Dynamics of multi-solitons for Klein-Gordon equations

Jacek Jendrej (CNRS & Sorbonne Paris Nord)

joint work with Gong Chen (Georgia Tech)

Institute of Theoretical Physics Jagiellonian University, March 13th 2024

Scalar field equation

• We consider nonlinear scalar fields $\mathbb{R}^{1+1}\to\mathbb{R}$ which are critical points of the Lagrangian

$$\mathscr{L}(\phi,\partial_t\phi) := \iint \left(\frac{1}{2}(\partial_t\phi)^2 - \frac{1}{2}(\partial_x\phi)^2 - U(\phi)\right) \mathrm{d}x \,\mathrm{d}t,$$

where $U:\mathbb{R}
ightarrow \mathbb{R}$ is a positive function.

• The Euler-Lagrange equation reads

$$\begin{aligned} \partial_t^2 \phi(t,x) &- \partial_x^2 \phi(t,x) + U'(\phi(t,x)) = 0, \\ (t,x) &\in \mathbb{R} \times \mathbb{R}, \quad \phi(t,x) \in \mathbb{R}. \end{aligned}$$
 (CSF)

- "The simplest" nonlinear wave equation.
- This equation and its quantisation are used as toy models in Quantum Field Theory.

2 / 22

Scalar field equation

Energy:

$$E(\phi, \partial_t \phi) = E_k(\partial_t \phi) + E_p(\phi)$$

:= $\int_{\mathbb{R}} \left[\frac{1}{2} (\partial_t \phi)^2 + \left(\frac{1}{2} (\partial_x \phi)^2 + U(\phi) \right) \right] \mathrm{d}x.$

Momentum:

$$P(\phi, \partial_t \phi) := \int_{\mathbb{R}} -\partial_t \phi \partial_x \phi \, \mathrm{d}x.$$

- $E := E_k + E_p$ and P are conserved quantities.
- If ω is a non-degenerate minimum of U (a "vacuum"), $U(\omega) = 0$ and $U''(\omega) > 0$, then $\phi(t, x) \equiv \omega$ is a trivial stable solution of (CSF). The flow linearised around this solution is a linear Klein-Gordon equation with mass $\sqrt{U''(\omega)}$.

Two vacua and transitions between them

Consider U having many vacua. For the sake of simplicity, we consider a double-well potential, say $U(\phi) := \frac{1}{8}(1-\phi^2)^2$, corresponding to the " ϕ^4 model".

• The space of finite energy states (ϕ_0, ϕ_0) is the union of four affine spaces (topological classes) $\mathcal{E}_{-1,-1}$, $\mathcal{E}_{1,1}$, $\mathcal{E}_{-1,1}$ and $\mathcal{E}_{1,1}$ characterised by:

Kinks, antikinks and traveling waves

Minimizers of the energy in each topological class turn out to be:

Lorentz invariance: $\phi(t, x)$ solves (CSF) if and only if $(t, x) \mapsto \phi(t', x')$ does, where

$$(t', x') = (\gamma_v(t - vx), \gamma_v(x - vt)), \quad \gamma_v := (1 - v^2)^{-\frac{1}{2}}.$$

In particular, we obtain *traveling waves* $\phi(t, x) = H(\gamma_v(x - vt))$. We have $(E, P) = (\gamma_v M, \gamma_v vM)$, in accordance with Special Relativity.

p

Stability of the kink

Orbital stability: If $E(\phi(t,x) - H(\gamma_v(x)), \partial_t \phi(t,x) + v\gamma_v \partial_x H(\gamma_v(x)))$ is small, then for all t there exists $a(t) \in \mathbb{R}$ such that

 $E(\phi(t,x) - H(\gamma_{v}(x - a(t))), \partial_{t}\phi(t,x) + v\gamma_{v}\partial_{x}H(\gamma_{v}(x - a(t)))) \text{ is small.}$

(Follows from the fact that the kinks are energy minimizers.) **Conjecture:** Under the same assumption, then there exist w close to v and $b(t) \in \mathbb{R}$ such that

$$\phi(t,x) o Hig(\gamma_w(x-wt-b(t))ig)$$
 as $t o\infty.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- In the case of orbital stability, we have no description of how the remainder behaves, except for the fact that it has small energy (for example, turbulence is not excluded).
- Works by Henry-Perez-Wreszinski, Weinstein,
- The meaning of the convergence to the traveling wave has to be made precise. One expects at least uniform convergence. A finer description of the *radiation* can also be asked for.
- Works by Buslaev-Perelman, Soffer-Weinstein, Beceanu, Cuccagna, Krieger-Schlag, Rodnianski-Schlag-Soffer, Kopylova-Komech, Romańczukiewicz, ...

