

)2
+ · · ·+

+ φk
(
(q1, q2, h1, h2)t

)k
+O(‖(q1, q2, h1, h2)‖k+1)

be the Taylor expansion of exp near γ̇v(0)(1) = (0, 0, c1, c2) (here φj is some j-linear map for
j = 2, . . . , k).

Observe that exp
(
−γ̇w(t)(1)

)
= q = (0, 0) and exp

(
γ̇v(t)(1)

)
= β(t) = (q1(t), q2(t)). Also,

for j = 2, . . . , k we have∥∥∥φj ((q1(t), q2(t), a1(t), a2(t))t
)j − φj ((q1(t), q2(t), b1(t), b2(t))t

)j∥∥∥ = O(tk+1).

Hence

(q1(t), q2(t)) = d exp(0,0,c1,c2)(0, 0, a1(t)− b1(t), a2(t)− b2(t)) +O(tk+1).

By (15) we have ai(t)− bi(t) = tkui(t). Thus

(q1(t), q2(t)) = tkd exp(0,0,c1,c2)(0, 0, u1(t), u2(t)) +O(tk+1),

so in coordinates (w1, w2) the derivative β̇(t) is expressed as

(q̇1(t), q̇2(t)) = ktk−1d exp(0,0,c1,c2)(0, 0, u1(t), u2(t)) +O(tk)

= ktk−1d exp(0,0,c1,c2)(0, 0, u1(0), u2(0)) +O(tk)

= ktk−1d expγ̇v(0)(1)(u(0)) +O(tk),

and the conclusion follows.
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Corollary 1.35. Under the assumptions above α(0) is the midpoint of some (not necessarily
minimal) geodesic joining p and q.

Corollary 1.36. Let p, q ∈M and let x ∈M be a critical point of hp,q. Assume additionally
that x ∈ Vp∩Vq. Then q is conjugate to p along some geodesic if and only if x is a degenerate
critical point of hp,q.

Proof. Suppose first that q is conjugate to p along γv(0). Then there exists a smooth curve

v : (−ε, ε) → TpM such that β̇(0) = 0. Let α : (−ε, ε) → M be the corresponding curve
of midpoints (see Remark 1.34). Then in the last proposition we must have k ≥ 2. Thus
Hesshp,q(α(0))(v, α̇(0)) = 0 for any v.

Conversely, if Hesshp,q(x)(v, w) = 0 for all v, it suffices to take an arbitrary regular curve
α : (−ε, ε)→ Vp ∩ Vq such that α(0) = x and α̇(0) = w to obtain β̇(0) = 0.

Note. In the rest of this section we assume additionally that M has dimension 2.

Let p ∈ M and let γ : R → M be a geodesic with γ(0) = p. Suppose that γ(2) = q is a
conjugate point of p along γ and that γ|[0,2] is minimal (such a point is called a cut-conjugate
point).

It follows from Proposition 1.30 and Corollary 1.36 that x := γ(1) is a global minimum
of hp,q and a degenerate critical point. Notice however that, according to Remark 1.32, the
degeneracy is only in one direction. The following result, called the Splitting Lemma or the
Refined Morse Lemma, is a special case of [11, Lemma 1].

Lemma 1.37. Let U ⊂ Rn be open and let x ∈ U be a local minimum of a smooth function
f : U → R. Suppose that the critical point x is degenerate in one direction. Then there
exists a smooth local coordinate system (z1, . . . , zn−1, zn) such that in some neighborhood of
x we have f((z1, . . . , zn−1, zn)) = f(x) + z2

1 + · · ·+ z2
n−1 + g(zn), where g is a smooth function

R→ R+ and g(z) = O(z4).

Remark 1.38. The function g is not unique, but its order of vanishing at z = 0 is – this is
the maximal order of vanishing at z = 0 of functions z 7→ f(α(z))− f(x) for a smooth curve
α such that α(0) = x.

Applying this lemma to f = hp,q we obtain that there exists a smooth local coordinate
system (z1, z2) near x such that hp,q(z1, z2) = hp,q(x) + z2

1 + g(z2), where g : R → R+ is a
smooth function and g(z) = O(z4). Let k + 1 ∈ N be the order of vanishing of g at z = 0
(thus k ≥ 3).

We define in these coordinates the smooth curve α(t) := (0, t). It is immediate that
∇hp,q(α(t)) = tku(t) for some smooth vector field u with u(0) 6= 0. Combining this with
Proposition 1.33 and Remark 1.34 we obtain the following result.

Corollary 1.39. Let p, q ∈ M and assume that q is a cut-conjugate point of p along γ :
[0, 2]→M . Then there exists a smooth curve v : (−ε, ε)→ TpM such that γv(0) = γ and

dist(γv(t)(2), q) = O(tk),

where k + 1 is the order of vanishing at 0 of the function g described above.
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It is natural to expect that for a generic metric the order of degeneracy is lowest possible,
that is k+ 1 = 4. The last corollary gives an upper bound on k once we prove that geodesics
close to the minimal one are not “too close” to the cut-conjugate point. We expect that in a
generic situation these two bounds cöıncide, hence determining the value of k (which would
be equal 3).

In the next section we will see that the order of vanishing of the function g is related to
the small-time asymptotics of the heat equation on M .

1.5 The heat kernel and its asymptotics

Let (M, g) be a complete orientable n-dimensional Riemannian manifold. We denote dvol
the volume form associated with g and compatible with the orientation (which means it
equals 1 on a positively oriented orthonormal frame).

