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Critical wave maps

Wave maps R1+2 → S2 ⊂ R3 are critical points of the Lagrangian

L (Ψ, ∂tΨ) :=

∫∫ (1
2
|∂tΨ|2 −

1
2
|∇Ψ|2

)
dx dt.

Energies:

Ec(Ψ, ∂tΨ) :=

∫
R2

1
2
|∂tΨ|2 dx ,

Ep(Ψ, ∂tΨ) :=

∫
R2

1
2
|∇Ψ|2 dx ,

E := Ec + Ep is a conserved quantity.

Scaling and criticality: If Ψ is a wave map and λ > 0,
then so is Ψλ(t, x) := Ψ(t/λ, x/λ).
Moreover, E (Ψλ, ∂tΨλ) = E (Ψ, ∂tΨ) energy-critical setting
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Corotational maps

We consider solution of the form

Ψ(t, r cos θ, r sin θ) =

=
(

sin(ψ(t, r)) cos θ, sin(ψ(t, r)) sin θ, cos(ψ(t, r))
)
.

This class is conserved by the flow.
ψ = 2kπ is the north pole, and ψ = (2k + 1)π the south pole.
Ψ is a wave map if and only if{

∂2
t ψ(t, r) = ∂2

r ψ(t, r) +
1
r
∂rψ(t, r)− 1

2r2 sin(2ψ(t, r)),

(ψ(t0, r), ∂tψ(t0, r)) = (ψ0(r), ψ̇0(r)).
(WM)

E <∞ forces limr→0 ψ(t, r) ∈ πZ and limr→∞ ψ(t, r) ∈ πZ.
We assume ψ(t, 0) = 0 and ψ(t,∞) = nπ, with n ∈ Z fixed.
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Comments

Well-posedness (Shatah, Tahvildar-Zadeh ’94): Given (ψ0, ψ̇0) such
that E (ψ0, ψ̇0) <∞, there exists a unique strong solution to (WM),
ψ : (T−,T+)→ H1 × L2. Moreover, if T <∞ and

lim inf
t→T

∫ T−t

0

(
(∂tψ(t))2 + (∂rψ(t))2 +

sin2 ψ

r2

)
rdr � 1,

then T+ > T . concentration of energy

For λ > 0 we denote ψλ(t, x) := ψ(t/λ, x/λ). If ψ is a wave map on
the time interval [0,T+), then ψλ is a wave maps as well, but on the
time interval [0, λT+).
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Stationary states

Explicit radially symmetric solutions of
∂2
r ψ(r) + 1

r ∂rψ(r)− 1
2r2 sin(2ψ(r)) = 0:

Qλ(r) := 2 arctan
( r
λ

)
, (Qλ, 0) ∈ H1 × L2.

E (Qλ, 0) = 4π orbital stability

(Qλ, 0) are, up to sign and translation by π, all the corotational
stationary states.
Threshold elements for nonlinear behavior – (Côte, Kenig, Lawrie and
Schlag ’15, using ideas of Kenig and Merle ’08).

Theorem
Let E (ψ0, ψ̇0) < 4π. Then the solution ψ of (WM) with initial data
(ψ(0), ∂tψ(0)) = (ψ0, ψ̇0) exists globally and scatters in both time
directions.
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Bubbling (Part I)

(Struwe ’03, using results on decay of energy on the light cone by
Shatah and Tahvildar-Zadeh) If ψ is smooth and T− = 0, then there
exist tn → 0, λn > 0 with λn � tn such that ψ(tn + λnt, λnr)
converges to Q(r) in terms of local energy. In particular,

lim inf
t→0

∫ t

0

(
(∂tψ(t))2 + (∂rψ(t)) +

sin2 ψ(t)

r2

)
rdr ≥ E (Q).