A kink

A traveling wave

A perturbed kink

Jacek Jendrej	Dynamics of multi-solitons	11/03/2024	10 / 22
	4	다 저 주 문 제 주 문 제 문 제 문 제 문 제 제 문 제 제 문 제 제 문 제 제 문 제 문 제 제 문 제	୬୯୯

A perturbed kink

ek Jendrej	Dynamics of multi-solitons			11/	03/	/202	24		11 / 22	
		• •	< @ >	103	ŧ≯		≣ ►	3	୬୯୯	¥

Multi-solitons

For $\vec{v} = (v_1, \dots, v_n) \in (-1, 1)^n$ strictly increasing and $\vec{a} = (a_1, \dots, a_n) \in \mathbb{R}^n$, denote

$$H(\vec{v}, \vec{a}; t, x) := 1 + \sum_{k=1}^{n} (-1)^{k} (H(\gamma_{v_{k}}(x - v_{k}t - a_{k})) + 1).$$

1200	12 C	6 D C	P AL
	N		

3

12 / 22

< ロ > < 同 > < 三 > < 三 > <

Multi-solitons

We have existence and uniqueness of pure multi-solitons. **Theorem (Chen and J. 2022):** For any \vec{v} and \vec{a} there exists a unique ϕ such that

$$\phi
ightarrow {\cal H}(ec v,ec a)$$
 as $t
ightarrow \infty$

exponentially fast.

The following conjecture generalizes the problem of the stability of the kink. **Conjecture:** If at time t = 0, $E(\phi - H(\vec{v}, \vec{a}), \partial_t \phi - \partial_t H(\vec{v}, \vec{a}))$ is small, then there exist \vec{w} close to \vec{v} and $\vec{b}(t) \in \mathbb{R}^n$ such that

$$\phi
ightarrow H(ec w,ec b(t))$$
 as $t
ightarrow \infty.$

The next problem is still more general.

Soliton Resolution Conjecture: Any solution of (CSF) converges as $t \to \infty$ to a sum of a multi-soliton and radiation.

A perturbed multi-soliton

Klein-Gordon equations

Stability is too difficult for the ϕ^4 model, due to slow dispersion. We consider instead the nonlinear Klein-Gordon equation

$$\partial_t^2 \psi - \Delta \psi + \psi - \psi^3 = 0, \ (t, x) \in \mathbb{R}^{1+3}.$$
 (NLKG)

Stationary solutions satisfy

$$-\Delta Q + Q - Q^3 = 0$$

and decay exponentially.

There exists a unique radial positive ground state with the least energy

$$E(Q) := \int_{\mathbb{R}^d} \left(rac{|
abla Q|^2 + Q^2}{2} - rac{Q^4}{4}
ight) \mathrm{d}x$$

among all non-zero solutions. The ground state is linearly unstable.

15 / 22

Results about the long-time behavior

- Energy below the ground state. Global existence vs blowup (Payne and Sattinger 1975)
- Energy below the ground state. Global existence implies scattering i.e. asymptotically linear behaviour. (Ibrahim-Masmoudi-Nakanishi 2010. Kenig-Merle concentration compactness 2006)
- Energy slightly above the ground state. Classification of global dynamics near Q, construction of the center manifold. (Nakanishi-Schlag 2011)

Our goal: study the dynamics of solutions near superpositions of a finite number of Lorentz-transformed solitons, moving with distinct speeds (multi-solitons).