Definition 1.40. Let X ∈ Vec(M). We define the divergence divX as the unique function
satisfying

LX dvol = divX dvol.

The Laplace operator on smooth functions on M is defined as ∆f := div (∇f) (some-
times, especially in differential geometry, ∆ is defined as − div∇).

Definition 1.41. A heat kernel on M is a function e(t, p, q) ∈ C∞(R+×M ×M) satisfying
the following conditions.

(∂t −∆p)e(t, p, q) = 0, (16)

lim
t→0

∫
M

e(t, p, q)f(q) dvol(q) = f(p), ∀f ∈ C∞(M). (17)

Theorem 1.42. A heat kernel exists and is unique. It satisfies e(t, p, q) = e(t, q, p).

Proof. Cf. [10, Theorem 7.13].

Definition 1.43. Let e(t, p, q) be a heat kernel. The heat operator et∆ : L2(M) → L2(M)
is defined by the formula

et∆f(p) =

∫
M

e(t, p, q)f(q) dvol(q).

Remark 1.44. Notice that ψ(t, p) = et∆f(p) is the solution of the Cauchy problem

ψ(0, p) = f(p)

∂tψ(t, p) = ∆pψ(t, p).

14



These are classical results of the Hodge theory that if M is compact then the operators
∆ and et∆ are simultaneously diagonalizable and the proper vectors are smooth functions.
Their spectra determine the long-time behavior of the heat flow and contain topological
information.

Here we investigate the short-time behavior, which appears to be connected to the geom-
etry of the manifold. The short-time short-distance asymptotics is related to approximating
e(t, p, p) for t→ 0. This is quite well understood.

Definition 1.45. Let β : R+ → R be a function. If for all N ≥ k0 we have

lim
t→0

β(t)−
∑N

k=k0
bkt

k

tN
= 0,

then we say that β has an asymptotic expansion β(t) ∼
∑∞

k=k0
bkt

k.

It is a classical result (cf. [5, Corollaire E.III.9], [21, Proposition 3.23, Lemma 3.26]) that

e(t, p, p) ∼ (4πt)−n/2
∞∑
k=0

uk(p)t
k,

where u0(p) = 1 and the other coefficients can be expressed as universal (i.e. independent
of the manifold except for its dimension) polynomials of the Riemann curvature and its
derivatives.

Later short-time long-distance asymptotic expansions away from the cut locus were ob-
tained (cf. [3, Theorem (3.1)]).

Theorem 1.46. Let Σ = {(p, q) : q ∈ Vp}. If (p, q) ∈ Σ, then we have an asymptotic
expansion

e(t, p, q) ∼ 1

tn/2
exp

(
−dist(p, q)2

4t

)( ∞∑
k=0

ck(p, q)t
k

)
,

uniformly on every compact subset of Σ, where the functions ci : Σ → R are smooth and
c0(p, q) > 0.

For (p, q) ∈M ×M we still have

lim
t→0
−4t log e(t, p, q) = dist(p, q)2

uniformly on compact subsets of M ×M , even on the cut locus (see [23], [17], [13, Theorem
5.2.1]).

However, the following result shows that the order of the leading term of the asymptotic
expansion can be different on the cut locus, depending on the behavior of the hinged energy
function.
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Theorem 1.47. Let p, q ∈M and assume that there exists only one minimal geodesic joining
p and q. Let x be the midpoint of this geodesic and assume that there exists a coordinate
system (z1, . . . , zn) near x such that

hp,q(z) = hp,q(x) + z2m1
1 + · · ·+ z2mn

n + o(|z1|2m1 + · · ·+ |zn|2mn)

for some integers 1 ≤ m1 ≤ · · · ≤ mn. Then there exists a constant C (depending on M , p
and q) such that

e(t, p, q) =
C + o(1)

t
n−

∑
i

1
2mi

exp

(
−dist(p, q)2

4t

)
.

A full proof can be found in [19], whereas the mains ideas are already in [18]. The result
was extended to sub-Riemannian manifolds in [4].

Remark 1.48. As explained in [4, Remark 2], if there exists a one-parameter family of
minimal geodesics joining p and q, the theorem is still valid, but it should be understood
that some mi is infinite. For example let M = S2 be a sphere of radius ρ and let p, q be two
opposite poles. Then we have m1 = 1,m2 =∞, so the asymptotics is

e(t, p, q) =
C + o(1)

t3/2
exp

(
−ρ

2π2

4t

)
.

We will check this result in Section 2.

In particular, let us return to the situation of Corollary 1.39. We obtain the following
result.

Corollary 1.49. Let M be a 2-dimensional orientable Riemannian manifold. Let p, q ∈ M
and assume that there exists only one minimal geodesic joining p and q. Assume further that
there exists no smooth curve v : (−ε, ε) → TpM such that γv(0) : [0, 2] → M is the minimal
geodesic from p to q and

dist(γv(t)(2), q) = o(t3).

Then there exists a constant C (depending on M , p and q) such that

e(t, p, q) =
C + o(1)

t5/4
exp

(
−dist(p, q)2

4t

)
.

The purpose of Section 3 is to provide a class of manifolds satisfying the assumptions of
this corollary.

2 First examples

We analyze the circle S1 to show that the expansion in Theorem 1.46 is not (in general)
valid on the cut locus. Then, using the formulas obtained for S1, we study the heat kernel
on simple 2-dimensional manifolds – the cylinder S1 × R and the sphere S2.
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2.1 The heat kernel on the circle

We follow here Section 1.1.2 in [21]
Let (M, g) = (S1, dθ). It is easily seen that for X(θ) = a(θ)∂θ we have divX(θ) = ∂θa(θ),

so the Laplace operator on smooth functions is given by

∆f =
d2f

dθ2
.

