
Dynamics of multi-solitons

for Klein-Gordon equations

Jacek Jendrej
(CNRS & Sorbonne Paris Nord)

joint work with Gong Chen (Georgia Tech)

Variational methods and PDEs
IMPAN, 11/03/2024

Jacek Jendrej Dynamics of multi-solitons 11/03/2024 1 / 32



Klein-Gordon equations

Consider the nonlinear Klein-Gordon equation

∂2t ψ −∆ψ + ψ − ψp = 0, (t, x) ∈ R1+d . (1)

Stationary solutions satisfy

−∆Q + Q − Qp = 0 (2)

and decay exponentially.
A unique radial positive ground state with the least energy

E (Q) :=

∫
Rd

(
|∇Q|2 + Q2

2
− Qp+1

p + 1

)
dx

among all non-zero solutions.
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This solution Q is linearly unstable in the sense that the linearized operator
near Q

L := −∆+ 1+ V = −∆+ 1− 3Q2 (3)

has a negative eigenvalue −ν2.
Due to the translational invariance of the equation, one also has

Lϕ0m = −∆ϕ0m + ϕ0m − 3Q2ϕ0m = 0 (4)

where ϕ0m = ∂xmQ, m = 1, 2, 3.
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Lorentz boost

Besides space-time translational symmetries, there is invariance by Lorentz
transform: Let β ∈ Rd , |β| < 1, be a velocity vector. For a function
ϕ : Rd → Rd , the Lorentz boost of ϕ with respect to β is given by

ϕβ(x) := ϕ(Λβx), Λβx := x + (γ − 1)
(β · x)β
|β|2 , γ :=

1√
1− |β|2

. (5)

The Lorentz transformation is given by

(t′, x ′) =
(
γ(t − β · x), Λβx − γβt

)
=

(
γ(t − β · x), Λβ(x − βt)

)
.

∀β ∈ Rd , |β| ∈ [0, 1), if u is a solution of (1) then uβ (x − βt) is also a
solution.
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It is convenient to rewrite the equation (1) a dynamical system in

H := H1(R3)× L2(R3)

using its Hamiltonian form. Denoting

ψ (t) =

(
ψ
ψt

)
we can write

∂tψ (t) = JH0ψ (t) + F (ψ), (6)

where F (ψ)=

(
0
ψ3

)
and

J :=

(
0 1
−1 0

)
, H0 :=

(
−∆+ 1 0

0 1

)
. (7)
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Focus on d = 3, p = 3. Dynamical questions

Energy below the ground state. Global existence vs blowup (Payne
and Sattinger 1975)

Energy below the ground state. Global existence implies scattering i.e.
asymptotically linear behaviour. (Ibrahim-Masmoudi-Nakanishi 2010.
Kenig-Merle concentration compactness 2006)

Energy slightly above the ground state. Classi�cation of global
dynamics near Q, construction of the center manifold.
(Nakanishi-Schlag 2011)

Our goal: study the dynamics of solutions near superpositions of a �nite
number of Lorentz-transformed solitons, moving with distinct speeds
(multi-solitons).
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Strichartz for KG

One of essential tools are Strichartz estimates. The following is a complete
list of the standard Strichartz estimates for the Klein�Gordon equation in
three dimensions:

Theorem

The free Klein�Gordon �ow in three dimensions e it
√
−∆+1 satis�es the

Strichartz estimates

∥e it
√
−∆+1f ∥

LptW
1/q−1/p−1/2,q
x

≲ ∥f ∥L2x

whenever 2 ≤ p, q ≤ ∞, 2

p + 3

q = 3

2
(Schrödinger-admissible exponents).

