Two-bubble dynamics for the equivariant wave maps equation

Jacek Jendrej University of Chicago

Washington DC, September 13th, 2017

1 / 17

Critical wave maps

Wave maps from \mathbb{R}^{1+2} to a Riemannian manifold \mathcal{N} :

$$\Box \Psi \perp T_{\Psi} \mathcal{N}$$
.

Special case $\mathcal{N} = \mathbb{S}^2 \subset \mathbb{R}^3$, k-equivariant solutions $(k \in \mathbb{Z})$:

$$\Psi(t,r\cos\theta,r\sin\theta) = (\sin(u(t,r))\cos k\theta,\sin(u(t,r))\sin k\theta,\cos(u(t,r))).$$

Equation is reduced to a semi-linear one:

$$\begin{cases} \partial_t^2 u(t,r) = \partial_r^2 u(t,r) + \frac{1}{r} \partial_r u(t,r) + \frac{k^2}{2r^2} \sin(2u(t,r)), \\ (u(t_0,r), \partial_t u(t_0,r)) = (u_0(r), \dot{u}_0(r)). \end{cases}$$
(WMAP)

Notation:
$$\mathbf{v} := (v, \dot{v}), \ \|\dot{v}\|_{L^2}^2 := \int_0^{+\infty} (\dot{v}^2) r \, dr, \ \|v\|_{\mathcal{H}}^2 := \int_0^{+\infty} ((\partial_r v)^2 + \frac{1}{r^2} v^2) r \, dr, \ \mathcal{E} := \mathcal{H} \times L^2.$$

$$E(\mathbf{v}) := \pi \int_0^{+\infty} \left(\dot{v}^2 + (\partial_r v)^2 + \frac{k^2}{r^2} (\sin(v))^2 \right) r \, \mathrm{d}r.$$

Comments

• If $\lim_{r\to 0} u_0(r) = \lim_{r\to \infty} u_0(r) = 0$, then

$$E(\mathbf{u}_0) < \infty \quad \Leftrightarrow \quad \mathbf{u}_0 \in \mathcal{E}.$$

- ullet Local well-posedness in ${\mathcal E}$ (conditional)
 - ► Ginibre, Soffer, Velo (1992)
 - ▶ Shatah, Struwe (1994)

$$\forall \mathbf{u}_0 \in \mathcal{E}, \ \exists ! \mathbf{u} \in C((T_-, T_+); \mathcal{E}), \qquad T_- < t_0 < T_+.$$

- The energy is conserved; the flow is reversible.
- Let $\lambda > 0$. For $\mathbf{v} = (v, \dot{v}) \in \mathcal{E}$ we denote

$$\mathbf{v}_{\lambda}(r) := \left(v\left(\frac{r}{\lambda}\right), \frac{1}{\lambda}v\left(\frac{r}{\lambda}\right)\right).$$

We have $\|\mathbf{v}_{\lambda}\|_{\mathcal{E}} = \|\mathbf{v}\|_{\mathcal{E}}$ and $E(\mathbf{v}_{\lambda}) = E(\mathbf{v})$. Moreover, if $\mathbf{u}(t)$ is a solution of (WMAP) on the time interval $[0, T_{+})$, then $\mathbf{w}(t) := \mathbf{u}(\frac{t}{\lambda})_{\lambda}$ is a solution on $[0, \lambda T_{+})$.

Jacek Jendrej Two-bubble dynamics 13/09/2017 3 / 17

Stationary states -k-equivariant harmonic maps

• Explicit radially symmetric solutions of $\partial_r^2 u(r) + \frac{1}{r} \partial_r u(r) + \frac{k^2}{2r^2} \sin(2u(r)) = 0$:

$$Q_{\lambda}(r):=2\arctan\left(rac{r^k}{\lambda^k}
ight), \qquad oldsymbol{Q}_{\lambda}:=(Q_{\lambda},0)\in \mathcal{E}.$$

- $E(\mathbf{Q}_{\lambda}) = 4k\pi$; orbital stability
- Q_{λ} are, up to sign and translation by π , all the equivariant stationary states.
- Threshold elements for nonlinear behavior Côte, Kenig, Lawrie and Schlag (2015), using ideas of Kenig and Merle (2008).

