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This paper is dedicated to J. J. Erpenbeck, pioneer in the study of shock

and detonation stability

Abstract. The rigorous study of spectral stability of strong detonations was begun by Erpen-
beck in the 1960s. Working with the Zeldovitch–von Neumann–Döring (ZND) model, he identified
two fundamental classes of detonation profiles, referred to as those of decreasing (D) and increasing
(I) type, which appeared to exhibit very different behavior with respect to high-frequency pertur-
bations. Using a combination of rigorous and nonrigorous arguments, Erpenbeck concluded that
type I detonations were unstable to some oscillatory perturbations for which the (vector) frequency
was of arbitrarily large magnitude, while type D detonations were stable provided the frequency
magnitude was sufficiently high. For type D detonations Erpenbeck’s methods did not allow him
to obtain a cutoff magnitude for stability that was uniform with respect to frequency direction.
Thus, he left open the question of whether the cutoff magnitude for stability might approach +∞
as certain frequency directions were approached. In this paper we show by quite different methods
that for type D detonations there exists a uniform cutoff magnitude for stability independent of
frequency direction. By reducing the search for unstable frequencies to a bounded frequency set, the
uniform cutoff obtained here is a key step toward the rigorous validation of a number of results in
the computational detonation literature. The detonation profile P (x) is a stationary solution of the
ZND system depending on the single spatial variable x ∈ [0,+∞), the reaction zone. The spectral
stability of the profile is governed by a nonautonomous 5× 5 system of linear ODEs in x depending
on the perturbation frequency as a vector parameter. Difficulties in the analysis are caused by the
existence of frequency directions ζ for which two of the eigenvalues of this system cross at a particular
point x = x(ζ) in the reaction zone. Such points x(ζ) are called turning points. A necessary step
in obtaining a uniform stability cutoff is to obtain explicit representations of the decaying solutions
of the system that are uniformly valid for frequencies near turning point frequencies. The main
mathematical difficulty addressed here is to produce such uniform representations for frequencies
near the particular turning point frequency ζ∞ for which the associated turning point x(ζ∞) is +∞.
As part of the stability application here, we provide methods for handling turning point problems
on unbounded spatial intervals, including problems where the turning point occurs at infinity.
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Part I. Introduction.

The most commonly studied model of combustion is the Zeldovitch–vonNeumann–
Döring (ZND) system (0.1), which couples the compressible Euler equations for a re-
acting gas (in which pressure and internal energy are allowed to depend on the mass
fraction λ of reactant) to a reaction equation that governs the finite rate at which λ
changes. In three space dimensions with coordinates (x, y, z) the ZND equations for
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DETONATION STABILITY AND TURNING POINTS 1801

the unknowns (v,u, S, λ) (specific volume, particle velocity u = (ux, uy, uz), entropy,
and mass fraction of reactant) are given by the 6× 6 system [E2, FD]:

∂tv + u · ∇v − v∇ · u = 0,

∂tu+ u · ∇u+ v∇p = 0,(0.1)

∂tS + u · ∇S = −rΔF/T := Φ,

∂tλ+ u · ∇λ = r,

where p = p(v, S, λ) is pressure, T is temperature, ΔF is the free energy increment,
and r(v, S, λ) is the reaction rate function. A steady planar strong detonation profile
is a weak solution of this system depending only on x with a jump (the stationary
von Neumann shock) at x = 0. Without loss of generality we study profiles of the
form P (x) = (v, u, 0, 0, S, λ), where u > 0 is the x-component of particle velocity.
The solution is constant and supersonic (u > c0, where c0 is the sound speed at x) in
x < 0, the quiescent zone,1 and satisfies a nonlinear system of ODEs in the subsonic
reaction zone x > 0. In order to be a weak solution of (0.1) in a neighborhood of
x = 0, P (x) must satisfy an appropriate Rankine–Hugoniot condition at x = 0:

(0.2)(u
v

)
+
=
(u
v

)
+
:= m, p+ − p− = m2(v− − v+), e+ − e− =

1

2
(p+ + p−)(v− − v+),

λ+ = λ−,

where e(v, S, λ) is the specific internal energy and ± denotes states to the right (resp.,
left) of the discontinuity. The jump conditions for the von Neumann shock, (v, u, S)±,
considered as a gas dynamical shock, are the same as those in (0.2). There is a well-
defined limiting state P∞ = limx→+∞ P (x) with λ(∞) = 0, and the range of u on
[0,∞) is a compact subinterval of (0,∞).

The rigorous study of spectral stability for strong detonations was begun by
Erpenbeck [E1] in the 1960s. Working with the ZND model, in [E2, E3] he iden-
tified two fundamental classes of detonation profiles, referred to as those of decreasing
(D) and increasing (I) type, which appeared to exhibit very different behavior with
respect to high-frequency perturbations. Using a combination of rigorous and non-
rigorous arguments, Erpenbeck concluded that type I detonations were unstable to
some oscillatory perturbations for which the (vector) frequency was of arbitrarily large
magnitude, while type D detonations were stable provided the frequency magnitude
was sufficiently high. For type D detonations Erpenbeck’s methods did not allow him
to obtain a cutoff magnitude for stability that was uniform with respect to frequency
direction. Thus, he left open the question of whether the cutoff magnitude for stability
might approach +∞ as certain frequency directions were approached. In [LWZ1] we
identified the mathematical issues left unresolved in [E2, E3] and provided proofs, to-
gether with certain simplifications and extensions, of the main conclusions of [E2, E3],
in particular, high-frequency instability of type I detonations. However, the paper
[LWZ1] also failed to resolve the above question for type D detonations. In this paper
we show by quite different methods that for type D detonations there exists a uniform
cutoff magnitude for stability independent of frequency direction, thus establishing
high-frequency stability of type D detonations.

1In the quiescent zone we take λ = 1.
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1802 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

The spectral stability of a ZND profile is governed by a nonautonomous 5× 5
system of linear ODEs in x depending on the perturbation frequency (τ, ε) as a
parameter [E2, E3, LWZ1]:

(0.3)
dθ

dx
= −Gt(x, τ, ε)θ on x ≥ 0.