We use p = ∞, q = 2 and p = 3, q = 18

5
. By Sobolev embedding,

∥ψ∥L3t L6x
⋂

L∞t H1
x
≲ ∥ψ0∥H1 + ∥ψ̇0∥L2x + ∥(∂2t −∆+ 1)ψ∥L1t L2x . (8)
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Applications of Strichartz estimates

Small data global existence and long time behavior.
Consider the cubic KG in 3d

∂2t ψ −∆ψ + ψ ± ψ3 = 0 (9)

with ∥ψ0∥H1 + ∥ψ̇0∥L2 ≪ 1.
Applying Strichartz estimates

∥ψ∥L3t L6x
⋂

L∞t H1
x [0,T ] ≲ ∥ψ0∥H1 + ∥ψ̇0∥L2x + ∥ψ3∥L1t L2x [0,T ]

≲ ∥ψ0∥H1 + ∥ψ̇0∥L2x + ∥ψ∥3L3t L6x [0,T ]

∥ψ∥L3t L6x
⋂

L∞t H1
x [0,T ] ≪ 1, absorb the nonlinear term to LHS, bootstrap and

pass T → ∞. Gobal existence.
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Scattering
It is more convenient to use the Hamiltonian formalism

∂tψ (t) = JH0ψ (t) + F (ψ). (10)

One can write

ψ(t) = eJH0tψ(0) +

∫ t

0

eJH0(t−s)
F (ψ) ds. (11)

Scattering means asymptotically like the free evolution

lim
t→∞

∥∥∥ψ(t)− eJH0tψ+

∥∥∥
H

= 0.

How to �nd ψ+: check that

ψ+ = ψ(0) +

∫ ∞

0

e−JH0sF (ψ) ds. (12)

This follows from:∥∥∥∥∫ ∞

0

e−JH0sF (ψ) ds

∥∥∥∥
H

≲ ∥ψ3∥L1t L2x ≲ ∥ψ∥3L3t L6x . (13)

So �nite Strichartz norms==>Scattering.
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Multi-solitons

Applying Lorentz transforms and the translational symmetry: a family of
traveling waves

Qβ (x − βt + x0) .

Multi-soliton:

R (t, x) =
N∑
j=1

σjQβj (x − βj t − yj) , σj ∈ {±1} (14)

Using these traveling waves as building blocks, for βj ̸= βk and arbitrary
xj 's, one can construct a pure multi-soliton:

ψ → R(t, x), (15)

Côte-Muñoz, Bellazzini-Ghimenti-Le Coz and Côte-Martel.
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Motivated the Soliton Resolution Conjecture, we study dynamics of
multi-solitons.

We show conditional asymptotic stability of multi-solitons and
construct centre-stable manifold around them.

We derive re�ned information on pure multi-solitons and classify all
possible pure multi-solitons.
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Stability

The study of the (conditional) stability problem of solitons in nonlinear
dispersive PDEs has a long history.

For example, Weinstein established orbital stability: starting with a soliton plus a
small perturbation, the solution remains in this form for all time.

The asymptotic stability problem which is a stronger property-the situation in
which small perturbations not only remain small, but in fact disperse.
So�er-Weinstein, Beceanu, Cuccagna, Krieger-Schlag, Nakanishi-Schlag,
Perelman, Rodnianski-Schlag-So�er, Schlag etc.

Overall, the stability problem near one single soliton has been studied extensively.
For the stability problem around a multi-soliton, Perelman, and
Rodnianski-Schlag-So�er, use pointwise decay estimates to obtain the asymptotic
stability in L2

⋂
L1.
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Stability

Stability in natural spaces.

Using appropriate Strichartz estimates, one can analyze the stability
problem in some natural topology like the energy space, see e.g.
Beceanu, Nakanishi-Schlag for one-soliton problem.

On the other hand, for the energy and modulation methods to study
asymptotic stability of KdV type problems, see Merle-Martel,
Martel-Merle-Tsai in the soliton region. These papers use speci�c
monotonicity formulas of the KdV type equations and do not apply to
wave equations.

We obtained necessary Strichartz estimates to study multi-solitons in the
energy space.
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Pure multi-solitons

Constructing pure multi-solitons in various models has a long history:

Bellazzini-Ghimenti-Le Coz , Côte-Muñoz , Côte-Martel, Martel.

For gKdV, the problem of existence and uniqueness of pure multi-solitons
was solved by Martel, and Combet (monotonicity formulas)

In the works by Côte-Friederich and Friederich, assuming certain algebraic
decay rates in time, they are able to prove uniqueness for various models.