Theorem - Côte, Kenig, Lawrie, Schlag (2015)

Let \boldsymbol{u}_0 be such that $E(\boldsymbol{u}_0) < 4k\pi$. Then the solution $\boldsymbol{u}(t)$ of (WMAP) with initial data $\boldsymbol{u}(0) = \boldsymbol{u}_0$ exists globally and scatters in both time directions.

• True also in the non-equivariant setting: Sterbenz and Tataru (2010).

Jacek Jendrej Two-bubble dynamics 13/09/2017 4 / 17

Refined threshold

Theorem - Côte, Kenig, Lawrie, Schlag (2015)

Let \boldsymbol{u}_0 be such that $E(\boldsymbol{u}_0) < 8k\pi$ and $\lim_{r\to 0} u_0(r) = \lim_{r\to \infty} u_0(r)$. Then the solution $\boldsymbol{u}(t)$ of (WMAP) with initial data $\boldsymbol{u}(0) = \boldsymbol{u}_0$ exists globally and scatters in both time directions.

- If $E(u_0) \le 8k\pi$, then the assumption $\lim_{r\to 0} u_0(r) = \lim_{r\to \infty} u_0(r)$ is equivalent to the topological degree of u_0 being equal to 0.
- For any $\eta > 0$ there exists \boldsymbol{u}_0 such that $E(\boldsymbol{u}_0) < 8k\pi + \eta$ and the solution with initial data $\boldsymbol{u}(0) = \boldsymbol{u}_0$ blows up in finite time.
- We are interested in a classification of solutions having the threshold energy $E(\mathbf{u}) = 8k\pi = 2E(\mathbf{Q})$.
- The threshold theorem is a weakened version of what would be a soliton resolution theorem.

5 / 17

It turns out that there exist non-scattering solutions of threshold energy.

Theorem 1 – J. (2016)

Let $k \geq 3$. There exists a solution $\boldsymbol{u}: (-\infty, T_0] \to \mathcal{E}$ of (WMAP),

$$\lim_{t\to -\infty} \big\| \boldsymbol{u}(t) - \big(-\boldsymbol{Q} + \boldsymbol{Q}_{\kappa|t|^{-\frac{2}{k-2}}} \big) \big\|_{\mathcal{E}} = 0, \qquad \kappa \text{ constant } > 0.$$

- An analogous result holds for the critical radial Yang-Mills equation (exponential concentration rate); the same would be the case for (WMAP) with k=2.
- Related works concentration of one bubble:
 - ► Krieger, Schlag and Tataru (2008) (and extensions)
 - Raphaël and Rodnianski (2012).
- Strong interaction of bubbles: the second bubble could not concentrate without being "pushed" by the first one,
 - ► Martel and Raphaël (2015)
 - ▶ Nguyen Tien Vinh (2017).

6 / 17

There is only one possible dynamical behavior of a non-scattering solution.

Theorem 2 – J. and Lawrie (2017)

Fix any equivariance class $k \geq 2$. Let $\boldsymbol{u}(t): (T_-, T_+) \to \mathcal{E}$ be a solution of (WMAP) such that

$$E(\mathbf{u}) = 2E(\mathbf{Q}) = 8\pi k.$$

Then $T_{-}=-\infty$, $T_{+}=+\infty$ and one of the following alternatives holds:

- u(t) scatters in both time directions,
- u(t) scatters in one time direction; in the other time direction, there exist $\iota \in \{-1,1\}$ and continuous functions $\mu(t), \lambda(t) > 0$ such that

$$\|m{u}(t) - \iota(-m{Q}_{\mu(t)} + m{Q}_{\lambda(t)})\|_{\mathcal{E}} o 0,$$

 $\mu(t) o \mu_0 \in (0, +\infty), \qquad \lambda(t) o 0$ (at a specific rate).