The heat equation
∂tf(t, θ) = ∂2

θf(t, θ) (18)

can be solved explicitly using Fourier series. Let

f0(θ) = f(0, θ) =
∑
n∈Z

ane
inθ

be the initial data. We search a solution of the form

f(t, θ) =
∑
n∈Z

an(t)einθ.

Substituting into (18) we obtain∑
n∈Z

(
a′n(t) + n2an(t)

)
einθ = 0,

which gives an(t) = e−n
2tan and the desired solution

f(t, θ) =
∑
n∈Z

ane
−n2teinθ. (19)

Notice that an = 1
2π

∫
S1 e

−inψf0(ψ) dψ, so (19) can be written in the form

et∆f0(θ) = f(t, θ) =
1

2π

∫
S1

∑
n∈Z

e−n
2teinθe−inψf0(ψ) dψ.

Hence the heat kernel on (S1, dθ) is given by the formula

eS1(t, θ, ψ) =
1

2π

∑
n∈Z

e−n
2tein(θ−ψ). (20)

It is well known that the heat kernel on the real line is given by the formula

eR(t, x, y) =
1√
4πt

e−
(x−y)2

4t .

Consider the covering map R → R/2πZ ' S1. Intuitively the heat goes from one point on
the circle to another by turning left or right an arbitrary number of times, which would lead
to a formula

eS1(t, θ, ψ) =
∑
n∈Z

eR(t, θ, ψ + 2nπ). (21)

It is indeed the case.
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Proposition 2.1. Let ẽS1 : R+ × S1 × S1 → R be defined by

ẽS1(t, θ, ψ) =
∑
n∈Z

eR(t, θ, ψ + 2nπ).

Then ẽS1 is well defined and ẽS1 = eS1.

Proof. It is evident that for k, l ∈ Z we have ẽS1(t, θ + 2kπ, ψ + 2lπ) = ẽS1(t, θ, ψ), so the
value of ẽS1(t, θ, ψ) does not depend on the choice of representatives.

To prove that ẽS1 = eS1 it is sufficient to show that ẽS1 is a heat kernel. The conclusion
will follow by the uniqueness of the heat kernel.

From (∂t − ∂2
θ )eR = 0 it follows immediately that (∂t − ∂2

θ )ẽS1 = 0.
Now let f ∈ C∞(S1), θ ∈ S1. We want to prove that

lim
t→0

∫
S1

ẽS1(t, θ, ψ)f(ψ) dψ = f(θ).

The left hand side equals limt→0

∫
R eR(t, θ, ψ)f̃(ψ) dψ, where f̃ : R → R is the periodic

extension of f . The function f̃ is bounded and C∞, so it is a standard exercise in real
analysis that

lim
t→0

∫
R
eR(t, θ, ψ)f̃(ψ) dψ = f̃(θ) = f(θ).

Remark 2.2. Putting θ = ψ = 0 in (21) we get for example

∑
n∈Z

e−n
2t =

√
π

t

∑
n∈Z

e−
n2π2

t .

Proving directly an identity like this seems to be a hard task. The proof above is simple but
it relies on the (nontrivial) uniqueness of the heat kernel.

Proposition 2.3. Let Σ = {(θ, ψ) ∈ S1 × S1 : θ and ψ are not antipodal}. Then we have
an asymptotic expansion

eS1(t, θ, ψ) ∼ 1√
4πt

exp

(
−dist(θ, ψ)2

4t

)
.

uniformly on compact subsets of Σ.
If θ and θ̂ are antipodal, then we have an asymptotic expansion

eS1(t, θ, θ̂) ∼ 1√
πt

exp

(
−dist(θ, θ̂)2

4t

)
.
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Proof. Notice that if c > 0, then for any N ∈ Z we have limt→0 t
−Ne−

c
t = 0 and the

convergence is uniform on compact subsets of {c ∈ R : c > 0}. Thus all the terms on the
right hand side of (21) such that (θ − ψ − 2nπ)2 is not minimal are negligible. If the two
points are not antipodal, only one term is left. If they are antipodal, there are two (equal)
terms that count.

Remark 2.4. The antipodal point is the unique cut point. It turns out that the asymptotic
expansion from Theorem 1.46 cannot be extended to this point, because c0(p, q) would have
to be discontinuous for q antipodal to p.

2.2 The heat kernel on the 2-dimensional cylinder

Let (M1, g1) and (M2, g2) be orientable Riemannian manifolds and consider the product
manifold (M1 ×M2, g1 ⊗ g2). Let eM1 be the heat kernel on M1 and let eM2 be the heat
kernel on M2.

Proposition 2.5. The heat kernel on M1 ×M2 satisfies

eM1×M2(t, (x1, x2), (y1, y2)) = eM1(t, x1, y1)eM2(t, x2, y2). (22)

Proof. Let X1 ∈ Vec(M1), X2 ∈ Vec(M2), f1 ∈ C∞(M1), f2 ∈ C∞(M2). Then (X1, X2) ∈
Vec(M1 ×M2) and f1 ⊗ f2 ∈ C∞(M1 ×M2), where (f1 ⊗ f2)(x1, x2) := f1(x1)f2(x2). It is
easily checked from the definition that

divM1×M2(X1, X2) = divM1X1 + divM2X2

and
∇M1×M2(f1 ⊗ f2)(x1, x2) = (f2(x2)∇M1f1(x1), f1(x1)∇M2f2(x2)).