C-J 21, a �xed point argument, which naturally results in the uniqueness, to
construct pure multi-kink (soliton) solutions for 1+ 1 scalar �eld models in
the class of exponential multi-kink solutiosn.
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For β ∈ R3 such that |β| < 1, we consider the corresponding Lorentz
boosts of the ground state Qβ . Taking the vector version of the Lorentz
boost of the ground state, we have

Qβ := (Qβ,−β · ∇Qβ). (16)

The traveling wave is given by Qβ(x−βt − y).
Given a �xed natural number N, distinct Lorentz parameters

β = (β1, . . . βN) ∈ R3N , (17)

a set of shifts
y = (y1, . . . , yN) ∈ R3N (18)

and a set of signs
σ = (σ1, . . . σN), σj ∈ {±1}, (19)

we consider the multi-soliton structure given by

Q(β,y)=
N∑
j=1

σjQβj
(· − yj). (20)
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We are interested in multi-solitons which satisfy a separation condition

(avoid collisions now): yj : [0,∞) → R3, j = 1, . . . ,N satisfy the
separation condition with parameters ρ, δ > 0 if

|yj(t)− yk(t)| ≥ δt + ρ, for all t ≥ 0 and j ̸= k . (21)

The vectors y in
1
, . . . , y inN , β

in
1
, . . . , βinN ∈ R3 satisfy the separation condition

with parameters ρ, δ > 0 if yj(t) = y inj + βinj t satisfy the separation
condition with the same parameters.
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Theorem (C-J 2022)

For every δ > 0 there exist ρ, η > 0 such that the following holds. Let the

initial parameters (y inj , β
in
j )

J
j=1

satisfy the separation condition, and let

∥ψ0 −Q(βin, y in)∥H ≤ η. (22)

If the corresponding solution ψ stays close in a neighborhood of

multi-soliton family,

sup
t∈R+

inf
β∈R3N ,y∈R3N

∥ψ(t)−Q(β, y)∥H ≲ η, (23)

then ψ scatters to the multi-soliton family: there exist βj ∈ R3, paths

yj(t) ∈ R3 and ψ+ ∈ H with the property that ẏj(t) → βj and

lim
t→∞

∥∥∥ψ(t)−Q(β, y(t))− eJH0tψ+

∥∥∥
H
= 0.

Jacek Jendrej Dynamics of multi-solitons 11/03/2024 17 / 32



We say that a solution ψ to the equation (6) is a pure multi-soliton if there
exist β ∈ R3N satisfying |βj | < 1, βj ̸= βk for j ̸= k , and yp(t) ∈ R3N

satisfying |yp,j(t)− yp,k(t)| ≥ L ≫ 1 for all t ≥ 0 such that

lim
t→∞

∥∥ψ(t)−Q(β, yp(t))
∥∥
H = 0 (24)
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Next two theorems are concerned with pure multi-solitons.

Theorem (C-J 2022)

Suppose ψ(t) is a pure multi-soliton. Then actually there exists x0 ∈ R3N

such that one has

∥ψ(t)−Q(β,βt + x0)∥H≲ e−ρ0t (25)

for small ρ0 > 0 which is independent of ψ.
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Finally, regarding the classi�cation of pure multi-solitons, we have the
following theorem:

Theorem (C-J 2022)

For �xed β = (β1, . . . , βN) ∈ R3N satisfying |βj | < 1 and βj ̸= βk for

j ̸= k and x0 = (x1, . . . , xN) ∈ R3N , the set of solution ψ to (6) satisfying

lim
t→∞

∥ψ(t)−Q(β,βt + x0)∥H = 0 (26)

forms a dimension N manifold.
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We need some notation.
The linear operator associated with each potential has a generalized kernel
and stable/unstable modes.