Here the system defined by the matrix G(x, τ, ε) is obtained by linearizing the ZND sys-
tem about the profile P (x) and taking the Laplace transform in time and the Fourier
transform in the transverse spatial variables (y, z). The matrix Gt is the transpose of

G, the variable τ ∈ C is dual to time, and ε =
√
α2 + β2, where (α, β)∈ R2 is dual to

(y, z).2 We have

(0.4) G(x, τ, ε) = −(Ax(x))−1[τI + iεAy(x) +B(x)]

for matrices Ax, Ay , and B given in section 20. The x-dependence of these matrices
enters entirely through the profile P (x).3 The reduction from a linearized system of
dimension 6 to one of dimension 5 and from (α, β) to ε uses the rotational symmetry
of G with respect to the transverse velocity components.4

In [E1] Erpenbeck defined a stability function V (τ, ε) whose zeros in the right half-
plane �τ > 0 (“unstable zeros”) correspond to perturbations of the steady profile P (x)
that grow exponentially in time. The computation of V requires the evaluation within
the reaction zone of the solution θ(x, τ, ε) of (0.3) which satisfies the condition that θ
remains bounded for fixed (τ, ε) with �τ ≥ 0 as x → ∞, and θ decays exponentially
to zero for �τ > 0 as x → ∞. As we will see, this condition determines θ uniquely
up to a constant multiple. We shall refer to this solution θ as the decaying solution,
even though it is merely bounded for certain purely imaginary τ values.

Following the notation of [E2, E3], we write τ as

(0.5) τ = ζε,

where ζ ∈ {z ∈ C : �z ≥ 0} and ε > 0 is large.5 Thus we can rewrite (0.3) as

dθ

dx
= (εΦ0 +Φ1)θ, where

Φ0(x, ζ) = {(Ax(x))−1 · (ζI + iAy(x))}t,
Φ1(x) = {(Ax(x))−1B(x)}t.

(0.6)

The eigenvalues μj(x, ζ) of the matrix Φ0, which is given in (20.2), play a crucial
role in all that follows. They are

(0.7) μ1 = −κ(κζ + s)/ηu, μ2 = −κ(κζ − s)/ηu, μ3 = μ4 = μ5 = ζ/u,

2Thus, ε/2π is the transverse wavenumber. We briefly retain the perhaps confusing notation

ε for the large quantity
√
α2 + β2 to facilitate comparison with [E1, E2], where that notation was

used. In most of the paper we work with h = 1
ε
; see Notation 0.1.

3In fact, we show in section II that P (x) can be expressed as P (x) = P(λ(x)).
4We refer to [E1] and to the introduction of [LWZ1] for the details of the derivation of (0.3) and

for additional background on the ZND system.
5In [E2, E3] Erpenbeck used a decomposition τ = εζ + ν, but ν played no role in his treatment

of type D profiles and can be set equal to zero.
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DETONATION STABILITY AND TURNING POINTS 1803

where with c20 = −v2pv(v, S, λ)

(0.8) s(x, ζ) =
√
ζ2 + c20η, κ(x) =

√
1− η = u/c0.

The square root defining s, regarded as a function of ζ, is taken to be the positive
branch with branch cut the segment [−ic0√η, ic0√η] on the imaginary axis. Thus, in
particular, we have

s = |s| when ζ2 + c20η > 0,

s = i|s| when ζ2 + c20η < 0 and ζ = i|ζ|,
s = −i|s| when ζ2 + c20η < 0 and ζ = −i|ζ|.

(0.9)

One checks that only μ1 has, for �ζ > 0, negative real part; consequently, for a fixed
ζ with �ζ > 0 the system (0.6) has a one-dimensional (1D) space of solutions that
decay to zero as x → +∞. The eigenvectors corresponding to the μj , j = 1, . . . , 5,
are the respective columns of the matrix

(0.10) T (x, ζ) =
(
T1 T2 T3 T4 T5

)
=

⎛
⎜⎜⎜⎜⎝

ms
κu −ms

κu − im
1−η 0 0

ζ
u

ζ
u i 0 0

−i −i ζ
u 0 0

−κpSs
um

κpSs
um 0 1 0

−κpλs
um

κpλs
um 0 0 1

⎞
⎟⎟⎟⎟⎠ ,

where m = u
v is the mass flux.

From the formulas (0.7), (0.8) we see that for any fixed value of ζ, the eigenvalues
μ1 and μ2 are distinct except at values x = x(ζ), where s2(x, ζ) = ζ2 + c20η(x) = 0;
at such values the first and second columns of T are parallel. The eigenvalues μ2 and
μ3 are distinct except at x values where ζ = u, and then the second and third rows
of T are clearly parallel. For all other values of x the matrix T (x, ζ) is invertible.6

A complex number ζ with �ζ ≥ 0 is defined in [E2] to be of Class (iii) or Class
(ii), respectively, when there exists x∗ ∈ [0,∞] such that s(x∗, ζ) = 0 or ζ = u(x∗).
All other ζ are said to be of Class (i). Thus we have

Class (iii) = {ζ : �ζ = 0 and min
x

(c0η
1
2 ) ≤ |ζ| ≤ max

x
(c0η

1
2 )},

Class (ii) = {ζ : 
ζ = 0 and min
x
u ≤ ζ ≤ max

x
u},

Class (i) = {all remaining ζ ∈ C with �ζ ≥ 0}.
(0.11)

Class (iii) (resp., (ii)) consists of two (resp., one) bounded closed interval(s), and the
minima appearing in (0.11) are positive. In contrast to [E2, E3] we are able to treat
Class (i) and Class (ii) frequencies by a single argument. The argument is based on
the observation that for such ζ the eigenvalue μ1 remains well separated from the
others. So for us the important partition of ζ− space is

(0.12) {ζ ∈ C : �ζ ≥ 0} = (iii) ∪ (iii)
c
.

6For certain types of profiles and choices of ζ, there may be more than one x-value where T (x, ζ)
is singular.
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1804 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

Notation 0.1. (1) When working with Class (iii) values of ζ we will usually
suppose ζ = i|ζ|. The same results hold with the same proofs when ζ = −i|ζ|, but
certain formulas change slightly. Thus, for some statements it is helpful to define

(0.13) Class (iii)+ = Class (iii) ∩ {ζ = i|ζ|}.

We let (iii)o+ denote the interior of the closed interval (iii)+.
(2) Henceforth, we shall use the parameter h = 1/ε instead of ε and, in view

of (0.5), we shall denote the stability function by V (ζ, h) instead of V (τ, ε) and the
decaying solution of (0.6) by θ(x, ζ, h) instead of θ(x, τ, ε).