Thus ∆M1×M2(f1 ⊗ f2)(x1, x2) = f2(x2)∆M1f1(x1) + f1(x1)∆M2f2(x2), which means that the
right hand side of (22) satisfies condition (16). Condition (17) follows by iterated integration.

Consider the 2-dimensional cylinder Cyl := S1 × R. The cut locus of a point (θ, z0) ∈
S1 × R is the line {(θ̂, z) : z ∈ R}, where θ̂ is the point of S1 antipodal to θ.

Proposition 2.6. Let Σ = {((θ, z), (ψ,w)) ∈ Cyl× Cyl : θ and ψ are not antipodal}. Then
we have an asymptotic expansion

eS1×R(t, (θ, z), (ψ,w)) ∼ 1

4πt
exp

(
−dist((θ, z), (ψ,w))2

4t

)
.

uniformly on compact subsets of Σ.
If θ and θ̂ are antipodal, then we have an asymptotic expansion

eS1(t, θ, θ̂) ∼ 1

2πt
exp

(
−dist((θ, z), (θ̂, w))2

4t

)
.

Proof. Notice that distCyl((θ, z), (ψ,w))2 = distS1(θ, ψ)2 + distR(z, w)2. Thus the conclusion
follows from Proposition 2.3, Proposition 2.5 and the formula for eR.
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2.3 The heat kernel on the 2-sphere

The heat kernel on the 2-sphere was first computed in [8]. It is done by considering S2 as a
homogeneous space SU(2)/U(1) and studying the representations of SU(2) (which slightly
resembles the methods used in the case of S1). In order to be able to use this result, we have
to recall briefly the action of SU(2) on S2.

Let z ∈ C ' PC1 ' S2 (the Riemann sphere) and let

(
α −β
β α

)
∈ SU(2) (we have

|α|2 + |β|2 = 1). The required group action is given by the following Möbius transformation:(
α −β
β α

)
z =

αz − β
βz + α

.

It is a transitive group action with isotropy group U(1) ⊂ SU(2) given by diagonal matrices.
The group SU(2) is a Riemannian manifold with the metric induced from C4. The quotient
(homogeneous) space SU(2)/U(1) is the standard sphere of radius

√
2.

After this short introduction we can state the result of [8].

Theorem 2.7. Let Id ∈ S2 be represented by

(
1 0
0 1

)
∈ SU(2) and let q ∈ S2 be represented

by

(
α −β
β α

)
∈ SU(2). Then

e(t, Id, q) =
1

8π

∞∑
n=0

(2n+ 1)e−
n(n+1)

2
tPn(2|α|2 − 1), (23)

where Pn is the Legendre polynomial.

Remark 2.8. Notice that |α|2 does not depend on the choice of a representative of q.

The point antipodal to Id, which we denote i, is represented by a matrix

(
0 1
−1 0

)
with

α = 0. From the recursion formula for Legendre polynomials

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x)

it follows immediately that Pn(−1) = (−1)n. Thus we obtain

e(t, Id, i) =
1

8π

∞∑
n=0

(−1)n(2n+ 1)e−
n(n+1)

2
t.

We will compute an asymptotic expansion of this expression.
To this end first put ψ = 0 in (21). This gives

1 + 2
∞∑
n=0

e−n
2t cos(nθ) =

√
π

t

∑
n∈Z

e−
(θ−2nπ)2

4t .
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For fixed t > 0, both sides can be differentiated with respect to θ term by term. This leads
to

2
∞∑
n=0

ne−n
2t sin(nθ) =

√
π

t

∑
n∈Z

θ − 2nπ

2t
e−

(θ−2nπ)2

4t

=

√
π

2t3/2

∑
n∈Z

(θ − 2nπ)e−
(θ−2nπ)2

4t .

Put θ = π
2
. On the left hand side we have

∞∑
n=0

ne−n
2t sin

(nπ
2

)
=
∞∑
n=0

(−1)n(2n+ 1)e−(2n+1)2t

= e−t
∞∑
n=0

(−1)n(2n+ 1)e−
n2+n

2
·8t.

On the right hand side all the terms except n = 0 are negligible for an asymptotic expansion.
Hence

∞∑
n=0

(−1)n(2n+ 1)e−
n2+n

2
·8t ∼ π3/2

8t3/2
e−

π2

16t et

or, writing t instead of 8t,

e(t, Id, i) =
1

8π

∞∑
n=0

(−1)n(2n+ 1)e−
n2+n

2
t ∼

√
π

(2t)3/2
e−

2π2

4t et/8.

If we recall that dist(Id, i) =
√

2π, we see that the asymptotic expansion confirms what
was said in Remark 1.48. We see again that Theorem 1.46 fails on the cut locus. As the cut
point is also conjugate, in the asymptotic expansion we obtain the power of t different from
t−n/2 = t−1.

3 Oblate ellipsoids

3.1 Cut and conjugate loci on ellipsoids

The study of cut and conjugate loci on 2-dimensional manifolds dates back to the works of
Poincaré [20] and Jacobi [15].

It is worth mentioning that the structure of the cut and conjugate loci on general ellipsoids
was determined quite recently [14], although it was already predicted in [15]. It turns out that
every non-umbilical point on an ellipsoid with distinct axis has exactly two cut-conjugate
points and the shape of the cut and conjugate loci in their neighborhood is as presented on
Figure 1.