Y0

m,β(x) = ∂xmQβ(x),Y1

m,β(x) =
1

γ2
∂βmQβ(x),

Y−
β (x) = eγνβ·x(ϕ− γβ · ∇ϕ− γνϕ)β(x),

Y+
β (x) = e−γνβ·x(ϕ,−γβ · ∇ϕ+ γνϕ)β(x),

For the moving setting:

Y−
j (t) := Y−

βj (t)
(· − yj(t)), Y+

j (t) := Y+
βj (t)

(· − yj(t)),

Y0

j,m(t) = Y0

m,βj (t)
(· − yj(t))Y1

j,m(t) := Y1

m,βj (t)
(· − yj(t)).
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Given a multi-soliton Q(β, y), we de�ne

NL (Q(β, y)) :=

{
R ∈ H|

〈
αi
j,m,βj

(· − yj),R
〉
=

〈
α+
j,β(· − yj),R

〉
= 0

i = 0, 1, j = 1, . . . ,N, m = 1, 2, 3, ∥R∥H < η

}
(27)

which is of codimension 7N.

Theorem (C-J 2022)

For every δ > 0, there exist ρ > 0 and η > 0 such that the following holds.

Let
(
β0, y0

)
satisfy the separation condition.

There exists a map such that

Φ : NL (Q(β0, y0)) → RN

|Φ(R0)| ≲
1

δ
e−ρ +

1

δ
e−ρ ∥R0∥H + ∥R0∥2H , R0 ∈ NL (Q(β0, y0))∣∣∣Φ(R0)−Φ(R̃0)
∣∣∣ ≲ 1

δ
e−ρ

∥∥∥R0 − R̃0

∥∥∥
H
+ η

∥∥∥R0 − R̃0

∥∥∥
H
,

R0, R̃0 ∈ NL (Q(β0, y0))
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Theorem (C-J 2022 conti.)

so that ∀R0 ∈ NL (Q(β0, y0)), the solution ψ(t) to (6) with initial data

ψ(0) = Q (β0, y0) + R0 +Φ(R0) ·Y+(β0, y0)

where Φ(R0) ·Y+(β0, y0) =
∑N

j=1
ϕj(R0)Y+

β0,j
(· − y0,j) exists globally,

and it scatters to the multi-soliton family: there exist βj ∈ R3, paths

yj(t) ∈ R3 and ψ+ with the property that ẏj(t) → βj and

lim
t→∞

∥∥∥ψ(t)−Q(β, y(t))− eJH0tψ+

∥∥∥
H
= 0.
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Locally gains 6N dimensions back.

Proposition

There exist a small η and a Lipschitz manifold N
(
Q(βin

0 , y
in
0
)
)
inside the

space Bη

(
Q(βin

0 , y
in
0
)
)
⊂ H of codimension N so that the following

property holds: for any choice of initial data ψ(0) ∈ N
(
Q(βin

0 , y
in
0
)
)
, ψ(t)

with initial data ψ(0) exists globally, and it scatters to the multi-soliton
family, namely there exist βj ∈ R3, paths yj(t) ∈ R3 and ψ+ with the
property that ẏj(t) → βj and

lim
t→∞

∥∥∥ψ(t)−Q(β, y(t))− eJH0tψ+

∥∥∥
H
= 0.

Implicit function theorem...
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Finally, the local charts are compatible, so we can patch all these local
constructions together. As a result, there is a centre stable manifold for the
well-separated multi-soliton family.

Theorem

Fixed a natural number N, given δ > 0, there exists ρ > 0 large, such that

there exists a codimension N centre-stable manifold N around the

well-separated multi-soliton family Sδ,ρ which is invariant for t ≥ 0.

Jacek Jendrej Dynamics of multi-solitons 11/03/2024 25 / 32



By construction, for any initial data ψ ∈ N , the corresponding solution
ψ(t) enjoys the orbital stability. The converse is also sure.

