Jacek Jendrej (CNRS & Université Sorbonne Paris Nord) joint work with Andrew Lawrie (Massachusetts Institute of Technology)

Energy-critical wave maps equation "<u>Definition</u>" An application $\Psi: \mathbb{R}^{1+2} \rightarrow S^2 \subset \mathbb{R}^3$ is a wave map if it is a critical point of the Lagrangian $\mathcal{L}(\Psi, \mathcal{F}, \Psi, \nabla_{x} \Psi) := \frac{1}{2} \int \int \left(\left| \mathcal{F}_{1} \Psi \right|^{2} - \left| \nabla_{x} \Psi \right|^{2} \right) dx dt.$ Natural analogs of linear waves in a nonlinear, geometric setting. Euler-Lagrange equation: $\partial_{t}^{2} \Psi(t, x) - \Delta_{x} \Psi(t, x) = -\left(\left| \partial_{t} \Psi(t, x) \right|^{2} - \left| \nabla_{x} \Psi(t, x) \right|^{2} \right) \Psi(t, x).$ Local well-posedness and global well-posedness for small data: (1993-2002) Klainerman, Selberg, Machedon, Tataru, Tao, ...

Equivariant wave maps
We study the dynamics (long time behavior) of large solutions,
but only in a special case :

$$\Psi(t, r\cos\theta, r\sin\theta) = (\sin\psi(t,r)\cos(t\theta), \sin\psi(t,r)\sin(t\theta), \cos\psi(t,r)).$$
Here, $k \in \{1, 2, ...\}$ is the equivariance degree, $t \in \mathbb{R}$, $r \in (0, \infty)$
Equation for ψ :

$$(WM_k) = \partial_t^2 \psi(t,r) - \partial_r^2 \psi(t,r) - \frac{1}{r} \partial_r \psi(t,r) + \frac{k^2}{2r^2} \sin(2\psi(t,r)) = 0.$$
Lagrangian : $f := \pi \iint ((\partial_t \psi)^2 - (\partial_r \psi)^2 - \frac{k^2 \sin^2 \psi}{r^2}) r dr dt$
Energy : $E(\psi_0, \psi_0) := \pi \int_0^\infty (\frac{\psi_0}{r}^2 + (\partial_r \psi_0)^2 + \frac{k^2 \sin^2 \psi_0}{r^2}) r dr$

Scaling invariance and criticality
If
$$\psi$$
 solves (WM_k) and $\lambda > 0$, then
 $\psi_{\lambda}(t,r) := \psi(\frac{t}{\lambda}, \frac{r}{\lambda})$ solves (WM_k) as well.
Moreover, $E(\psi_{\lambda}, \dot{\psi}_{\lambda}) = E(\psi, \dot{\psi})$ \longrightarrow energy-critical
problem
Note: if $\lambda \ll 1$, then ψ_{λ} is concentrated
and evolves fast.
Local theory, small data theory
Energy norm: $\|(\psi_0, \dot{\psi}_0)\|_{\mathcal{E}}^2 := \|\dot{\psi}_0\|_{L^2}^2 + \|\psi_0\|_{\mathcal{H}}^2$,
 $\|\dot{\psi}_0\|_{L^2}^2 := \int_{0}^{\infty} \dot{\psi}_0^2 r dr$, $\|\psi_0\|_{\mathcal{H}}^2 := \int_{0}^{\infty} ((\partial_r \psi_0)^2 + \frac{k^2}{r^2} \psi_0^2) r dr$.
 $\|\psi_0\|_{L^\infty}$ small $\Rightarrow \|(\psi_0, \dot{\psi}_0)\|_{\mathcal{E}}^2 \simeq E(\psi_0, \dot{\psi}_0)$.
Finite energy sectors : $\mathcal{E}_{m,n} := \{(\psi_0, \dot{\psi}_0): E(\psi_0, \dot{\psi}_0) < \infty$,
 $\lim_{t \to 0} \psi_0(r) = mT$, $\lim_{t \to 0} \psi_0(r) = nT \}$.