To perform explicit computations, it is more convenient to investigate ellipsoids of rev-
olution. The shape of the cut and conjugate loci on 2-spheres of revolution (of which an
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Figure 1: Generic shape of the cut and conjugate loci.
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Figure 2: Notational convention for a 2-sphere of revolution.

ellipsoid of revolution is an example) were found in [22]. In paragraphs 3.2, 3.3 and 3.4 we
use these results to compute the order of degeneracy of the exponential map starting from
a point on the equator of an oblate ellipsoid near its cut-conjugate point. In paragraph 3.5
these results are expressed in terms of the geometry of ellipsoids.

3.2 2-spheres of revolution

Definition 3.1. Let (M, g) be a compact Riemannian manifold homeomorphic to a 2-sphere.
M is called a 2-sphere of revolution if there exists a point p ∈ M called a pole such that
for any q1, q2 ∈ M satisfying dist(p, q1) = dist(p, q2) there exists an isometry f : M → M
satisfying f(q1) = q2, f(p) = p.

Remark 3.2. A model example of a 2-sphere of revolution is a closed rotational surface in
R3.

Let (M, g) be a 2-sphere of revolution and let p be a pole. It can be proved that p has
a unique cut point q which is also a pole [22, Lemma 2.1]. Therefore M \ {p, q} can be
parametrized by geodesic polar coordinates around p, which we denote (r, θ). Let M ′ :=
M \{p, q}. This allows to express the Riemannian metric on M ′ as g = dr2 +m(r)2 dθ2 with
limr→0m(r) = 0 [7, p. 287, Proposition 3]. We choose m to be positive. It can be thought
of as the distance from the rotational axis (see also Figure 2, which shows a section of M by
a plane containing the rotational axis).

We denote a := 1
2
dist(p, q) and b := m(a). The set {(r, θ) ∈ M : r = a} is called the

equator. Each set {(r, θ) ∈ M : r = const} is called a parallel. Each set {(r, θ) ∈ M : θ =
const} is called a meridian. In what follows we make the following assumptions:
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(A1) m(2a− r) = m(r), i.e. the metric is invariant by the reflection flipping the poles.

(A2) The Gaussian curvature is monotone increasing along a meridian.

(A3) m(r) is analytic in some neighborhood of r = a.

The first two assumptions are taken directly from [22]. The third assumption allows to
perform formal computations on power series, which will be the method used in what follows.

Fix a point p0 on the equator and assume θ(p0) = 0. Recall that M is compact, so
geodesically complete by Theorem 1.18. We need a classical result on surfaces of revolution.

Proposition 3.3. Let γ(s) = (r(s), θ(s)) be a unit speed geodesic on M ′. There exists a
constant ν, called the Clairaut constant of γ, such that

m(r(s))2θ̇(s) = ν. (24)

Here (and later) θ̇(s) should be understood as
˙̃
θ(s), where θ̃(s) ∈ R is a lift of θ(s) ∈

R/2πR.

Proof. In canonical coordinates λ = (r, θ, ξ, ζ) the Hamiltonian has the form

H(λ) = ξ2 +
1

m(r)2
ζ2.

We have ζ̇ = ∂θH = 0, so ζ is a constant. Hence m(r(s))2θ̇(s) = m(r(s))2∂θH = 2ζ is a
constant.

Remark 3.4. Observe that m(r(s))θ̇(s) = cos η(s), where η(s) is the angle between γ̇(s)
and ∂

∂θ
. The constant ν can be viewed as the angular momentum of the geodesic.

Proposition 3.5. Let ν ∈ R. Then we have the following.

i) If |ν| > b, then no geodesic on M ′ emanating from p0 satisfies (24).

ii) If |ν| = b, then there is exactly one geodesic γ : R→M ′ emanating from p0 satisfying
(24). Its image is the equator.

iii) If 0 < |ν| < b, then there is exactly one geodesic γ : R → M ′ emanating from p0

satisfying (24) and r′(0) < 0.

This unique geodesic will be denoted by cν .

Proof. We assumed γ(s) to be unit speed, that is r′(s)2 + m(r(s))2θ′(s)2 = 1. Thus (24) is
equivalent to

r′(s)2 =
m(r(s))2 − ν2

m(r(s))2
, (25)

in particular

r′(0)2 =
b2 − ν2

b2
. (26)
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i) If |ν| > b we clearly get a contradiction.

ii) If |ν| = b we get r′(0) = 0 and θ′(0) = ν
b2

. There is a unique geodesic with initial
tangent vector (r′(0), θ′(0)) =

(
0, ν

b2

)
. By symmetry this geodesic will not quit the

equator. By (24) θ′(s) is constant, so the geodesic covers the whole equator.

iii) If |ν| < b we obtain r′(0) = −
√

b2−ν2
b2

(because we chose r′(0) negative) and θ′(0) = ν
b2

.

This determines the unique geodesic with Clairaut constant ν. We have |m(r(s))θ′(s)| =
| cos η(s)| ≤ 1, so m(r(s)) ≥ |ν| > 0. This assures that the geodesic does not meet the
poles.

From assumption (A2) and Gauss-Bonnet Theorem it follows that the Gaussian curvature
on the equator is strictly positive. Thus from Lemmas 2.2 and 2.3 in [22] one can obtain
that m is strictly increasing on (0, a]. For ν, 0 < |ν| ≤ b, we will denote by R = R(ν) the
unique R ∈ (0, a] such that m(R) = |ν|. It is the minimal geodesic distance of cν(s) from
the pole p.

