Construction of concentrating bubbles for the energy-critical wave equation

Jacek Jendrej University of Chicago

University of North Carolina February 13th 2017

Critical NLW

Focusing energy-critical power nonlinearity in dimension 1 + N (with $N \ge 3$):

$$\begin{cases} \partial_t^2 u(t,x) = \Delta_x u(t,x) + |u(t,x)|^{\frac{4}{N-2}} u(t,x), \\ (u(t_0,x), \partial_t u(t_0,x)) = (u_0(x), \dot{u}_0(x)). \end{cases}$$
(NLW)

Notation: $\vec{u}_0 := (u_0, \dot{u}_0), \ \mathcal{H} := \dot{H}^1(\mathbb{R}^N) \times L^2(\mathbb{R}^N).$

There is a natural energy functional defined on \mathcal{H} :

$$E(\vec{u}_0) = \int \frac{1}{2} |\dot{u}_0|^2 + \frac{1}{2} |\nabla u_0|^2 - \frac{N-2}{2N} |u_0|^{\frac{2N}{N-2}} \, \mathrm{d}x.$$

We consider solutions with radial symmetry: $\vec{u}(t,x) = \vec{u}(t,|x|)$. This model shares some features with critical equivariant wave maps:

$$\partial_t^2 u(t,r) = \partial_r^2 u(t,r) + \frac{1}{r} u(t,r) - \frac{k^2}{2r^2} \sin(2u(t,r)).$$
 (WM)

・ 戸 ト ・ ヨ ト ・ ヨ ト

Comments

- Local well-posedness in \mathcal{H} (conditional)
 - Ginibre, Soffer, Velo (1992)
 - Shatah, Struwe (1994)

$$\forall \vec{u}_0 \in \mathcal{H}, \ \exists ! \vec{u} \in C((T_-, T_+); \mathcal{H}), \qquad T_- < t_0 < T_+.$$

- The energy is conserved; the flow is reversible.
- Let $\lambda > 0$. For $ec{v} = (v, \dot{v}) \in \mathcal{H}$ we denote

$$ec{v}_{\lambda}(x) := \Big(\lambda^{-rac{N-2}{2}}vig(rac{x}{\lambda}ig), \lambda^{-rac{N}{2}}\dot{v}ig(rac{x}{\lambda}ig)\Big).$$

We have $\|\vec{v}_{\lambda}\|_{\mathcal{H}} = \|\vec{v}\|_{\mathcal{H}}$ and $E(\vec{v}_{\lambda}) = E(\vec{v})$. Moreover, if $\vec{u}(t)$ is a solution of (NLW) on the time interval $[0, T_+)$, then $\vec{w}(t) := \vec{u}(\frac{t}{\lambda})_{\lambda}$ is a solution on $[0, \lambda T_+)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Ground states

• Explicit radially symmetric solution of $\Delta W(x) + |W(x)|^{\frac{4}{N-2}}W(x) = 0$:

$$W(x) := \left(1 + \frac{|x|^2}{N(N-2)}\right)^{-\frac{N-2}{2}}, \qquad \vec{W} := (W,0) \in \mathcal{H}.$$

- All radial stationary states are obtained by rescaling: $S := \{ \vec{W}_{\lambda} \}$.
- Threshold elements for nonlinear behavior Kenig, Merle (2008).
- "Building blocks" of every solution bounded in H?

For N = 3 in the radial case the answer is "yes":

Theorem – Duyckaerts, Kenig, Merle (2012)

Let $\vec{u}(t) : [0, T_+) \to \mathcal{H}$ be a radial solution of (NLW) in dimension N = 3.