.

Yo
$$(\psi_0, \psi_0) \in \mathcal{E} = \mathcal{E}_{0,0}$$

Theorem (Shatah-Struwe 1994, k=1
Burg, Planchon-Stalker-Tahvildar Zadeh 2003, k>2)
Equation (WM_k) is locally well-posed in each finite
energy sector, in the sense of strong solutions.
Linearisation around $\psi=0: \partial_t^2 \psi_L - \partial_r^2 \psi_L - \frac{1}{r} \partial_r \psi_L + \frac{k^2}{r^2} \psi_L = 0$
If ψ is small, the nonlinear effects become negligible for large times:
Theorem If $E(\psi_0, \psi_0)$ is small enough, then ψ exists globally and
lim $\|(\psi(t), \partial_t \psi(t)) - (m\pi + \psi_L^{\pm}(t), \partial_t \psi_L^{\pm}(t))\|_{\mathcal{E}} = 0$ (scattering)
These results are consequences of Strichartz estimates.

Stationary solutions ("solitons" or "bubbles") Minimisers of E: * on $\mathcal{E}_{m,m}$ \longrightarrow constant functions * on $\mathcal{E}_{m,m+1}$ \longrightarrow $(m\pi + 2\arctan(r^{k}\chi^{k}), 0),$ $\lambda > O$ * on $\mathcal{E}_{m,m-1} \longrightarrow (mT - 2\arctan(\frac{r^{k}}{\lambda^{k}}), 0)$, $\lambda > O$ * on other sectors ~> Ø We denote $Q(r) := 2 \arctan(r^{k}), \quad Q_{\lambda} := Q(r/\lambda) \text{ for } \lambda > 0.$ • Key role in the description of the dynamics of large solutions. <u>Kemark</u> In the non-equivariant case, the stationary solutions are called <u>harmonic maps</u> $\mathbb{R}^2 \longrightarrow \mathbb{S}^2$ and correspond to meromorphic functions and its conjugates (Eells - Wood, 1975).

Absence of self-similarity

$$\frac{\text{Theorem}}{\text{If } T_{+} < \infty \text{ the max. time of existence of } \Psi,}$$

$$\frac{\text{If } T_{+} < \infty \text{ the max. time of existence of } \Psi,}$$

$$\frac{\text{If } T_{+} < \infty \text{ the max. time of existence of } \Psi,}$$

$$\frac{\text{If } T_{-t}}{\text{torm}} \int_{\alpha(T_{t}-t)} \left[(\partial_{t}\Psi)^{2} + (\partial_{r}\Psi)^{2} + \frac{k^{2}}{r^{2}}\Psi^{2} \right] r dr = 0.$$

$$\frac{\text{Theorem}}{\tau < \tau} \left(\text{Côte, Kenig, Lawrie, Schlag 2015} \right)$$

$$\frac{\text{If } T_{+} = \infty \text{ the max. time of existence of } \Psi,}$$

$$\frac{\text{If } T_{+} = \infty \text{ the max. time of existence of } \Psi,}$$

$$\frac{\text{If } T_{+} = \infty \text{ the max. time of existence of } \Psi,}$$

$$\frac{\text{If } T_{+} = \infty \text{ the max. time of existence of } \Psi,}$$

$$\frac{\text{If } T_{+} = \infty \text{ the max. time of existence of } \Psi,}$$

$$\frac{\text{If } T_{+} = \infty \text{ the max. time of existence of } \Psi,}$$

$$\frac{\text{If } T_{+} = \infty \text{ the max. time of existence of } \Psi,}$$

$$\frac{\text{If } T_{+} = \infty \text{ the max. time of existence of } \Psi,}$$

$$\frac{\text{If } T_{+} = \infty \text{ the max. time of existence of } \Psi,}$$

$$\frac{\text{If } T_{+} = \infty \text{ the max. time } \left[(\partial_{t}\Psi)^{2} + (\partial_{r}\Psi)^{2} + \frac{k^{2}}{r^{2}}\Psi^{2} \right] r dr = 0.}$$