Definition 0.2. A detonation profile P (x) is said to be of type D (resp., type I)
if the function c20η = c20 − u2 satisfies

(0.14)
d

dx
(c20η) =

d

dx
(c20 − u2) < 0 (resp., > 0) on [0,+∞).

For profiles of type I it was shown in [E2, E3, LWZ1] that the stability function
V (τ, ε) generally has zeros in �τ > 0 (unstable zeros) for all transverse wavenumbers
ε above a certain cutoff.7 In this paper we are concerned only with profiles of type D.
In the case of more general profiles, by considering intervals on which c20η is increasing
or decreasing, stability and instability results can be proved by combining the results
for I and D type profiles (see, for example, [LWZ1, Theorem 5.2, part e]).

We suppose from now on that P (x) is a type D profile. In this case

(0.15) (iii)+ = {ζ = i|ζ| : c0η1/2(∞) ≤ |ζ| ≤ c0η
1/2(0)}.

Definition 0.3. We refer to class (iii) as the set of turning point frequencies.
For each ζ ∈ (iii)+ there is a unique x = x(ζ) ∈ [0,∞] such that s(x(ζ), ζ) = 0. We
refer to x(ζ) as the turning point associated to ζ. The map x(ζ) : (iii)+ → [0,∞] is

bijective. We set ζ0 = ic0η
1/2(0) and ζ∞ = ic0η

1/2(∞) and note that x(ζ0) = 0 and
x(ζ∞) = +∞. We refer to x(ζ∞) as the turning point at infinity.

For ζ ∈ (iii)+, ζ = ζ0, consider an interval [0,K] that does not contain the
turning point x(ζ). On any such interval the matrix T (x, ζ) is invertible, and we can
use WKB methods to construct8 approximate solutions of order hm of the system
(0.6) associated to each of the eigenvalues μi of the form

(0.16)

θi(x, ζ, h) = e
1
hhi(x,ζ)+ki(x,ζ)

[
fi0(x, ζ) + hfi1(x, ζ) + · · ·+ h(m+1)fi(m+1)(x, ζ)

]
.

Here

(0.17) hi(x, ζ) =

∫ x

0

μi(x
′, ζ)dx′, ki(0, ζ) = 0, and fi,0 = Ti(x, ζ).

We do not need explicit formulas for the other quantities appearing in (0.16). For
our purposes it is only important to specify the leading term of θi uniquely, and the
condition (0.17) does this. More generally, for a given ζ ∈ {�ζ ≥ 0} approximate
solutions of this form can be constructed on any compact x-interval where T (x, ζ)
is invertible. Classical sufficient conditions for approximate solutions of this type to

7Theorem 5.2 of [LWZ1] gives a precise statement.
8See, for example, Chapters 5 and 6 of Coddington and Levinson [CL].
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DETONATION STABILITY AND TURNING POINTS 1805

be close in relative error to true exact solutions of (0.6) for h small are given, for
example, in [LWZ1, Theorem 3.1].

Observing that |θ1(0, ζ, h)− T1(0, ζ)| ≤ Ch|θ1(0, ζ, h)| we give the following defi-
nition.

Definition 0.4 (Type θ1). Consider θ(x, ζ, h), the decaying solution of (0.6),
and suppose ζ lies in P(h), a subset of �ζ ≥ 0 that may depend on h. We say that θ
is of type θ1 at x = 0 on P(h) if there is a nonvanishing scalar factor s(ζ, h) so that,
given any δ > 0, there exists an h0 > 0 such that

(0.18) |s(ζ, h)θ(0, ζ, h) − T1(0, ζ)| ≤ δ|T1(0, ζ)| for ζ ∈ P(h), 0 < h ≤ h0.

Remark 0.5. LetK be a subset of �ζ ≥ 0. Erpenbeck realized in [E2] that in order
to show that the stability function V (ζ, h) is nonvanishing for ζ ∈ K for h sufficiently
small, it suffices to show that the decaying solution θ is of type θ1 at x = 0 on K. In
[E2, E3, LWZ1] it was shown for type D profiles that θ is of type θ1 at x = 0 on K
when K is either a compact subset of (iii)o+ or a compact subset of {�ζ ≥ 0} \ (iii).9
These papers did not consider sets K containing either of the endpoints ζ0, ζ∞ of
(iii)+, nor did they provide a uniform treatment of the set |ζ| ≥M . Moreover, values
of ζ in (iii)o+ were treated by arguments completely different from those used to treat
nearby values in �ζ > 0. In this paper the main result will be proved by showing
that θ is of type θ1 at x = 0 on the full set �ζ ≥ 0. The proof here gives a uniform
analysis near all points in (iii)+, including the endpoints, and a uniform analysis for
|ζ| ≥M . In section 2.1 we give a very simple example illustrating how a second-order
equation with a turning point at x = +∞ transforms to Bessel’s equation under a
suitable transformation.

1. Assumptions.
Assumption 1.1. The thermodynamic functions appearing in the ZND system

(0.1), p (pressure), T (temperature), ΔF (free energy increment), and r (reaction
rate) are real-analytic functions of their arguments (v, S, λ).

Assumption 1.2. The steady strong detonation profile P (x) = (v, u, 0, 0, S, λ) is of
type D. It is a real-analytic function of x in the subsonic reaction zone [0,∞). There
exist constants Ci, i = 1, . . . , 4, such that

(1.1) 0 < C1 ≤ κ =
u

c0
≤ C2 < 1 and 0 < C3 ≤ u ≤ C4 for all x ∈ [0,∞).

Assumption 1.3. The rate function satisfies

(1.2) r|λ=0 = 0, rλ < 0, rv|λ=0 = 0, rS |λ=0 = 0.

This assumption is satisfied, for example, by rate functions of the form

(1.3) r = −kρφ(T )λ,

where ρ is density and k > 0 is a reaction rate constant, such as the Arrhenius rate law

(1.4) r = −kλ exp(−E/RT ) (E is activation energy).

9Theorem 5.2, parts (a) (b), of [LWZ1] gives a treatment of such sets K.
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1806 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

Analogous to V (ζ, h), one can define a stability function L1(ζ) for the von
Neumann shock, considered as a purely gas dynamical shock. This was first done
in [E4], and Erpenbeck’s L1(ζ) turned out to be a nonvanishing multiple of the
Majda stability determinant for shocks defined in [M] 20 years later. The functions
V (ζ, h) and L1(ζ) are described in section 21.