• Type II blow-up: If $T_+ < \infty$ and $\|\vec{u}(t)\|_{\mathcal{H}}$ is bounded, then there exist $\vec{u}_0^* \in \mathcal{H}$, $\iota_j \in \{\pm 1\}$, $\lambda_j(t)$ with $\lambda_1(t) \ll \lambda_2(t) \ll \ldots \ll \lambda_n(t) \ll T_+ - t$ as $t \to T_+$ such that

$$\lim_{t\to T_+} \left\| \vec{u}(t) - \left(\vec{u}_0^* + \sum_{j=1}^n \iota_j \vec{W}_{\lambda_j(t)} \right) \right\|_{\mathcal{H}} = 0.$$

• Global solution: If $T_+ = +\infty$, then there exist a solution $\vec{u}_{\rm L}^*$ of the linear wave equation, $\iota_j \in \{\pm 1\}$, $\lambda_j(t)$ with $\lambda_1(t) \ll \lambda_2(t) \ll \ldots \ll \lambda_n(t) \ll t$ as $t \to +\infty$ such that

$$\lim_{t\to+\infty}\left\|\vec{u}(t)-\left(\vec{u}_{\mathrm{L}}^*(t)+\sum_{j=1}^n\iota_j\vec{W}_{\lambda_j(t)}\right)\right\|_{\mathcal{H}}=0.$$

э

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Comments

- Such a decomposition for a sequence of times holds in the nonradial case for $N \in \{3, 4, 5\}$
 - Duyckaerts, Jia, Kenig, Merle (2016)
- Similar results for critical wave maps with values in S^2 in the equivariant case
 - Côte (2015)
- The "Soliton Resolution Conjecture" originates in the theory of integrable systems
 - Eckhaus, Schuur (1983)
- \bullet Classical problem in the theory of the heat flow from S^2 to S^2
 - Struwe; Qing; Topping

Some natural questions

- Study the dynamics of solutions which remain close to $\{\vec{W}_{\lambda}\}$ (for example in the energy space: $\|\vec{u}(t) - \vec{W}_{\lambda(t)}\|_{\mathcal{H}} \leq \eta \ll 1$ for $t_0 \leq t < T_+$). How does $\lambda(t)$ behave as $t \to T_+$ in this case?
 - Krieger, Schlag, Tataru (2008, 2009)
 - Rodnianski, Raphaël (2012)
 - Hillairet, Raphaël (2012)
 - Donninger, Krieger (2013)
 - Krieger, Schlag (2014)
 - Donninger, Huang, Krieger, Schlag (2014)
 - Ortoleva, Perelman (2013)
 - Perelman (2014)
 - Krieger, Nakanishi, Schlag (2015)
 - Collot (2014)

• Do there exist solutions decomposing into more than one bubble?

イロト イポト イヨト イヨト

Results

I considered two special cases of the (continuous time) soliton resolution in various dimensions:

• One bubble in the finite-time blow-up case:

$$ec{u}(t) = ec{u}^*(t) + ec{\mathcal{W}}_{\lambda(t)} + ec{h}(t), \quad \lim_{t o T_+} \lambda(t) = 0, \quad ec{u}^*(T_+) = ec{u}_0^*,$$

• Two bubbles without remainder:

$$ec{u}(t) = ec{\mathcal{W}}_{\mu(t)} \pm ec{\mathcal{W}}_{\lambda(t)} + ec{\mathbf{h}}(t), \quad \lambda(t) \ll \mu(t) ext{ as } t o \mathcal{T}_+,$$

where $\vec{h}(t)$ is an error term which satisfies $\lim_{t \to T_+} \|\vec{h}(t)\|_{\mathcal{H}} = 0$.

Main idea - "modulation theory"

Try to understand the dynamics by "forgetting" $\vec{h}(t)$, hence reducing the equation to an ODE. Then, control $\vec{h}(t)$ using (modified) energy functionals.