Corollary

For every δ > 0 there exist ρ, η > 0 such that the following holds. Let the

initial parameters (y inj , β
in
j )

J
j=1

satisfy the separation condition, and let

∥ψ0 −Q(βin, y in)∥H ≤ η. (28)

Suppose that the solution ψ to (6) with initial data ψ0 stays close in a

neighborhood of multi-soliton family:

sup
t∈R+

inf
β∈R3N ,y∈R3N

∥ψ(t)−Q(β, y)∥H ≲ η. (29)

Then ψ(t) ∈ N .
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Linear models and Strichartz estimates

The linearization around a multi-soliton results in

∂tψ (t) = JH (t)ψ (t) + F (30)

where

H (t) :=

(
−∆+ 1+

∑N
j=1

Vβj (t)(· − yj(t)) 0

0 1

)
.

and from the view of modulation equation∥∥β′j (t)∥∥L1t ⋂ L∞t
+
∥∥y ′j (t)− βj (t)

∥∥
L1t

⋂
L∞t

≪ 1. (31)
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Theorem (C-J 2022)

Denote the Strichartz norm

S = L∞t L2x
⋂

L2tB
−5/6
6,2 .

Consider the system

∂tψ (t) = JH (t)ψ (t) + F (32)

such that

π0(t)ψ(t) = 0, ∀t ∈ R.

Using the notations above, one has Strichartz estimates

∥D (πcs (t)ψ (t))
1
∥S+∥(πcs (t)ψ (t))

2
∥S ≲ ∥ψ (0)∥H+∥DF1∥S∗+∥F2∥S∗ . (33)

Moreover, πs (t)ψ (t) scatters to a free wave. There exists ψ+ ∈ H such that∥∥πcs (t)u (t)− eJH0tψ+

∥∥
H → 0, t → ∞. (34)
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The linear theory

Di�culties:

instabilities from negative eigenvalues.

time-dependent trajectories: can not apply Lorentz transforms which mix space
and time.

Consider
∂ttψ −∆ψ + ψ + Vβ (x − βt)ψ = F (35)

Rewrite the equation in the matrix form

d

dt
ψ =

(
0 1

∆− Vβ (x − βt)− 1 0

)
ψ + F . (36)

Using the moving frame x − βt → x , the equation above can be written as

d

dt
ψ =

(
β · ∇ 1

∆− Vβ (x)− 1 β · ∇

)
ψ + F (37)

:= Lβψ + F . (38)

Jacek Jendrej Dynamics of multi-solitons 11/03/2024 29 / 32



Basic setting of the contraction map: Given a set of data
(β(t), y(t),ψ(t)) , we consider the following map

F ((β(t), y(t),ψ(t)))=
(
β̃(t), ỹ(t), ψ̃(t)

)
(39)

where
(
β̃(t), ỹ(t), ψ̃(t)

)
are de�ned by solving

d

dt
ψ̃(t) = JH(t)ψ̃(t) + I(Q) + I1(Q

2, ψ) + I2(Q, ψ
2) + F (ψ)

− ˙̃β(t)∂βQ(β(t), y(t))−
(
˙̃y(t)− β̃(t)

)
∂yQ(β(t), y(t))

=: JH(t)ψ̃(t) +W (ψ(t),β(t), y(t)) + M̃od′(t)∇MQ(β(t), y(t))

and the modulation equations

d

dt

〈
α0
m,βj (t)

(· − yj(t)), ψ̃(t)
〉
=

d

dt

〈
α1
m,βj (t)

(· − yj(t)), ψ̃(t)
〉
= 0 (40)
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Subject to stabilization conditions

ã+j (t) =
〈
α+
βj (t)

(· − yj(t)), ψ̃(t)
〉

(41)

= −
∫ ∞

t

exp

(∫ t

s

ν

γj(τ)
dτ

)〈
α+
βj (s)

(
· −yj(s)

)
,W(·, s)

〉
ds

−
∑
k ̸=j

∫ ∞

t

exp

(∫ t

s

ν

γj(τ)
dτ

)〈
α+
βj (s)

(
· −yj(s)

)
,Vβk (s)

(
· −yk(s)

)
ψ̃(s)

〉
ds

−
∫ ∞

t

exp

(∫ t

s

ν

γj(τ)
dτ

)〈(
y ′
j (s)− βj(s)

)
· ∇α+

βj (s)

(
· −yj(s)

)
, ψ̃(s)

〉
ds

−
∫ ∞

t

exp

(∫ t

s

ν

γj(τ)
dτ

)〈
β′
j (s)∂βα

+
βj (s)

(
· −yj(s)

)
, ψ̃(s)

〉
ds.
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Thank you for your attention.
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