Assumption 1.4. The stability function for the von Neumann shock, L1(ζ), has
no zeros in �ζ ≥ 0. This means that the equation of state of the unreacted explosive
is such that the von Neumann step-shock would be stable if the reactions behind it
were somehow suppressed. This assumption, which is also made in [E2, E3, LWZ1],
allows us to concentrate on effects that arise solely from the reactions; it always holds,
for example, for step-shocks in ideal polytropic gases.

2. Main result. Our main result is the following theorem.
Theorem 2.1. Consider a strong detonation profile of type D under

Assumptions 1.1, 1.2, 1.3, and 1.4. There exists an h0 > 0 such that for all �ζ ≥ 0,
the stability function V (ζ, h) = 0 for 0 < h ≤ h0.

As explained in Remark 0.5, to prove the theorem it suffices to show that the
decaying solution θ(x, ζ, h) of (0.6) is of type θ1 at x = 0 on the set {�ζ ≥ 0}. This
property of θ is a consequence of Propositions 10.6, 10.12, and 10.18, which treat ζ∞;
Proposition 12.8, which treats points in (iii)

o
+, and Proposition 13.1, which treats ζ0;

Corollary 11.3, which treats compact subsets of {�ζ ≥ 0}\ (iii); and Proposition 14.1,
which treats |ζ| ≥M for M large. Section 21 shows how Assumption 1.4 and the fact
that θ is of type θ1 at x = 0 imply Theorem 2.1.

The main difficulty in proving existence of a uniform stability cutoff is to obtain
explicit representations of θ at x = 0 that are uniformly valid for frequencies near
turning point frequencies. For the finite turning point frequencies ζ ∈ (iii)o+, the
three-step strategy is to show first that θ is of type θ1 to the right of the turning
point x(ζ),10 then to perform a matching argument involving Airy functions with
arguments depending on (ζ, h) as a parameter to show that θ is of type θ1 just to
the left of x(ζ), say, at x(ζ)− δ, and finally to match using a basis of exact solutions
close to the approximate solutions {θi}5i=1 (0.16) to conclude that θ is of type θ1 on
[0, x(ζ)−δ]. This strategy encounters special problems when the endpoint frequencies
ζ0 and ζ∞ are considered, and those problems are most serious in the case of ζ∞, to
which all of Part II is devoted. For this frequency it is clear that the first step in
the strategy does not even make sense since x(ζ∞) = +∞. The main novelty of the
paper is our strategy for dealing with the turning point at +∞. The case ζ = ζ0 is
distinguished by the fact that this is the only case where the point at which θ(x, ζ, h)
must be explicitly evaluated in order to compute V (ζ, h), namely, x = 0, is itself a
turning point: x(ζ0) = 0.

In the remainder of this section we discuss our approach to analyzing the turning
point at infinity. The profile P (x) converges at an exponential rate to its endstate
P (+∞),

(2.1) |P (x)− P (+∞)| ≤ Ce−μx for μ > 0 as in (4.7),

and we use this property in section 4 to analytically extend P (x) to a half-plane of
the form

(2.2) W(M0) := {x ∈ C : �x > M0}.
10This is to be expected, since θ is the decaying solution and �μ1(x, ζ) ≤ 0
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DETONATION STABILITY AND TURNING POINTS 1807

This immediately gives an analytic extension of the governing system (0.6) to W(M0).
For any angle θ such that 0 < θ < π/2, define the infinite wedge

(2.3) W(M0, θ) := {x ∈ C : | arg(x−M0)| < θ} ⊂ W(M0).

For ζ ∈ {�ζ ≥ 0} near ζ∞ and x ∈ W(M0, θ) the eigenvalues {μj(x, ζ)}j=1,2 are well
separated from {μj(x, ζ)}j=3,4,5. In section 5 we use this fact to construct a 5 × 5
conjugator Y (x, ζ, h) such that the map θ = Y (x, ζ, h)φ exactly transforms the system
(0.6) to block diagonal form on W(M0, θ):

(2.4) h
d

dx
φ =

(
A11(x, ζ, h) 0

0 A22(x, ζ, h)

)
φ,

where the blocks A11 and A22 are 2 × 2 and 3 × 3, respectively. The conjugator
has the form Y = Y1Y2, where Y1 gives an approximate conjugation to block form
(5.8) and Y2 solves away the error in the approximate conjugation. The matrix Y1 =
(P0, Q0, T3, T4, T5) for vectors P0, Q0 defined in (5.6) and satisfying

(2.5) T1 = P0 + sQ0, T2 = P0 − sQ0 for T1, T2 as in (0.10),

and the entries of the matrix Y2 are constructed by solving certain integral equations
on W(M0, θ) by a contraction argument. Unlike T (x, ζ), the matrix Y1(x, ζ) is always
invertible. The analytic extension of the system (0.6) to W(M0) gives us a freedom
to choose integration paths that play an important role in this and later contraction
arguments.

The block A11 has eigenvalues close to the crossing eigenvalues μ1(x, ζ), μ2(x, ζ).
Thus, for ζ near ζ∞ we have reduced the problem of constructing the decaying solution
of the governing system (0.6) on [M0,+∞) to constructing the decaying solution of
the 2 × 2 system d

dxφ1 = A11(x, ζ, h)φ1. In section 5 we rewrite this 2× 2 system as
equivalent second-order equation (5.28),

(2.6) h2wxx = (C(x, ζ) + hr(x, ζ, h))w, where C(+∞, ζ∞) = 0,

and we focus on solving this equation on an infinite strip of the form TM,R := {x ∈ C :
�x ≥ M, |
x| ≤ R}. Note that for M large enough, TM,R ⊂ W(M0, θ). In section 6
we show that a transformation of the form t = t(x, ζ) = f(ζ)e−μx/2 for μ as in (2.1)
and some f(ζ), transforms (2.6) into an equation that is a perturbation of Bessel’s
equation:

h2(t2Wtt + tWt) = (t2 + α̃2)W

+ [(t2 + α2)t2b1(t, ζ) + t3b2(t, ζ) + ht2b3(t, ζ, h)]W on W ,
(2.7)

where W , the image of the strip TM,R under the map t = t(x, ζ), is a bounded wedge
in {�t ≥ 0} with vertex at t = 0 (see (6.13)).

Before returning to (2.7) we illustrate how Bessel’s equation arises from a very
simple model equation with a turning point at +∞ by a similar transformation. This
model provides motivation for introducing (2.7) and already indicates the importance
of the parameter α/h which appears below in the definition of regimes I, II, and III.