Sequential soliton resolution

Given NEIN, meZ,
$$\vec{\lambda} = (\lambda_1, \dots, \lambda_M) \in \{-1, 1\}^M$$
,
 $\vec{\lambda} = (\lambda_1, \dots, \lambda_M) \in (0, \infty)^M$, $\lambda_1 < \lambda_2 < \dots < \lambda_M$,

we denote $Q(m,\vec{\tau},\vec{\lambda};r) := m\pi + \sum_{j=1}^{M} \iota_j (Q_{\lambda_j} - \pi) \in \mathcal{E}_{l,m}$ with $l = m - \sum_{i=1}^{M} r_i$. $\lambda_1 \ll \lambda_2 \ll \ldots \ll \lambda_M$, we call $Q(m, \vec{\tau}, \vec{\chi})$ multi-bubble configuration. m = 1, l = 0,₹=(1,-1,1)

Sequential soliton resolution
Theorem (Cote 2015, Jia-Kenig 2017)
() If T+<0, then there exist
$$(\gamma_{k}, \dot{\gamma_{k}})$$
, M, m, $\vec{\tau}, \vec{\lambda_{n}}, t_{n} \rightarrow T_{+}$:

$$\lim_{n \to \infty} \left[\|\gamma(t_{n}) - \gamma_{k} - Q(m, \vec{\tau}, \vec{\lambda_{n}})\|_{H}^{2} + \|\partial_{t}\gamma(t_{n}) - \dot{\gamma_{k}}\|_{L^{2}}^{2} + \sum_{j=1}^{N-1} \left(\frac{\lambda_{n,j}}{\lambda_{n,j+1}} \right)^{k} + \left(\frac{\lambda_{n,M}}{(T_{+} - t_{n})} \right)^{k} \right] = 0.$$
(2) If T+ = 0, then there exist $(\gamma_{L}, \partial_{t}\gamma_{L})$, M, m, $\vec{\tau}, \vec{\lambda_{n}}, t_{n} \rightarrow \infty$:

$$\lim_{n \to \infty} \left[\|\gamma(t_{n}) - \gamma_{L}(t_{n}) - Q(m, \vec{\tau}, \vec{\lambda_{n}})\|_{H}^{2} + \|\partial_{t}\gamma(t_{n}) - \partial_{t}\gamma_{L}(t_{n})\|_{L^{2}}^{2} + \sum_{j=1}^{N-1} \left(\frac{\lambda_{j,n}}{\lambda_{j+1,n}} \right)^{k} + \left(\frac{\lambda_{M,n}}{t_{n}} \right)^{k} \right] = 0.$$
Remark Convergence in continuous time outside of cones:

$$\left[\|\gamma(t_{0}) - \gamma_{k}\|_{H}^{2} (r_{2}d(\tau_{k}-t_{0})) + \|\partial_{t}\gamma(t_{0}) - \dot{\gamma_{k}}\|_{L^{2}}^{2} (r_{2}d(\tau_{k}-t_{0})) = 0.$$
(2) $\forall \alpha > 0$: $\lim_{t \to \tau_{n}} \left(\|\gamma(t_{0}) - \gamma_{k}\|_{H}^{2} (r_{2}d(\tau_{k}+t_{0})) + \|\partial_{t}\gamma(t_{0}) - \partial_{t}\gamma_{L}(t_{0})\|_{L^{2}}^{2} (r_{2}d_{k}+t_{0}) \right) = 0.$