→□▶ →□▶ → □▶ → □▶ → □ → ○○○

7 / 17

Jacek Jendrej Two-bubble dynamics 13/09/2017

Comments

- We obtain $\lambda(t) \sim |t|^{-\frac{2}{k-2}}$ for $k \geq 3$ and $\exp(-Ct) \leq \lambda(t) \leq \exp(-t/C)$ for k=2
- In particular, the two-bubble solutions from Theorem 1 scatter in forward time, which provides an example of an orbit connecting different types of dynamical behavior for positive and negative times
- Non-existence of solutions which form a pure two-bubble in both time directions is reminiscent of the work of Martel and Merle for gKdV and seems to be a typical feature of models which are not completely integrable
- We conjecture that there exists a unique (up to rescaling and sign change) non-scattering solution of threshold energy
- Probably the only (almost) complete dynamical classification in a setting allowing more than one bubble, except for completely integrable models.

Modulation method - Part 1

- We want to understand the evolution of solutions close to a two-bubble, that is $\inf_{\mu,\lambda>0} \left(\| \boldsymbol{u}(t) (-\boldsymbol{Q}_{\mu} + \boldsymbol{Q}_{\lambda}) \|_{\mathcal{E}} + \lambda/\mu \right) \leq \eta \ll 1$.
- We decompose $\boldsymbol{u}(t) = -\boldsymbol{Q}_{\mu(t)} + \boldsymbol{Q}_{\lambda(t)} + \boldsymbol{g}(t)$; for the moment, we do not specify how $\mu(t)$ and $\lambda(t)$ are chosen. We write $\boldsymbol{g}(t) = (g(t), \dot{g}(t))$.
- Some notation:

$$\Lambda v := -\frac{\partial}{\partial \lambda}(v_{\lambda}) = r\partial_{r}v,
\Lambda_{0}v := -\frac{\partial}{\partial \lambda}(v_{\lambda}/\lambda) = v + r\partial_{r}v,
L_{\lambda} := -\partial_{r}^{2} - \frac{1}{r}\partial_{r} + k^{2}\frac{\cos 2Q_{\lambda}}{r^{2}},
\langle v, w \rangle := \int_{0}^{\infty} v(r)w(r) r dr.$$

• $-L_{\lambda}$ is the linearization of $\partial_r^2 u + \frac{1}{r} \partial_r u + \frac{k^2}{2r^2} \sin(2u)$ around $u = Q_{\lambda}$ and it follows that $L_{\lambda}(\Lambda Q_{\lambda}) = 0$.

Modulation method - Part 2

• Evolution of the error term; let $f(u) := \frac{k^2}{2} \sin(2u)$. Using $\partial_r^2 Q_\mu + \frac{1}{r} \partial_r Q_\mu = \frac{1}{r^2} f(Q_\mu)$ and $\partial_r^2 Q_\lambda + \frac{1}{r} \partial_r Q_\lambda = \frac{1}{r^2} f(Q_\lambda)$ we have

$$\begin{split} \partial_t \dot{g} &= \partial_t^2 u = \partial_r^2 u + \frac{1}{r} \partial_r u + \frac{1}{r^2} f(u) \\ &= \partial_r^2 g + \frac{1}{r} \partial_r g - \frac{1}{r^2} \left(f(Q_\lambda - Q_\mu + g) - f(Q_\lambda) + f(Q_\mu) \right) \\ &\simeq - L_\lambda g - \frac{1}{r^2} \left(f(Q_\lambda - Q_\mu) - f(Q_\lambda) + f(Q_\mu) \right) + \dots \end{split}$$

• Since $L_{\lambda}(\Lambda Q_{\lambda})=0$, it is natural to compute $\frac{\mathrm{d}}{\mathrm{d}t}\langle \frac{1}{\lambda}\Lambda Q_{\lambda},\dot{g}\rangle$. We obtain

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \frac{1}{\lambda(t)} \Lambda Q_{\lambda(t)}, \dot{g}(t) \right\rangle = - \left(8k^2 + o(1) \right) \frac{\lambda(t)^{k-1}}{\mu(t)^k} + O\left(\frac{\|\boldsymbol{g}(t)\|_{\mathcal{E}}^2}{\lambda(t)} \right).$$

• By the conservation of energy, we only get $\|\mathbf{g}(t)\|_{\mathcal{E}}^2 \lesssim \frac{\lambda(t)^k}{\mu(t)^k}$, so the equation above is useless.