2.1. Model problem: Solution in terms of Bessel functions. Consider the
equation

h2
d2w

dx2
= (e−2x + α2)w,
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1808 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

which becomes under the change of variable t = e−x

h2(t2wtt + twt) = (t2 + α2)w.

Thus, the turning point at x = +∞ for α = 0 becomes a turning point at t = 0.
Setting z = h−1t and observing the scale-invariance of the left side, we obtain

h2
[
z2
d2w

dz2
+ z

dw

dz

]
= (h2z2 + α2)w,

which suggests that the good parameter is β = h−1α. In this case, the equation
becomes

z2uzz + zuz − (z2 + β2)u = 0.

We recognize this as the “modified Bessel’s equation” [O].11 One may thus deduce
that u(z) = AJβ(iz) +BYβ(iz); using z = h−1e−x one obtains

w(x) = AJih−1α(ih
−1e−x) +BYih−1α(ih

−1e−x),

and classical expansions for Bessel functions can now be used to decide which solutions
decay or remain bounded as x→ ∞ for different choices of the complex parameter α.
A connection between turning points at infinity and Bessel functions is discussed
in [DL].

In (2.7) the parameter α = α(ζ) ∈ C satisfies α2 = i(ζ − ζ∞) and α̃ is a nonvan-
ishing multiple of α. The strategy now is to construct solutions of (2.6) on the strip
TM,R that decay as �x→ +∞ by constructing solutions of (2.7) on W that decay as
t→ 0.

At first it is not at all clear whether and in what sense the perturbation, given
by the second line of (2.7), is “small enough” for (2.7) to be helpfully regarded as a
perturbation of Bessel’s equation. Bessel’s equation is a very singular equation, with
a regular singular point at 0, an irregular singular point at ∞, and turning points for
certain choices of (α̃, h); it is a delicate matter to understand perturbations of such a
singular object. If one ignores the perturbation in (2.7) for a moment, it can be seen
that the behavior of solutions to (2.7) depends on both the phase of α̃(ζ) and on the
relative magnitude of α̃ and h. Accordingly, in section 9 we identify three different
parameter regimes for (α̃(ζ), h). With β̃ = α̃/h these are

I : |β̃| ≥ K, 0 ≤ arg β ≤ π

2
− δ, where K is large and δ > 0,

II : |β̃| ≥ K,
π

2
− δ ≤ arg β ≤ π

2
,

III : |β̃| ≤ K.

It turns out that the perturbed Bessel problem (6.13) can be analyzed in regimes I,
II, and III by using suitable transformations of dependent and independent variables
to reduce (6.13) to the normal form

(2.8) Wξξ = (u2ξm + ψ(ξ))W,

where m = 0, 1, or −1, respectively, u, is a large parameter, and ψ depends on the
perturbation in (2.7). In regimes I and II the correct choice of large parameter is
u = β̃ = α̃/h and a basis of solutions of (2.8) can be writtenin terms of exponentials

11The standard Bessel’s equation is z2Uzz + zUz + (z2 − ν2)U = 0.
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DETONATION STABILITY AND TURNING POINTS 1809

and Airy functions, respectively (see Propositions 10.2 and 10.8). In regime III the
large parameter is u = 1/h and solutions of (2.8) are expressed in terms of the modified
Bessel functions Iβ̃ , Kβ̃ (Proposition 10.14).

Control of the function ψ in (2.8) is gained by careful estimates of the functions
bi, i = 1, 2, 3, appearing in the perturbation (see, for example, Proposition 6.3). The
analysis also makes use of some classical methods [O] for constructing solutions to
(2.8) on large subdomains of C. To complete the analysis of the turning point at ∞,
one must unravel the many transformations leading from (2.6) to the normal form
(2.8), identify the explicit form of the solution that decays as x (the original x) goes
to ∞, and show that this solution is indeed of type θ1 at x = M , the real point on
the left boundary of the infinite strip TM,R. Provided ζ lies close enough to ζ∞, the
point x =M will lie to the left of any of the corresponding turning points x(ζ). From
here it is then relatively easy to conclude that θ is of type θ1 at x = 0 for ζ near ζ∞.

Remark 2.2. We have limited the exposition here mostly to the case of an idealized
single-step exothermic reaction, for which λ is scalar. In the case of a multistep
reaction, the λ-equation becomes a system of ODEs, with multiple decaying modes ∼
e−γjxvj , where γj is in general complex with �γj > 0. One can then apply the analytic
stable manifold theorem of [LWZ2] to obtain an analytic extension of the profile to a
wedgeW(M0, θ) for some θ > 0. Likewise (see [LWZ2]), we may conjugate the turning
point at infinity to a 2× 2 block analytic on the same wedge. In some circumstances
the presence of multiple reaction steps can prevent us from recasting the 2× 2 block
in the form (2.7). Nonetheless, under the condition that γ1 is real and

(2.9) �γj > 2γ1 for j = 1

the analysis of this paper gives, independently of the results of [LWZ2] just mentioned,
high-frequency stability of type D detonations also in this more general case. This
extension is discussed in detail in section 11. The following example is a multistep
case where condition (2.9) is satisfied.

Example 2.3. In equations (4.3)–(4.5) [S, p. 8], there is described a model three-
step chain-branching reaction given by F → Y; F + Y → 2Y; Y → P for a fuel F,
radical species Y, and product P, corresponding to initiation, chain-branching, and
chain-termination reactions, with rates

(2.10) rI = feθI(1/TI−1/T ), rB = yfeθB(1/TB−1/T ), rC = y,

and reaction dynamics df/dx = −rI − rB, dy/dx = rI + rB − rC , where f and y are
mass fractions of F and Y ; TI > T |x=0 > TB; TI > TB > T (∞); and θI >> θB >> 1.
This has been proposed in [K, SD, SKQ] as a realistic model for hydrogen-oxygen
detonations studied experimentally in [AT, St], wherein “a small amount of reactant
is converted into chain-carriers, which may be either free radicals or atoms, by means
of the slow chain-initiation reactions, while the rise in concentration of chain-radicals
is retarded by chain-termination steps which occur either through absorption at the
vessel walls or through three-body collisions in the interior” [SD]. Setting λ = (f, y),
the vector of reactants, and linearizing about the equilibrium λ = (0, 0), we obtain

(2.11)
d

dx
λ =

(−eθ1(1/TI−1/T (∞)) 0
∗ −1

)
λ,

verifying the condition μ1 = 1 << μ2 := eθ1(1/TI−1/T (∞)) provided θI >> 1 and
T (∞) > TI .