Continuous time soliton resolution
Theorem (J.-Lawrie 2021)
I) If T₊ <
$$\infty$$
, then there exists $\vec{\lambda}: [0, T_{+}) \rightarrow (0, \infty)^{M}$ such that

$$\lim_{t \to T_{+}} \left[\| \psi(t) - \gamma_{k} - Q(m, \vec{\tau}, \vec{\lambda}(t)) \|_{H^{+}}^{2} + \| \partial_{t} \psi(t) - \dot{\psi}_{k} \|_{L^{2}}^{2} + \sum_{j=1}^{M-1} \left(\frac{\lambda_{j}(t)}{\lambda_{j+1}(t)} \right)^{k} + \left(\frac{\lambda_{H}(t)}{T_{+}-t} \right)^{k} \right] = 0.$$
(2) If T₊ = ∞ , then there exists $\vec{\lambda}: [0, \infty) \rightarrow (0, \infty)^{M}$ such that

$$\lim_{t \to \infty} \left[\| \psi(t) - \psi_{L}(t) - Q(m, \vec{\tau}, \vec{\lambda}(t)) \|_{H^{+}}^{2} + \| \partial_{t} \psi(t) - \partial_{t} \psi_{L}(t) \|_{L^{2}}^{2} + \sum_{j=1}^{M-1} \left(\frac{\lambda_{j}(t)}{\lambda_{j+1}(t)} \right)^{k} + \left(\frac{\lambda_{H}(t)}{T_{+}} \right)^{k} \right] = 0.$$

Some related results

* Duyckaerts, Kenig, Merle 2010 - sequential solution resolution for $\partial_t^2 u - \Delta_x u - u^s = 0$ in 3D. * Duyckaerts, Kenig, Merle 2012 – Continuous time; energy channels * J-Lawrie 2017 - classification for $E \leq 2E(Q), k \geq 2$; Crucially used estimates of interactions between solitons (reduction to a "2-body problem") * Rédriguez 2019 _____ 11 ____ k=1 * D,K,M 2019: generalisation of 2012 result to all odd dim. * Duyckaerts, Kenig, Martel, Merle 2021 - settled k=1 using energy channels

Virial identity
If
$$\psi$$
 is a smooth wave map, then
 $div_{t,r} \left(\partial_t \psi r^2 \partial_r \psi, -\frac{1}{2}r^2 (\partial_t \psi)^2 - \frac{1}{2}r^2 (\partial_r \psi)^2 + \frac{k^2}{2} \sin^2 \psi \right) = -r(Q_{\psi})^2$
We estimate the boundary terms
from above and the space-time
integral $\int (Q_{\psi} \psi)^2 r dr dt$ from below
* collision duration \gtrsim spatial scale
* $\int \int (Q_{\psi} \psi)^2 r dr dt \gtrsim$ collision duration
("Compactness Lemma")
* remaining boundary : reduction to n-body

Collision intervals
Let
$$\psi$$
 a wave map, $t \in [0,T_{*})$, $\bigotimes_{p < 0}, 0 \le K \le N$. We set
 $d_{k}(t;p) := \inf_{U,X} \left(\left\| Q_{t} \psi(t) - \psi_{0}^{*} \right\|_{L^{2}(S^{0})}^{2} + \left\| \psi(t) - \psi_{0}^{*} - Q(m,t,X) \right\|_{E(S^{0})}^{2} + \sum_{j=K}^{N} \left(\frac{\lambda_{j}}{\lambda_{j+j}} \right)^{j/2}$
where $\lambda_{K} := g$ and $\lambda_{N+1} := \begin{cases} T_{+} - t & \text{blow-up case} \\ t & \text{global case} \end{cases}$
(Proximity to a multi-bubble in the extension region $r \ge g$).
We set $d(t) := d_{0}(t;0)$.
We know that $\lim_{n \to \infty} d(t_{n}) = 0$, and want to prove $\lim_{t \to T_{+}} d(t) = 0$.
Def. Let $0 \le K \le N$, $0 < \varepsilon < \eta$. We say $[a,b] \subset (0,T_{+})$
is a collision interval with parameters ε, η, K if
 $* d(a) \le \varepsilon$, $d(b) \le \varepsilon$, $\exists c \in [a,b]$ such that $d(c) \ge \eta$,
 $* \exists p_{K} : [a,b] \rightarrow (0,\infty) : d_{K}(t; p_{K}(t)) \le \varepsilon$ $\forall t \in [a,b]$.