Part 3 – Raphaël-Szeftel virial correction

• We define an auxiliary function

$$b(t) := - \Big\langle \frac{1}{\lambda(t)} \Lambda Q_{\lambda(t)}, \dot{g}(t) \Big\rangle - \Big\langle \dot{g}(t), \, ``\frac{1}{\lambda(t)} \Lambda_0 \, `'g(t) \Big\rangle.$$

• Using specific structure of the quadratic terms in the equation for $\partial_t \dot{g}(t)$, we obtain a cancellation of the main terms and obtain

$$b'(t) \ge (8k^2 - c) \frac{\lambda(t)^{k-1}}{\mu(t)^k}, \quad c \text{ small.}$$
 (1)

- If we choose the orthogonality condition $\langle \Lambda Q_{\lambda(t)}, g(t) \rangle = 0$, then standard computations yield $\lambda'(t) \sim b(t)$.
- Together with (1), this allows to obtain a lower bound on $\lambda(t)$, starting from an initial time t_0 such that $\frac{\mathrm{d}}{\mathrm{d}t}(\lambda(t_0)/\mu(t_0)) \geq 0$ (in fact we need $b(t_0) \geq -c \|\boldsymbol{g}(t_0)\|_{\mathcal{E}}$, c small).
- ullet Bounds on $\mu(t)$ and upper bounds on $\lambda(t)$ are much easier to obtain.

Jacek Jendrej Two-bubble dynamics 13/09/2017 11 / 17

Proof of Theorem 1 – "backward time" construction

Theorem 1 (weakened version)

Let $k \geq 3$. There exists a solution $\boldsymbol{u}: (-\infty, T_0] \to \mathcal{E}$ of (WMAP) and continuous functions $\mu(t), \lambda(t) > 0$ such that

$$\lim_{t\to -\infty} \big\| \boldsymbol{u}(t) - \big(-\boldsymbol{Q}_{\mu(t)} + \boldsymbol{Q}_{\lambda(t)} \big) \big\|_{\mathcal{E}} = 0, \qquad \kappa \text{ constant } > 0,$$

with $\mu(t) \sim 1$ and $\lambda(t) \sim |t|^{-\frac{2}{k-2}}.$

◄□▶
■
■
■
●
●
●
●
●
●
●
●

Proof of Theorem 1 – "backward time" construction

- Key idea: construct a sequence of solutions $u_n(t)$ converging to a non-scattering solution.
- Let $\lambda_{\mathrm{app}}(t) := |t|^{-\frac{2}{k-2}}$. Take $T_n \to -\infty$, and let $\boldsymbol{u}_n(t)$ be the solution of (WMAP) for the initial data $\boldsymbol{u}_n(T_n) = -\boldsymbol{Q} + \boldsymbol{Q}_{\lambda_{\mathrm{app}}(T_n)}$.
- Then $u_n(t) \simeq -Q_{\mu_n(t)} + Q_{\lambda_n(t)}$ for $t \in [T_n, T_0]$, and we have lower and upper bounds on $\mu_n(t)$ and $\lambda_n(t)$, with T_0 independent of n.
- After extraction of a subsequence, $\mu_n(t) \to \mu(t)$, $\lambda_n(t) \to \lambda(t)$ for all $t \leq T_0$ and $\boldsymbol{u}_n(T_0) \to \boldsymbol{u}_0$ weakly in \mathcal{E} .
- Let u(t) be the solution of (WMAP) for the initial data $u(T_0) = u_0$. Using weak continuity properties of the flow, we obtain that u(t) exists for $t \in (-\infty, T_0]$ and

$$\lim_{t\to-\infty}\|\boldsymbol{u}(t)-(-\boldsymbol{Q}_{\mu(t)}+\boldsymbol{Q}_{\lambda(t)})\|_{\mathcal{E}}=0.$$

• Time reversibility of the flow is crucial. This scheme of proof goes back to the works of Merle (1990) and Martel (2005).