Radiation (Côte, Kenig, Lawrie, Schlag ’15): If ψ is a wave map with
T− = 0 and E (ψ, ∂tψ) < E (Q) + ε, then there exist
(ψ∗0, ψ̇

∗
0) ∈ H1 × L2 and a continuous function λ such that

lim
t→0
‖(ψ(t), ∂tψ(t))− (ψ∗0, ψ̇

∗
0)− (Qλ(t), 0)‖(H1×L2) = 0.
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Bubbling (Part II)

Existence results: There exists a degree-1 wave map ψ such that
T− = 0 and there exist λc(t) > 0 and (ψ∗0, ψ̇

∗
0) ∈ H1 × L2 such that∥∥ψ(t), ∂tψ(t))− (ψ∗0, ψ̇

∗
0)− (Qλc (t), 0)

∥∥
H1×L2 → 0, as t → 0,

Here
I λc(t) = t1+ν with ν > 0 (Kriger, Schlag, Tataru ’08).
I λc(t) = t exp(−

√
| log t|+ O(1)) (Raphaël, Rodnianski ’09).

I λc(t) ' t2| log t|−1 (Rodriguez ’18). For this result
(ψ∗

0 , ψ̇
∗
0) = (−Q, 0).

Numerics: Bizoń, Chmaj, Tabor ’01.
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Main results (Part I)

We consider the problem of “attaching” a blow-up bubble to a given
radiation (ψ∗0, ψ̇

∗
0).

We restrict to two situations: (ψ∗0, ψ̇
∗
0) ∈ H1 × L2 such that either

ψ∗0(r) = qrν + o(rν) as r → 0,

ψ̇∗0(r) = 0,
(EVEN)

or
ψ∗0(r) = 0,

ψ̇∗0(r) = qrν−1 + o(rν−1) as r → 0,
(ODD)

where ν > 9
2 and q ∈ R \ {0}.
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Main results (Part II)
If q < 0 in (EVEN), there exist T+ > 0 and a solution ψ to (WM) blowing
up at T− = 0 such that∥∥(ψ(t), ∂tψ(t))− (ψ∗0, ψ̇

∗
0)− (Qλc (t), 0)

∥∥
H1×L2 → 0, as t → 0+,

with

λc(t) =
p|q|

ν2(ν + 1)

tν+1

| log t|
,

where

p = p(ν) :=
ν(ν + 2)

√
πΓ
(3+ν

2

)
4Γ
(4+ν

2

) .

If q < 0 in (ODD) then the exact same result holds with the explicit
constant

p(ν) =
(ν + 1)

√
πΓ
(2+ν

2

)
4Γ
(3+ν

2

) .
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Main results (Part III)
Let ψ be any finite energy solution to (WM) that blows up by
concentrating one bubble backwards-in-time at T− = 0 while radiating
(ψ∗0, ψ̇

∗
0) satisfying (EVEN), i.e. ψ admits a decomposition∥∥(ψ(t), ∂tψ(t))− (ψ∗0, ψ̇

∗
0)− (Qλ(t), 0)

∥∥
H1×L2 → 0, as t → 0+,

with λ(t)→ 0 as t → 0+. Then q < 0 and the rate λ(t) satisfies,

λ(t) =

(
p|q|

ν2(ν + 1)
+ o(1)

)
tν+1

| log t|
as t → 0+,

where p(ν) is as before, in other words

lim
t→0

∣∣λ(t)/λc(t)− 1
∣∣ = 0.

If instead the radiation takes the form (ODD) then the same result holds,
with appropriate p(ν).
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Comments

We could easily produce other blow-up rates by imposing a different
asymptotic behavior at 0 of the radiation.
The requirement ν > 9

2 could be improved, but some condition of this
type is unavoidable with our methods.
We treat unstable solutions; the solutions of Raphaël and Rodnianski
are not covered by our approach.
We expect that not only the sign of the bubble and the blow-up rate
are determined by the radiation, but also the whole solution is unique.
This would mean that the solution can be uniquely reconstructed from
the data outside of the light cone with the tip at the singularity.
unique continuation after blow-up
This type of question is inspired by nonlinear scattering.
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Formal computation (Part I)

Let ψ∗ the solution of (WM) with initial data
(ψ∗(0), ∂tψ

∗(0)) = (ψ∗0, ψ̇
∗
0). We seek solutions of the form

ψ(t) ' ψ∗(t) + Qλ(t).
Because of a slow decay of Q at spatial infinity, it is preferable to
consider ψ(t) ' ψ∗(t) + χtQλ(t), where χt(r) := χ(r/t) and χ is a
cut-off function.
Consider the case (EVEN). Then, at main order and inside the light
cone, ψ∗(t, r) ' pqrtν−1.