Theorem 4.1 in [22] states that the cut locus of p0 is a subset of the equator. For
0 < |ν| < a the cut point along cν is the first point of intersection of cν with the equator.
This point is given by the formula [22, p. 385] (r, θ) = (a, ϕ(ν)), where

ϕ(ν) := 2

∫ a

R

ν dr

m(r)
√
m(r)2 − ν2

. (27)

From now on we will assume that ν ≥ 0 (the case ν ≤ 0 is symmetric). It can be shown
that ϕ(ν) is non-increasing for ν ∈ (0, b) [22, Lemma 4.2]. Thus the cut-conjugate point of
p0 has coordinates (r, θ) = (a, limν→b− ϕ(ν)). We note θcut := limν→b− ϕ(ν) and tcut := bθcut,
so that cb(tcut) is the cut-conjugate point.

Remark 3.6. The geodesic cν starting from p0 is determined by each of the parameters
ν, R or η. We recall the relationships between these parameters – we have ν = m(R) and
cos η = ν

b
. In particular b− ν is of order η2 as η → 0.

3.3 Cut point of geodesics close to the equator

We will now derive the power expansion of ϕ(ν) for ν close to b from the power expansion
of m(r) near r = a. By assumption (A1) m(a+ ε) = m(a− ε), so in the power expansion of
m near r = a odd powers do not appear. Let

m(r) = b− α(a− r)2 + β(a− r)4 +O
(
(a− r)6

)
be the beginning of this expansion.
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Remark 3.7. From the formula for the Gaussian curvature of a surface of revolution [7, p.

162] we obtain that the Gaussian curvature of M on the equator equals G = −m′′(a)
m(a)

= 2α
b

.
In particular α > 0.

To justify our computation we need a simple lemma.

Lemma 3.8. Let f(x, y) = a00 +a10x+a01y+ · · · be a real analytic function of two variables
in some neighborhood of (x, y) = (0, 0). Then the function

F (y) =

∫ y

0

f (x, y) dx√
y2 − x2

is real analytic in a neighborhood of y = 0 and

F (y) = b0 + b1y + · · · where bk =
k∑
j=0

aj,k−j

∫ 1

0

uj du√
1− u2

. (28)

Proof. Let fn(x, y) :=
∑

i+j≤n aijx
iyj and Fn(y) :=

∑
k≤n bky

k. Substituting u = x
y

we get∫ y

0

fn (x, y) dx√
y2 − x2

=
∑
i+j≤n

aij

∫ y

0

xiyj dx√
y2 − x2

=
n∑
k=0

yk
∑
i+j=k

aij

∫ 1

0

ui du√
1− u2

= Fn(y).

(29)

Observe that in some neighborhood of (x, y) = (0, 0) the sequence fn(x, y) converges uni-

formly to f(x, y) as n→∞, so in (29) the left hand side converges to
∫ y

0
f(x,y) dx√
y2−x2

= F (y).

Notice that
∫ 1

0
uj du√
1−u2 ≤

π
2
. Thus |bk| ≤ π

2

∑k
j=0 |aj,k−j| and it is clear that the series∑

k bky
k converges in some neighborhood of y = 0. Let F̂ (y) :=

∑
k bky

k. Hence the right

hand side of (29) converges to F̂ (y) as n→∞. It follows that F (y) = F̂ (y).

Remark 3.9. If in the expansion of f(x, y) only even powers appear, the same is true for
F (y).

Recall that ν = m(R) and R→ a− as ν → b−. Let y = a−R. We have

ϕ(ν) =

∫ a

R

2m(R)

m(r)
√
m(r)2 −m(R)2

=

∫ y

0

2m(a− y) dx

m(a− x)
√
m(a− x) +m(a− y)

√
m(a− x)−m(a− y)

.

(30)

From b > 0 it is clear that

(x, y) 7→ 2m(a− y)

m(a− x)
√
m(a− x) +m(a− y)
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is an analytic function of two variables in a neighborhood of (x, y) = 0 with even powers
only. As for (m(a− x)−m(a− y))−1/2, it can be written as

1√
y2 − x2

1√
α− β(y2 + x2) + · · ·

.

We have α > 0, so the second factor is an analytic function in a neighborhood of (x, y) = 0.
Only even powers appear in its expansion.

Summing up, the right hand side of (30) has the form required in Lemma 3.8. Perform-
ing explicitly the computation described above (it is long but straightforward) we get the
expression

φ(ν) =

∫ a

0

f(x, y) dx√
y2 − x2

with

f(x, y) =

√
2√
bα

+
5α2 + 2bβ

2
√

2(bα)3/2
x2 +

−3α2 + 2bβ

2
√

2(bα)3/2
y2 +O(x4 + y4),

and in the power expansion of the function f only even powers appear.
Using the fact that

∫ 1

0
du√
1−u2 = π

2
and

∫ 1

0
u2 du√
1−u2 = π

4
we obtain

b0 =
π

2
a00 =

π√
2bα

and

b2 =
π

2
a02 +

π

4
a20 =

(6bβ − α2)π

8
√

2(bα)3/2
,

so

ϕ(ν) =
π√
2bα

+
(6bβ − α2) π

8
√

2(bα)3/2
(a−R)2 +O

(
(a−R)4

)
, (31)

where the expansion contains only even powers of a−R.

Remark 3.10. From this formula it is clear that the case 6bβ = α2 is going to be singular. It
is easy to compute that this is equivalent to G′′(a) = 0, where G(s) is the Gaussian curvature
on the parallel {r = s}.