Jacek Jendrej Two-bubble dynamics 13/09/2017 13 / 17

Proof of Theorem 2

Theorem 2

Fix any equivariance class $k \geq 2$. Let $\boldsymbol{u}(t): (T_-, T_+) \to \mathcal{E}$ be a solution of (WMAP) such that

$$E(\boldsymbol{u}) = 2E(\boldsymbol{Q}) = 8\pi k.$$

Then $T_{-}=-\infty$, $T_{+}=+\infty$ and one the following alternatives holds:

- u(t) scatters in both time directions,
- u(t) scatters in one time direction; in the other time direction, there exist $\iota \in \{-1,1\}$ and continuous functions $\mu(t), \lambda(t) > 0$ such that

$$\begin{split} & \| \boldsymbol{u}(t) - \iota(-\boldsymbol{Q}_{\mu(t)} + \boldsymbol{Q}_{\lambda(t)}) \|_{\mathcal{E}} \to 0, \\ & \mu(t) \to \mu_0 \in (0,+\infty), \qquad \lambda(t) \to 0 \text{ (at a specific rate)}. \end{split}$$

Proof of Theorem 2 – Part 1

• Let $\boldsymbol{u}:[T_0,T_+)\to\mathcal{E}$ be a non-scattering solution such that $E(\boldsymbol{u})=2E(\boldsymbol{Q})$. By works of Struwe, Côte, and Jia and Kenig, we know that for some sequence $T_n\to T_+$ we have

$$\lim_{n\to\infty}\inf_{\mu,\lambda}\|\boldsymbol{u}(T_n)-\iota(-\boldsymbol{Q}_{\mu}+\boldsymbol{Q}_{\lambda})\|_{\mathcal{E}}=0.$$

- The main difficulty now is to exclude the possibility that a solution approaches a two-bubbles configuration an infinite number of times.
 We need a "one-pass lemma" (terminology of Nakanishi and Schlag).
- Convexity argument based on the localized virial identity:

$$\int_{\tau_{1}}^{\tau_{2}} \|\partial_{t} u(t)\|_{L^{2}}^{2} dt \leq |\langle \partial_{t} u, \chi_{R} r \partial_{r} u \rangle (\tau_{1})| + |\langle \partial_{t} u, \chi_{R} r \partial_{r} u \rangle (\tau_{2})| + \int_{\tau_{1}}^{\tau_{2}} \Omega_{R}(\boldsymbol{u}(t)) dt$$

• The last term comes from localizing the virial identity and has to be absorbed by the left hand side.

Proof of Theorem 2 – Part 2

$$\begin{split} \int_{\tau_1}^{\tau_2} \|\partial_t u(t)\|_{L^2}^2 \, \mathrm{d}t &\leq |\langle \partial_t u, \chi_R r \partial_r u \rangle (\tau_1)| + |\langle \partial_t u, \chi_R r \partial_r u \rangle (\tau_2)| \\ &+ \int_{\tau_1}^{\tau_2} \Omega_R(\boldsymbol{u}(t)) \, \, \mathrm{d}t \end{split}$$

- Suppose that the one pass lemma fails. We take τ_1 and τ_2 such that $\boldsymbol{u}(\tau_1)$ and $\boldsymbol{u}(\tau_2)$ are close to two-bubble configurations. The time interval in between is divided into regions where $\boldsymbol{u}(t)$ is close to a two-bubble ("bad" intervals) and regions where it is not ("good" intervals).
- On the union of the good intervals, the solution has a compactness property, which allows us to deal with the error term $\Omega_R(\boldsymbol{u}(t))$.
- On each bad interval, we use the modulation method and estimates on the growth of the modulation parameters.

Thank you!