Using this and ∂tψ(t) ' ∂tψ∗(t)− χt
λ′(t)
λ(t) ΛQλ(t), we can compute

the reduced Lagrangian

L̃ (t, λ, λ′) := L
(
ψ∗(t) + χtQλ(t), ∂tψ

∗(t)− χt
λ′(t)

λ(t)
ΛQλ(t)

)
' 2(λ′)2| log(λ/t)|+ 4pqλtν−1 − E (Q).
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Formal computation (Part II)

The reduced Lagrangian

L̃ (t, λ, λ′) ' 2(λ′)2| log(λ/t)|+ 4pqλtν−1 − E (Q).

The Euler-Lagrange equation

d
dt
(
4λ′| log(λ/t)|

)
= 4pqtν−1

has a solution λ(t) ' pq
ν2(ν+1)

tν+1

| log t| .

The reduced system does not conserve the reduced energy (this is
expected, since the Lagrangian explicitly depends on t).
The case (ODD), as well as non-polynomial expansions at r = 0, can
be treated analogously.
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Modulation method – Part I

We want to understand the evolution of solutions close to a bubble,
that is

inf
λ>0

(
‖(ψ(t), ∂tψ(t))− (ψ∗(t), ψ̇∗(t))

− (χtQλ, 0)‖H1×L2 + λ
)
≤ η � 1.

We decompose

ψ(t) = χtQλ(t) + ψ∗(t) + g(t),

∂tψ(t) = ∂tψ
∗(t) + ġ(t).

The choice of λ(t) is determined by an orthogonality condition
〈Zλ, g〉 = 0.
Differentiating the orthogonality condition yields differential equations
for λ(t) involving (g(t), ġ(t)). The goal is to reduce this to an ODE.

Jacek Jendrej Bubbling wave maps 7/11/2019 14 / 18



Modulation method – Part II

We try to estimate (g , ġ) in terms of t and λ using the conservation
of energy:

E (Q) + E (ψ∗, ∂tψ
∗) = E (ψ(t), ∂tψ(t))

= E (χtQλ(t) + ψ∗(t) + g(t), ∂tψ
∗(t) + ġ(t))

= E (χtQλ(t) + ψ∗(t), ∂tψ
∗(t))

+ DE (· · · )(g , ġ) +
1
2
D2E (· · · )(g , ġ)2.

The last term is & ‖(g , ġ)‖2H1×L2 energy coercivity

In order to compute the first term of the last line (which is not
negligible), we use the observation (due to Struwe ’99) that the time
derivative of this term is quadratic in g .
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Modulation method – Part III
We define auxiliary functions

ζ(t) := 4λ(t) log(t/λ(t))−
∫
χt

1
λ(t)

ΛQλ(t)g(t)r dr ,

b(t) := −
∫

1
λ(t)

ΛQλ(t), ġ(t)r dr −
∫

ġ(t)“
1
λ(t)

Λ0“g(t)r dr .

localised virial correction
We obtain the bounds

|b(t)| ≤ (4 + δ)
1
2

(
log

t

λ(t)

) 1
2 ‖ġ(t)‖L2 + C‖(g(t), ġ(t))‖2H1×L2 ,

|ζ ′(t)− b(t)| . ‖ġ(t)‖L2 + λ(t)/t,

b′(t) ≥ (4p|q| − δ)tν−1 − C
λ(t)

t2
− δ

λ(t)
‖(g(t), ġ(t))‖2H1×L2 .

Note that, a posteriori, the contribution of the terms involving (g , ġ)
is not of main order.
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Some references
We use a backward in time construction due to Merle ’90 and
Martel ’05.
The virial correction (of an energy functional) in the blow-up setting is
due to Raphaël and Szeftel ’11.
Relating the blow-up rate to the radiation (ψ∗, ∂tψ

∗) is analogous to
the approach of Martel, Merle and Raphaël to “exotic blow-up” for
gKdV.
Using this approach in the energy-critical setting is due to J ’17.
Using Struwe’s observation in order to obtain upper bounds on the
blow-up rate for energy-critical NLW is due to J ’15.
Correcting the modulation parameter with a virial functional was used
by J ’17.
Using this to obtain also lower bounds for the concentration rate is
due to J and Lawrie ’18.
Corresponding results for corotational wave maps are due to Rodriguez
(preprint ’18).
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Thank you for your attention.
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