3. Discussion and open problems. High-frequency instability was established
for type I detonations in [E2, E3, LWZ1]. Hence, Theorem 2.1 completesthe program
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1810 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

of [E2, E3] for determining the high-frequency stability behavior of ZND detonations
belonging to the two main classes I and D identified by Erpenbeck. Having a uni-
form high-frequency cutoff for stability is of more than abstract interest. As noted
in [LS, KaS], numerical stability computations are both computationally intensive
and delicate, with many features difficult to resolve or extrapolate in various asymp-
totic limits. The use of rigorous analysis to truncate the relevant parameter regime
to a closed, bounded region is thus a critical, but up to now missing, part of any
numerical stability investigation. Bounding the set of possibly unstable perturbation
frequencies is a step toward the rigorous validation of the existing numerical results
on multidimensional stability of type D ZND detonations.

Results in one dimension corresponding to the high-frequency results given here
may be found in [Z1]. However, we emphasize that the multidimensional setting
is essentially different from that of one dimension, being more complicated both
physically—in one dimension, high-frequency stability holds automatically for all
types of detonations—andmathematically—in one dimension, nontrivial turning points
do not enter, so that the analysis can be carried out using the more familiar tools
of repeated diagonalization and (a useful modification of) the gap lemma, under the
mild hypothesis of Cr coefficients for the eigenvalue ODE. Here, by contrast, our
arguments use in important ways our assumption of analytic coefficients. This is
not mathematical convenience but reflects the inherent difficulty of the problem; in a
companion paper [LWZ2], we show by explicit counterexamples that the conclusions
made here may fail for coefficients that are Cr or even C∞.

The stability result of Theorem 2.1 and the instability results of [LWZ1] concern
the multidimensional stability (or instability) of ZND detonations with respect to
high-frequency perturbations. A fundamental open problem is to establish full multi-
dimensional stability of ideal gas ZND detonations with one-step Arrhenius reaction
rate in the small-heat release and high-overdrive limits, generalizing the 1D results of
[Z1] and giving rigorous validation to the formal observations of Erpenbeck in [E1, E5].
This would represent the first complete (i.e., covering all frequencies), rigorous result
on multidimensional stability of any detonation wave. Again, given the delicacy of
numerical computations on this subject, any such analytical signposts are invaluable.

We note that the 1D argument of [Z1], applied word for word together with
the result of Majda [M] on multidimensional stability of ideal gas shock fronts, gives
already by a simple continuity argument bounded frequency multidimensional stability
of ideal gas ZND detonations with one-step Arrhenius reaction rate in the small-heat
release and high-overdrive limits. The methods of this paper provide a starting point
for treating the remaining high-frequency regime.

Another possibility opened up by our analysis is the treatment of stability in the
multidimensional ZND limit of reactive Navier–Stokes (rNS) detonations. Establish-
ing a close link between ZND and rNS stability functions for small viscosity/heat
conduction/diffusion would instantly give a large number of spectral stability and
bifurcation results for rNS; in one dimension such results were proved in [Z2]. Solving
this problem would involve giving a multiparameter extension of the turning point
analysis carried out here, with viscosity, heat conduction, and species diffusion as the
additional parameters. As noted in [CJLW, Z2], the nonlinear implications of spec-
tral stability (“normal modes”) analysis are far from clear for ZND, which includes
all the difficulties of the nonreacting Euler equations and more. For rNS, on the other
hand, which incorporates mechanisms for dissipation, there is a much better chance of
translating results on multidimensional spectral stability/instability into correspond-
ing nonlinear stability/instability results. In one dimension a number of results of
this type are given in [TZ].
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DETONATION STABILITY AND TURNING POINTS 1811

As a direction beyond ZND, we mention the rigorous treatment for Maxwell’s
equations of “hybrid resonance” or “X-mode” heating of fusion plasma at the “cutoff”
frequency where light and plasma frequencies collide. This frequency corresponds to
a finite but singular turning point [DIW]. For parallel electric and magnetic fields,
there is exact decoupling into “ordinary” (O) modes governed by Airy’s equation, and
“extraordinary” (X) modes governed by a singular cousin which is a perturbed Bessel
equation similar to our equation (2.7). Exact conjugation tools like those we have
developed here may be useful for completing this singular ODE analysis.

Finally, the uniform estimates given here are potentially useful for general turning-
point problems on unbounded spatial intervals, both for spectral stability analysis as
here and for resolvent estimates toward linearized and nonlinear stability or instability.

Part II. The turning point at infinity.

4. Analytic extension of the profile to a half-plane. The analytic extension
of the profile P (x) to a half-plane given in this section turns out to be important for
the construction in the next section of the conjugator to block form near ∞. For that
an extension merely to a strip like TM,R does not appear to suffice.

In view of Assumptions 1.1, 1.2, and 1.3, the nonzero components of the detona-
tion profile P (x) = (v, u, S, λ) := (q, λ) satisfy a 4 × 4 system of ODEs on [0,∞) of
the form.

(4.1)
d

dx

(
F (P )
λ

)
=

(
0

h(P )λ

)
,

(
q(0)
λ(0)

)
=

(
q0
λ0

)
,

where F (P ) and h(P ) are real-analytic. Here the equation d
dxF (P ) = 0 expresses

conservation of mass, momentum, and energy (see [FD, p. 98]) and can be integrated
to give F (q, λ) = F (P (+∞)), an equation that determines q as a function q = Q(λ).12

With Q(λ) = (Q(λ), λ) the system thus reduces to a scalar problem of the form

(4.2)
d

dx
λ = h(Q(λ))λ, λ(0) = λ0 > 0,

where for some constants c1, c2

(4.3) −c1 < h(Q(λ)) < −c2 < 0 on [0, λ0].

The condition (4.3) implies

(4.4) |λ(x)| ≤ Ce−c2x on [0,∞),

and thus P (x) = (Q(λ(x)), λ(x)) satisfies

(4.5) |P (x)− P (∞)| ≤ Ce−c2x, where P (∞) = (Q(0), 0).