It follows from the fact that α > 0 and a well-known theorem on analyticity of inverse
functions of analytic functions that (a − R)2 is an analytic function of ν = m(R) in a
neighborhood of ν = b. An explicit computation gives

(a−R)2 =
b− ν
α

+
β(b− ν)2

α3
+O

(
(b− ν)3

)
,

which together with (31) leads to the following conclusion.
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Proposition 3.11. The function ϕ(ν) is analytic near ν = b and we have the expansion

ϕ(ν) =
π√
2αb

+
(6bβ − α2) π

8
√

2b3/2α5/2
(b− ν) +O

(
(b− ν)2

)
. (32)

In particular θcut = π√
2bα

.

Remark 3.12. In our case the Gaussian curvature on the equator is constant and equal
G = 2α

b
. This permits to calculate explicitly an appropriate Jacobi field and in that way find

the first conjugate point on the equator.
More precisely, let γ : R → M be a geodesic parametrized by arc length and let G(s)

denote the Gaussian curvature at the point γ(s). It is a general fact that the first conjugate
point along γ is γ(sconj), where sconj is the smallest positive solution of the differential
equation

u′′(s) +G(s)u(s) = 0

with the initial conditions u(0) = 0, u′(0) = 1 [7, p. 368, Exercise 1b].
In our case G(s) = 2α

b
, so the solution of this equation is given by

u(s) =

√
b

2α
sin

(√
2α

b
s

)

and its first positive zero is tcut = sconj = πb√
2bα

. On the equator ds = b dθ, so we get indeed

θcut = tcut
b

= π√
2bα

.

3.4 Degeneracy of ν 7→ cν(tcut) and related questions

Recall that the geodesic cb(s) follows the equator and reaches the cut-conjugate point (r, θ) =
(a, θcut) for s = tcut.

We are now interested in the map ν 7→ cν(tcut) near ν = b. Recall that η = η(0) = arccos ν
b

is the angle between c′ν(0) and
(
∂
∂θ

)
(a,0)

. Observe also that arccos
(

1− x2

2

)
= x+O(x3). For

x =
√

2(b−ν)
b

this gives

η =

√
2α

b
(a−R) +O((a−R)3).

The goal is to prove the following result.

Proposition 3.13.

dist

(
cν(tcut),

(
a− (6βb− α2)

√
bπ

16
√

2α5/2
η3, θcut

))
= O(η4). (33)

First we will determine the asymptotics of the point of intersection of geodesics with the
“critical” meridian.
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Lemma 3.14. For 0 < ν < b let (rν , θcut) be the first point of intersection of cν with the

meridian P := {θ = θcut}. Then rν = a− (6bβ−α2)
√
bπ

16
√

2α5/2 η3 +O(η5).

Proof. We assume that cν(s) reaches r = R before it reaches θ = θcut, which means it goes
down after intersecting with P (this will be true for η small enough). This means that
r′(s) ≥ 0 for θ ∈ [θcut, ϕ(ν)]. Thus from (25) we get

r′(s) =

√
m(r(s))2 − ν2

m(r(s))
.

Together with the Clairaut relation

θ′(s) =
ν

m(r(s))2

this permits to compute

dr

dθ
=
r′(s)

θ′(s)
=
m(r(s))

√
m(r(s))2 − ν2

ν
,

r′′(s) =
ν2m′(r(s))

m(r(s))3
,

θ′′(s) = −
2ν
√
m(r(s))2 − ν2m′(r(s))

m(r(s))4
,

d2r

dθ2
=
r′′(s)θ′(s)− r′(s)θ′′(s)

(θ′(s))3
=

(2m(r(s))2 − ν2)m(r(s))m′(r(s))

ν2
.

In particular (
dr

dθ

)
θ=ϕ(ν)

=
b
√
b2 − ν2

ν
= b tan(η)

and
d2r

dθ2
= O(R) = O(η).

Thus

a− rν =

∫ ϕ(ν)

θcut

(
dr

dθ

)
θ1

dθ1 =

∫ ϕ(ν)

θcut

((
dr

dθ

)
ϕ(ν)

−
∫ ϕ(ν)

θ1

(
d2r

dθ2

)
dθ

)
dθ1

= b tan(η)(ϕ(ν)− θcut) +

∫ ϕ(ν)

θcut

∫ ϕ(ν)

θ1

O(η) dθ dθ1.

Recall that b−ν = b(1−cos η) = bη2

2
+O(η4). The second term is O(η5) because we integrate

twice on intervals of length O(b − ν) = O(η2). The conclusion follows by substituting

b− ν = bη2

2
+O(η4) in Proposition 3.11.
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Proof of Proposition 3.13. Let t(ν) denote the cut time of cν , in other words cν(t(ν)) =
(a, ϕ(ν)). One can prove [22, p. 390] that t′(ν) = νϕ′(ν), so t(ν) is also analytic near ν = b
and

t(ν) = tcut +
(6βb− α2) π

8
√

2α5/2b1/2
(b− ν) +O

(
(b− ν)2

)
. (34)

Let τ(ν) denote the distance between (rν , θcut) and (a, ϕ(ν)) along cν . From formula (2.5)
in [22] we obtain

τ(ν) = ν(ϕ(ν)− θcut) +

∫ a

rν

√
m(r)2 − ν2 dr

m(r)
=

(6βb− α2)π

8
√

2α5/2b1/2
(b− ν) +O(η4),

where in the last step we use the fact that the expression under the integral is O(η) and that
(from the last lemma) a− rν = O(η3).

Comparing with (34) we see that tcut = t(ν)−τ(ν)+O(η4). This means that the distance
from (rν , θcut) to cν(tcut) along cν is O(η4).

Hence dist (cν(tcut), (rν , θcut)) = O(η4), so the conclusion follows from Lemma 3.14.