Examples of solutions with two bubbles

Theorem – J. (2016) Let N = 6. There exists a solution $\vec{u} : (-\infty, T_0] \to \mathcal{H}$ of (NLW) such that $\lim_{t \to -\infty} \|\vec{u}(t) - (\vec{W} + \vec{W}_{\frac{1}{\kappa}e^{-\kappa|t|}})\|_{\mathcal{H}} = 0, \quad \text{with } \kappa := \sqrt{\frac{5}{4}}.$

We have a similar result for wave maps:

Theorem – J. (2016)

Let $k \geq 3$. There exists a solution $\vec{u} : (-\infty, T_0] \to \mathcal{H}$ of (WM) such that

$$\lim_{t\to-\infty} \left\|\vec{u}(t) - \left(-\vec{W} + \vec{W}_{\frac{k-2}{2\kappa}(\kappa|t|)^{-\frac{2}{k-2}}}\right)\right\|_{\mathcal{H}} = 0, \qquad \kappa \text{ constant } > 0.$$

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

Comments

- A similar result holds for the critical radial Yang-Mills equation (exponential concentration rate); the same would be the case for (WM) with k = 2.
- In any dimension N > 6 we can expect an analogous result, with concentration rate $\lambda(t) \sim |t|^{-\frac{4}{N-6}}$.
- Strong interaction of bubbles: the second bubble could not concentrate without being "pushed" by the first one,
 - Martel, Raphaël (2015)
 - ► Gérard, Lenzmann, Pocovnicu, Raphaël (2016).

Asymptotic expansion, 1

We search a solution of the form $\vec{u}(t) \simeq \vec{W} + \vec{W}_{\lambda(t)}$.

$$ec{u}(t) = ec{W} + ec{U}_{\lambda(t)}^{(0)} + b(t) \cdot ec{U}_{\lambda(t)}^{(1)} + b(t)^2 \cdot ec{U}_{\lambda(t)}^{(2)} + \dots,$$

with $\vec{U}^{(0)} = \vec{W}$, b(t) > 0 and $\lambda(t), b(t) \to 0$ as $t \to -\infty$.

For $v(x) : \mathbb{R}^6 \to \mathbb{R}$ denote:

$$\begin{split} v_{\lambda}(x) &:= \frac{1}{\lambda^2} v \left(\frac{x}{\lambda} \right), \quad \Lambda v := -\frac{\partial}{\partial \lambda} v_{\lambda}|_{\lambda=1} = (2 + x \cdot \nabla) v, \quad \Lambda_0 v := (3 + x \cdot \nabla) v. \\ \text{Since } u(t) &\simeq W + W_{\lambda(t)}, \text{ we have} \\ \dot{u}(t) &= \partial_t u(t) \simeq -\frac{\lambda'(t)}{\lambda(t)} (\Lambda W)_{\lambda(t)} \quad \Rightarrow \quad b(t) = \lambda'(t), \vec{U}^{(1)} = (0, -\Lambda W). \end{split}$$

Can we find $\vec{U}^{(2)} = (U^{(2)}, \dot{U}^{(2)})?$

(日) (周) (日) (日) (日) (0) (0)

Asymptotic expansion, 2

Neglecting irrelevant terms and replacing $\lambda'(t)$ by b(t), we compute

$$\partial_t^2 u(t) = -\frac{b'(t)}{\lambda(t)} (\Lambda W)_{\lambda(t)} + \frac{b(t)^2}{\lambda(t)^2} (\Lambda_0 \Lambda W)_{\lambda(t)} + \dots$$

Denote f(u) := |u|u and $L = -\Delta - f'(W)$ the linearization of $-\Delta u - f(u)$ near u = W. A simple computation yields

$$\Delta u(t) + f(u(t)) = -\frac{b(t)^2}{\lambda(t)^2} (LU^{(2)})_{\lambda(t)} + f'(W)_{\lambda(t)} + \dots,$$

We discover that

$$LU^{(2)} = -\Lambda_0 \Lambda W + rac{\lambda(t)}{b(t)^2} (b'(t) \cdot \Lambda W + \lambda(t) \cdot f'(W)).$$

Fredholm condition

$$LU^{(2)} = -\Lambda_0 \Lambda W + \frac{\lambda(t)}{b(t)^2} (b'(t) \cdot \Lambda W + \lambda(t) \cdot f'(W)).$$
(1)

Due to scaling invariance, $\Lambda W \in \ker L$.