Interior and exterior bubbles
Let K be minimal such that
$$\exists \eta > 0, \epsilon_n \rightarrow 0$$

and collision intervals $[a_n, b_n]$ with parameters ϵ_n, η, K .
 $d(t) \rightarrow 0 \rightarrow K$ is well-defined, $1 \leq K \leq N$.
 $t = a_n : 0 \quad K$ -bubble $g_k(t) \quad (N-K)$ -bubble $p(t)$
 $a_n \leq t \leq c_n : 0 \quad ? \quad g_k(t) \quad (N-K)$ -bubble $p(t)$
 $t = c_n : 0 \quad not K$ -bubble $g_k(t) \quad (N-K)$ -bubble $p(t)$
 $c_n \leq t \leq b_n : 0 \quad ? \quad g_k(t) \quad (N-K)$ -bubble $p(t)$
 $t = b_n : 0 \quad K$ -bubble $g_k(t) \quad (N-K)$ -bubble $p(t)$

Wave maps with small kinetic energy
Lemma ("Compactness Lemma") Let
$$p_n > 0$$
, $R_n \rightarrow \infty$,
 γ_n defined for $t \in [Op_n]$ of bounded energy such that
 $\lim_{n \to \infty} \frac{1}{p_n} \int_{0}^{n} \int_{0}^{R_n p_n} (\partial_t \gamma_n)^2 r dr dt = 0$.
Then, up to extraction of a subsequence,
there exist $r_n \rightarrow \infty$, $t_n \in [O, p_n]$, M, m, τ , $\overline{\lambda_n}$ such that
 $\lim_{n \to \infty} \left[\| \gamma_n(t_n) - Q(m, \tau, \overline{\lambda_n}) \|_{H(rernp_n)}^2 + \| \partial_t \gamma_n(t_n) \|_{L^2(rernp_n)}^2 + \sum_{j=1}^{N-1} (\hat{\lambda}_{n,j} \gamma_{\lambda_{n,j+1}})^k + (\hat{\lambda}_{n,M} \gamma_n p_n)^k \right] = 0$
Proof We follow Jia-Kenig
Main idea: Bahouri-Gérard profile decomposition.

Modulation

* Near an and bn, y is close to a multi-bubble and the analysis above does not apply. In this case, the main dynamical information are the scales of the bubbles * We obtain differential inequalities on these scales. Informally: $\lambda_j^{"} \simeq -\iota_j \iota_{j+1} \omega^2 \frac{\lambda_{j+1}^{k-1}}{\lambda_{j+1}^{k}} + \iota_j \iota_{j-1} \omega^2 \frac{\lambda_{j-1}^{k}}{\lambda_{i+1}^{k+1}}$. * Error bounded by the energy of attractive interactions. * The influence of the exterior bubbles and radiation can essentially be neglected by enlarging En. * Refined modulation parameters: Raphaël-Szeftel'II, J.-Lawrie'17

Lemma If d starts growing at to, then
$$\forall t^* \ge t_0$$

$$\int_{t_0}^{t_*} d(t) dt \le C_0 d(t_*)^{2^k} \mu_k(t_0) \quad \text{if } k \ge 2$$

$$\int_{t_0}^{t_*} d(t) dt \le C_0 d(t_*)^2 \sqrt{-\log d(t_*)} \mu_k(t_0) \quad \text{if } k = 1$$
The final step is to partition $[a_n, b_n]$ into
$$\frac{1}{\max} \frac{1}{\max} \frac{1}{\max}$$