For the proof of the next proposition we need one simple general result about 2-spheres
of revolution.

Lemma 3.15. Let M be any 2-sphere of revolution and let 0 < r1 < r2 < 2a. The Rieman-
nian distance between the parallels {r = r1} and {r = r2} is equal to r2 − r1.

Proof. This follows from the fact that the meridians are minimal curves.

Proposition 3.16. There exists a constant A > 0 such that the distance between (a, θcut)

and the geodesic segment cν([tcut − A; tcut + A]) equals
(6βb−α2)

√
bπ

16
√

2α5/2 η3 +O(η4).

Proof. The role of the constant A is only to forbid the geodesic to do a full turn. Let q̃ be
a point on the geodesic segment under consideration. If q̃ is after (a, ϕ(ν)), the distance is

at least ϕ(ν)− θcut �
(6βb−α2)

√
bπ

16
√

2α5/2 η3.

Suppose that q̃ = (rq̃, θq̃) lies on the geodesic segment cν([0, t(ν)]) and dist(q̃, (a, θcut)) =
O(η3). From Lemma 3.15 we obtain a − rq̃ = O(η3). Hence, by the triangle inequality,
|θq̃ − θcut| = O(η3). Repeating the computation from Lemma 3.14 with θq̃ instead of θcut

gives

a− rq̃ =
(6βb− α2)

√
bπ

16
√

2α5/2
η3 +O(η4).

Using again Lemma 3.15 we get

dist(q̃, (a, θcut)) ≥
(6βb− α2)

√
bπ

16
√

2α5/2
η3 +O(η4).
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Remark 3.17. The idea behind this proof is that moving “vertically” is one order slower
than “horizontally” (this intuition is used all the time throughout this section). If we can
pass from a “vertical” estimate to a “horizontal” one without losing the order of precision
(for example by the triangle inequality), the estimates auto-improve.

We can now prove that a 2-sphere of revolution satisfying assumptions (A1), (A2) and
(A3) which is nonsingular (that is such that G′′(a) 6= 0) satisfies the assumptions of Corollary
1.49.

Let p := (a, 0) and q := (a, θcut). Suppose v : (−ε, ε)→ TpM is a smooth curve such that
γv(0) is the optimal geodesic (along the equator) and

dist(γv(t)(2), q) = o(t3).

In particular (d expp)2v(0)v
′(0) = 0, which by the Gauss Lemma [7, p. 367, Lemma 2] gives

〈v(0), v′(0)〉 = 0 (we are using the usual identification TpM ∼ T2v(0)(TpM) here). This means
that η(t) ∼ t, where η(t) is the angle between v(0) and v(t). Hence

dist(γv(t)(2), q) = o(η(t)3),

which is in contradiction with Proposition 3.16, because α2 6= 6bβ.

Remark 3.18. The singular case G′′(a) = 0 can be treated similarly. One obtains that
if k is the order of the second nonzero term in the expansion (32), then there exists a
smooth curve v : (−ε, ε) → TpM such that γv(0) is the optimal geodesic from p to q and
dist(γv(t)(2), q) = O(t2k+1), but there exists no such curve with dist(γv(t)(2), q) = o(t2k+1).

3.5 Oblate ellipsoid as a 2-sphere of revolution

Let M be an ellipsoid with semi-axes b, b, c, where b ≥ c. We denote p, q its northern and
southern pole respectively. Clearly M is a 2-sphere of revolution.

It is a well-known fact (cf. for example [7, p. 173]) that the Gaussian curvature of such
an ellipsoid is non-decreasing along a meridian, so assumption (A2) is satisfied.

Assumption (A1) is obviously true.
Let a be the distance from the equator to a pole. Let x be a point in the northern half

of M and let ν be its distance from the rotational axis. Let R be the geodesic distance from
x to p. Then m(R) = ν.

On the other hand,

a−R =

∫ b

ν

√
b2 − c2

b2
+

c2

b2 − t2
dt.

Let Z =
√
b− ν. After substitution t = b − z2 and some operations on power series the

integral above transforms into∫ Z

0

c
√

2√
b

+
(4b2 − 3c2) z2

2
√

2b3/2c
+O(z4) dz,
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which results in the expansion

a−R =

√
2c√
b
Z +

(4b2 − 3c2)

6
√

2b3/2c
Z3 +O(Z5).

By the theorem on locally invertible analytic functions we have that
√
b− ν = Z is an

analytic function of R in a neighborhood of R = a. Explicitly, we obtain

√
b− ν = Z =

√
b√
2c

(a−R)−
√
b (4b2 − 3c2)

24
√

2c5
(a−R)3 +O

(
(a−R)5

)
,

so finally, squaring both sides,

m(R) = ν = b− b(a−R)2

2c2
+
b (4b2 − 3c2)

24c6
(a−R)4 +O

(
(a−R)6

)
.

We obtained the following

Proposition 3.19. An oblate ellipsoid with axes b, b, c, where b ≥ c, is a 2-sphere of revo-
lution which satisfies assumptions (A1), (A2) and (A3). The function m has an expansion

m(r) = b− α(a− r)2 + β(a− r)4 +O ((a− r)6) with α = b
2c2

and β = b(4b2−3c2)
24c6

.

It is easy to find the singularity condition:

0 = 6bβ − α2 =
b2(b2 − c2)

c6
if and only if b = c,

so spheres are the only singular oblate ellipsoids of revolution. Every other oblate ellipsoid
is an example of a surface for which the assumptions of Corollary 1.49 hold.
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