$$egin{aligned} &\int_{\mathbb{R}^6} \Lambda W \cdot ig(b'(t) \cdot \Lambda W + \lambda(t) \cdot f'(W) ig) \, \mathrm{d}x = 0 \ &\Leftrightarrow \quad b'(t) = rac{5}{4} \lambda(t) = \kappa^2 \lambda(t). \end{aligned}$$

If this condition is satisfied, we can solve (1) and find $U^{(2)}$. We take $\vec{U}^{(2)} = (U^{(2)}, 0)$.

$$\begin{cases} \lambda'(t) = b(t) \\ b'(t) = \kappa^2 \lambda(t) \end{cases} \quad \text{ leads to } \qquad \begin{cases} \lambda_{\text{app}}(t) = \frac{1}{\kappa} e^{-\kappa|t|} \\ b_{\text{app}}(t) = e^{-\kappa|t|}. \end{cases}$$

Main scheme

• Approximate solution:

$$ec{arphi}(\mu,\lambda,b):=ec{\mathcal{W}}_{\mu}+ec{U}_{\lambda}^{(0)}+b\cdotec{U}_{\lambda}^{(1)}+b^2\cdotec{U}_{\lambda}^{(2)}$$

• Key idea: construct a sequence of solutions $\vec{u}_n(t)$ such that we have *uniform* bounds

$$egin{aligned} \|ec{u}_n(t)-ec{arphi}(1,\lambda_{\mathrm{app}}(t),b_{\mathrm{app}}(t))\|_{\mathcal{H}} &\leq C\mathrm{e}^{-rac{1}{2}\kappa|t|} \ ext{for } t\in[T_n,T_0] ext{ with } T_n
ightarrow -\infty. \end{aligned}$$

- To do this, we consider the initial data
 ū_n(*T_n*) = *φ*(1, λ_{app}(*T_n*), *b_{app}*(*T_n*)) (with a correction due to the
 linear unstable direction).
- Pass to a weak limit.
 - Merle (1990); Martel (2005)

Note that time reversibility of the flow is crucial.

Control of the error term by the energy method

- Decompose u
 n(t) = φ(μ(t), λ(t), b(t)) + g(t), with μ(t), λ(t) defined by natural orthogonality conditions and b(t) := b{app}(T_n) + ∫^t_{T_n} κ²λ(τ) dτ.
- If we assume that $\|\vec{g}(t)\|_{\mathcal{H}} \leq C e^{-\frac{3}{2}\kappa|t|}$, we can solve differential inequalities and find $\lambda(t) \simeq \lambda_{app}(t)$, $\mu(t) \simeq 1$ and $b(t) \simeq b_{app}(t)$.
- We construct a functional H(t) such that $H(t)\gtrsim \|ec{g}(t)\|_{\mathcal{H}}^2$ and

$$\|ec{g}(t)\|_{\mathcal{H}} \leq C_0 \mathrm{e}^{-rac{3}{2}\kappa|t|} ext{ for } t \in [T_n,T] \quad \Rightarrow \quad H'(t) \leq c \cdot C_0^2 \cdot \mathrm{e}^{-3\kappa|t|},$$

with c arbitrarily small. H(t) is the energy functional, corrected using a localized virial term.

- A continuity argument yields the required bounds on $\|\vec{g}(t)\|_{\mathcal{H}}$. This finishes the proof.
 - Raphaël, Szeftel (2011)

Take $\vec{u}_0^* \in \mathcal{H}$ and let $\vec{u}^*(t)$ be the solution of (NLW) with $\vec{u}^*(0) = \vec{u}_0^*$. We wish to construct $\vec{u}(t) \simeq \vec{u}^*(t) + \vec{W}_{\lambda(t)}$ with $\lambda(t) \to 0$ as $t \to 0$.