16 / 22

Traveling waves

The equation (NLKG) has *Lorentz invariance*, just like (CSF). For $v \in \mathbb{R}^3$, |v| < 1, we set

$$\Lambda_{oldsymbol{
u}} x := x + (\gamma_{oldsymbol{
u}} - 1) rac{(oldsymbol{
u} \cdot x)oldsymbol{
u}}{|oldsymbol{
u}|^2}, \quad \gamma_{oldsymbol{
u}} := rac{1}{\sqrt{1 - |oldsymbol{
u}|^2}}$$

Then $\psi(t,x)$ solves (NLKG) if and only if $(t,x)\mapsto\psi(t',x')$ does, where

$$(t',x')=(\gamma_{v}(t-v\cdot x),\Lambda_{v}(x-vt)).$$

In particular, we obtain *traveling waves* $\psi(t, x) = Q(\Lambda_v(x - vt))$. We have $(E, P) = (\gamma_v M, \gamma_v vM)$, where M := E(Q).

17/22

Multi-solitons

For
$$ec{v}=(v_1,\ldots,v_n)\in\mathbb{R}^{3n}$$
 distinct, $ec{a}=(a_1,\ldots,a_n)\in\mathbb{R}^{3n}$ and $ec{\sigma}=(\sigma_1,\ldots,\sigma_n)\in\{-1,1\}^n$, we denote

$$Q(\vec{v}, \vec{a}; t, x) := \sum_{k=1}^{n} \sigma_k Q(\Lambda_{v_k}(x - v_k t - a_k)).$$

Existence and uniqueness of pure multi-solitons (with an exponential decay of the remainder) was proved by R. Côte and C. Muñoz.

< 4[™] > <

Main result

Theorem (C-J 2022)

Let \vec{v} and \vec{a} be such that the lines $x = v_k t + a$ stay sufficiently far away from each other. Let ψ be such that

$${f E}(\psi-{f Q}(ec v,ec a),\partial_t\psi-\partial_t{f Q}(ec v,ec a))$$
 is small for $t=$ 0.

If ψ stays close the multi-soliton family, that is if

$$\inf_{\vec{w}\in\mathbb{R}^{3n},\vec{b}\in\mathbb{R}^{3n}}E(\psi-Q(\vec{w},\vec{b}),\partial_t\psi-\partial_tQ(\vec{w},\vec{b}))$$

is small for all $t \ge 0$, then ψ scatters to the multi-soliton family: there exist $\vec{w} \in \mathbb{R}^{3n}$ and $\vec{b}(t) \in \mathbb{R}^{3n}$ such that

$$\psi o Q(ec w,ec b(t))$$
 as $t o \infty.$

< □ > < 同 > < 回 > < 回 > < 回 >

Comments on the main result

- We obtain in fact that ψ is a sum of $Q(\vec{w}, \vec{b}(t))$, a solution of the linearized equation (which is the free Klein-Gordon equation) and a term whose energy decays to 0 as $t \to \infty$. In principle, one can also estimate other, stronger norms (so that for instance turbulence is excluded).
- We also show that the set of initial data for which the assumption of the theorem holds is a manifold of codimension *n*.
- The main technical tool are bounds on space-time norms called *Strichartz estimates*, for solutions of linear Klein-Gordon equations with moving potentials, which is inspired by *scattering theory*.

Results on pure multi-solitons

Definition: We say that ψ is a pure multi-soliton if there exists $\vec{w} \in \mathbb{R}^{3n}$ with $w_j \neq w_k$ such that

$$\lim_{t\to\infty}\inf_{\vec{b}\in\mathbb{R}^{3n}}E(\psi-Q(\vec{w},\vec{b}),\partial_t\psi-\partial_tQ(\vec{w},\vec{b}))=0.$$

Theorem (C-J 2022)

If ψ is a pure multi-soliton, then in fact the convergence towards a multi-soliton is exponentially fast. For any $\vec{w} \in \mathbb{R}^{3n}$ and $\vec{b} \in \mathbb{R}^{3n}$ there exists an n-parameter family of pure multi-solitons converging to $Q(\vec{w}, \vec{b})$ and these are all the pure multi-solitons.

Thank you for your attention.

Jacek Jendr	ej
-------------	----

イロト イヨト イヨト イヨト

2