The next proposition gives more precise information on the profile for x large.
Proposition 4.1. For M0 large enough, the profile P (x) extends analytically to

a solution of (4.1) on a half-plane W(M0) := {x ∈ C : �x > M0}. The extended
profile has a convergent expansion

(4.6) P (x) = P0 + P1e
−μx + P2e

−2μx + · · · on W(M0),

12Here Q(λ) is actually a branch of a multivalued function.
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1812 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

where μ = −h(Q(0)) > 0 and the Pj are constant vectors. Thus, P (x) satisfies

(4.7) |P (x)− P (∞)| ≤ Ce−μ�x on W(M0).

Proof. (1) In view of the above discussion it suffices to show that λ(x) has an
expansion like (4.6) (with λ0 = 0) on W(M0) for M0 large. Let us set H(λ) :=
h(Q(λ)), so μ = −H(0) and

(4.8)
d

dx
λ = λH(λ),

where H(λ) is analytic in a neighborhood of λ = 0.
(2) We have H(λ) = H(0) + λK(λ), so

(4.9)
1

H(λ)
− 1

H(0)
= λR(λ)

for some functions K(λ), R(λ) analytic near λ = 0. Multiplying (4.9) by λx and using
(4.8), we obtain

(4.10)
λx
λ

+ μ = μR(λ)λx.

Let V (λ) =
∫ λ
0
R(s)ds and set λ(x) = e−μxT (x). Noting that lnT is a primitive of

the left side of (4.10), we obtain by integrating (4.10) from M1 to x for M1 large

(4.11) lnT = μV (e−μxT (x)) + C0,

where C0 = C0(M1) is a known constant. Defining K(T, b) = lnT − μV (bT ) near
the basepoint (T0, b0) = (eC0 , 0), we can solve K(T, b) = C0 by the implicit function
theorem to obtain

(4.12) T (b) = eC0 +

∞∑
j=1

ajb
j for |b| < δ

for some δ > 0. Thus, λ̃(b) := bT (b) is analytic for |b| < δ, which implies λ(x) =
λ̃(e−μx) is analytic for x such that eμ�x < δ, that is, �x > − ln δ

μ := M0. The

expansion (4.12) implies

(4.13) λ(x) = eC0e−μx +
∞∑
j=1

aje
−(j+1)μx on W(M0),

so P depends analytically on e−μx.13

5. Conjugation to block form near infinity. Here we perform a conjugation,
based on Proposition 5.2 below, of Erpenbeck’s 5× 5 system

(5.1) h
d

dx
θ = (Φ0(x, ζ) + hΦ1(x))θ := G(x, ζ, h)θ

13A similar analysis of profiles was given in [L].
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DETONATION STABILITY AND TURNING POINTS 1813

to block form

(5.2) h
d

dx
φ =

(
A11(x, ζ, h) 0

0 A22(x, ζ, h)

)
φ

on an infinite wedge

(5.3) W(M0, θ) := {x = xr + ixi ∈ C : | arg(x−M0)| < θ}, M0 >> 1,

contained in the half-plane W(M0) to which the profile P (x) = (v, u, , S, λ) has been
analytically extended. On W(M0) we have

(5.4) |P (x)− P (∞)| ≤ Ce−μ�x

for μ > 0 as in Proposition 4.1.
Define the 5× 5 matrix

(5.5) Y1 =
(
P0 Q0 T3 T4 T5

)
,

where

(5.6) P0 =

⎛
⎜⎜⎜⎜⎝

0
ζ
u−i
0
0

⎞
⎟⎟⎟⎟⎠ , Q0 =

⎛
⎜⎜⎜⎜⎝

m
κu
0
0

− κ
mupS− κ
mupλ

⎞
⎟⎟⎟⎟⎠ , T3 =

⎛
⎜⎜⎜⎜⎝
− im

1−η
i
ζ
u
0
0

⎞
⎟⎟⎟⎟⎠ , T4 =

⎛
⎜⎜⎜⎜⎝
0
0
0
1
0

⎞
⎟⎟⎟⎟⎠ , T5 =

⎛
⎜⎜⎜⎜⎝
0
0
0
0
1

⎞
⎟⎟⎟⎟⎠ .

Thus, we have

(5.7) T1 = P0 + sQ0, T2 = P0 − sQ0, s =
√
ζ2 + c20η(x),

for T1, T2 as in (0.10). Setting θ = Y1θ
a, we have

(5.8) h
d

dx
θa =

(
A0

11 0
0 A0

22

)
θa + h

(
d11 d12
d21 d22

)
θa,

where

(5.9)

A0
11 =

(
−κ2ζ

ηu − κ
ηu

− s2κ
ηu −κ2ζ

ηu

)
, A0

22 =

⎛
⎝ ζ
u 0 0

0 ζ
u 0

0 0 ζ
u

⎞
⎠ ,

(
d11 d12
d21 d22

)
= Y −1

1 Φ1Y1 − Y −1
1

dY1
dx

.

Since the eigenvalues of A0
11 are separated from those of A0

22, we can apply
Proposition 5.2 below to find a second conjugator, bounded and analytic in its argu-
ments,

(5.10) Y2(x, ζ, h) =

(
I hα12

hα21 I

)
,

such that if we set θa = Y2φ, we have

h
d

dx
φ =

(
A0

11 + hd11 + h2β11 0
0 A0

22 + hd22 + h2β22

)
,

φ : =

(
A11(x, ζ, h) 0

0 A22(x, ζ, h)

)
φ,(5.11)
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1814 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

where

(5.12) β11 = d12α21, β22 = d21α12.

Setting Y = Y1Y2, we conclude that θ satisfies (5.1) on the wedge W(M0, θ) if and

only if φ = (
φ1
φ2

) defined by θ = Y φ satisfies (5.11), where the 2× 2 block

A11(x, ζ, h) =

(
a b
c d

)
=

(
a b
c d

)
+O(h) with

a = −κ
2ζ

ηu
, b = − κ

ηu
, c = −s

2κ

ηu
, d = −κ

2ζ

ηu
.

(5.13)

Lemma 5.1. The functions d11(x) and d12(x) decay exponentially to 0 on
W(M0, θ) as �x→ ∞ at the same rate as λ(x).