Theorem – J. (2015)

Let N = 5 and let $\vec{u}_0^* \in H^5 \times H^4$ with $u_0^*(0) > 0$. There exists a solution $\vec{u}(t) : (0, T_0) \to \mathcal{H}$ of (NLW) such that

$$\lim_{t\to 0^+} \left\| \vec{u}(t) - (\vec{u}_0^* + \vec{W}_{\lambda_{\mathrm{app}}(t)}) \right\|_{\mathcal{H}} = 0, \quad \lambda_{\mathrm{app}}(t) := \left(\frac{32}{315\pi}\right)^2 (u_0^*(0))^2 t^4.$$

Theorem – J. (2015)

Let $\nu > 8$. There exists a solution $\vec{u}(t) : (0, T_0) \to \mathcal{H}$ of (NLW) such that

$$\lim_{t o 0^+} \left\|ec{u}(t) - (ec{u}_0^* + ec{\mathcal{W}}_{\lambda_{\mathrm{app}}(t)})
ight\|_{\mathcal{H}} = 0, \quad \lambda_{\mathrm{app}}(t) \coloneqq t^{
u+1},$$

where $\vec{u}_0^* = \left(\frac{315\nu(\nu+1)\pi}{32(\nu-1)(\nu+3)}|x|^{\frac{\nu-3}{2}},0\right)$ near x = 0.

э

・ロト ・聞ト ・ヨト ・ヨト

Bounds on the speed of type II blow-up

It seems that there is a relationship between \vec{u}_0^* and the asymptotics of $\lambda(t)$. One can prove an upper bound:

Theorem – J. (2015)

Let $N \in \{3, 4, 5\}$ and $\vec{u}_0^* \in H^3 \times H^2$ be a radial function. Suppose that $\vec{u}(t)$ is a radial solution of (NLW) such that

$$\lim_{t\to T_+}\|\vec{u}(t)-(\vec{u}_0^*+\vec{W}_{\lambda(t)})\|_{\mathcal{H}}=0,\qquad \lim_{t\to T_+}\lambda(t)=0,\qquad T_+<+\infty.$$

Then there exists a constant C > 0 depending on \vec{u}_0^* such that:

$$\lambda(t) \leq C(T_+ - t)^{\frac{4}{6-N}}.$$

• Main idea: $E(\vec{u}^* + \vec{W}_\lambda + \vec{h}) - E(\vec{u}^*) - E(\vec{W}) \ge -C\lambda^{\frac{N-2}{2}} + c\|\vec{h}\|_{\mathcal{H}}^2$.

• As a by-product, if $u_0^*(0) < 0$, then such a solution cannot exist.

Non-existence of two-bubbles with opposite signs

Theorem – J. (2015)

Let $N \geq 3$. There exist no radial solutions $\vec{u} : [t_0, T_+) \rightarrow \mathcal{H}$ of (NLW) such that

$$\lim_{t\to \mathcal{T}_+} \|\vec{u}(t) - (\vec{W}_{\mu(t)} - \vec{W}_{\lambda(t)})\|_{\mathcal{H}} = 0$$

and

$$ullet$$
 in the case ${\it T}_+<+\infty$, $\lambda(t)\ll\mu(t)\ll{\it T}_+-t$ as $t o{\it T}_+$

• in the case $T_+ = +\infty$, $\lambda(t) \ll \mu(t) \ll t$ as $t \to +\infty$.

- Main idea: $E(ec{W}_{\mu}-ec{W}_{\lambda}+ec{h})-2E(ec{W})\geq c\lambda^{\frac{N-2}{2}}+c\|ec{h}\|_{\mathcal{H}}^2.$
- Compare with an easy variational proof in the case of (WM).
- Negative eigenvalues related to (un)stable directions of the wave flow.
- We can recover coercivity by modulating around the stable variety.
 - Krieger, Nakanishi, Schlag (2015)

・ロト ・聞ト ・ヨト ・ヨト

- Prove that \vec{u}_0^* determines the asymptotics of $\lambda(t)$.
- Classify the solutions at the energy level $2E(\vec{W})$ and topological degree 0 for (WM).
 - Côte, Kenig, Lawrie, Schlag (2015) for $E(\vec{u}) < 2E(\vec{W})$,
 - Expect a unique non-dispersive solution.

Thank you!

3

イロト イヨト イヨト イヨト