Proposition 5.2. Let θ be any angle such that 0 < θ < π
2 . There exist positive

constants M0, h0 and a neighborhood ω � ζ∞ such that for ζ ∈ ω and 0 < h < h0, the
conjugator Y2(x, ζ, h) as in (5.10) can be constructed on W(M0, θ) with α12(x, ζ, h)
and α21(x, ζ, h) bounded and analytic in their arguments. Moreover, there exists a
well-defined endstate α21(∞) and we have estimates

(5.14) |∂kx (α21(x, ζ, h) − α21(∞, ζ, h)) | ≤ Ckh
−ke−μ�x

for μ > 0 as in Proposition 4.1.
Remark 5.3.
(1) The proofs are given in section 15. The differential equation satisfied by α21 is

(5.15) h
d

dx
α21 = A0

22α21 − α21A
0
11 + d21 + h(d22α21 − α21d11)− h2α21d12α21.

The argument uses the fact that the eigenvalues of A0
11(∞, ζ) and A0

22(∞, ζ) are
separated and close to the imaginary axis for ζ near ζ∞. Using the fact that d21
converges exponentially to its endstate d21(∞),

(5.16) |d21(x, ζ) − d21(∞, ζ)| ≤ Ce−μ�x,

and that d12 satisfies a similar estimate but with d12(∞) = 0, one can show that α21

has a well-defined endstate and that the estimates (5.14) hold. These estimates are
the key to the treatment of the b3 term in the perturbation of Bessel’s equation given
by (2.7).

(2) The above lemma and proposition imply that the function β11(x, ζ, h) decays
exponentially to 0 on W(M0, θ) as �x→ ∞ at the same rate as λ(x). Thus, the same
holds for the O(h) terms in (5.13).

A valuable tool for understanding the behavior of solutions of (5.1) as x→ ∞ is
the conjugator M(x, ζ, h) described in the following proposition.

Proposition 5.4 (“[MZ] conjugator,” [MZ, Lemma 2.6]). Consider any N ×
N system d

dxθ = A(x, ζ, h)θ on [0,∞), for (ζ, h) near a fixed basepoint (ζ, h) ∈
{�ζ ≥ 0} × (0, 1], where A is analytic in its arguments. Assume there is a corre-
sponding limiting system d

dxθ∞ = A(∞, ζ, h)θ∞ and that

(5.17) |A(x, ζ, h)−A(∞, ζ, h)| ≤ Ce−βx for some β > 0.
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DETONATION STABILITY AND TURNING POINTS 1815

Then there exists a neighborhood O � (ζ, h) and an N×N matrix M(x, ζ, h), analytic
in its arguments x ∈ [0,∞], (ζ, h) ∈ O, and uniformly bounded together with its
inverse, such that θ(x, ζ, h) is a solution of d

dxθ = A(x, ζ, h)θ on [0,∞) if and only if
θ∞ defined by

(5.18) θ =M(x, ζ, h)θ∞

is a solution of the limiting system. Moreover, for k ∈ {0, 1, 2, . . .} M satisfies
|∂kx(M(x, ζ, h)− I)| ≤ Cke

−δx for any 0 < δ < β, uniformly for (ζ, h) ∈ O.
From the matrix formulas given in section 20, it is not hard to see that the

eigenvalues of G(x, ζ, h) (5.1) are

μ∗
j := μj(x, ζ) +O(he−μx), j = 1, 2, 3, 4,

μ∗
5 = μ5(x, ζ) − h

rλ
u

+O(he−μx),
(5.19)

where rλ < 0 and μ is as in Proposition 4.1.14 Thus, the eigenvalues of the limiting
system G(∞, ζ, h) are μj(∞, ζ), j = 1, 2, 3, 4, and μ5(∞, ζ) − h rλu (∞). For �ζ > 0
only μ1(∞, ζ) has negative real part, so use of the conjugator M(x, ζ, h) shows that
for �ζ > 0, the system (5.1) has a 1D space D(ζ, h) of decaying solutions on [0,∞).

Lemma 5.1 implies that A11(∞, ζ, h) = A0
11(∞, ζ), so the eigenvalues of

A11(∞, ζ, h) are μj(∞, ζ), j = 1, 2. Use of the [MZ] conjugator again implies that for
�ζ > 0 the equation

(5.20) h
d

dx
φ1 = A11(x, ζ, h)φ1

has a 1D space of decaying solutions D1(ζ, h). Thus, we must have

(5.21) D(ζ, h) = {Y (x, ζ, h)

(
φ1
0

)
, φ1 ∈ D1(ζ, h)}.

Next we reduce (5.20) to an equivalent scalar second-order equation. Letting ϕ0

for the moment denote any primitive of a+d2 , and making the transformation

(5.22) φ̃1 = e−
ϕ0
h φ1,

we obtain the system

(5.23) h
d

dx
φ̃1 =

(−α b
c α

)
φ̃1, α =

d− a

2
.

Setting φ̃1 = (ũṽ), we rewrite the first row of (5.23) as

(5.24) ṽ = b−1(hũ′ + αũ), where ′ = d/dx,

and hence the second row of (5.23) becomes

(5.25) h2(b−1ũ′)′ + h
(α
b
ũ
)′

=

(
c+

α2

b

)
ũ+

α

b
hũ′.

14The details are given in section 2 of [LWZ1].
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1816 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

Defining w = b−1/2ũ and15 using the identity

(5.26) (b−1ũ′)′ =
(
1

2
b−

3
2 b′
)′
w + b−

1
2w′′,

we obtain in place of (5.25)

(5.27) h2w′′ = (bc+ α2)w − hb
(α
b

)′
w − h2b

1
2

(
1

2
b−

3
2 b′
)′
w.

With A0
11 = (a b

c d) as in (5.9), we can rewrite (5.27) as

(5.28) h2w′′ = (C(x, ζ) + hr(x, ζ, h))w,

where

C(x, ζ) = bc+

(
d− a

2

)2

=
(
ζ2 + c20η(x)

)
b2(x) and

hr(x, ζ, h) = (bc+ α2)−
(
bc+

(
d− a

2

)2
)

− hb
(α
b

)′
− h2b

1
2

(
1

2
b−

3
2 b′
)′
.

(5.29)

Proposition 5.5. The function r in (5.29) satisfies r(∞, ζ, h) = 0.
Proof. The functions appearing in the expression for r can all be expressed in

terms of the components of A0
11, d11, and β11, so the proposition follows directly from

Lemma 5.1.
Making the following choice of ϕ0 such that d

dxϕ0 = a+d
2 ,

(5.30) ϕ0(x, ζ, h) =
a+ d

2
(∞, ζ, h) · x+

∫ x

∞

[
a+ d

2
(s, ζ, h)− a+ d

2
(∞, ζ, h)

]
ds,

we have shown that solutions of h d
dxφ1 = A11(x, ζ, h)φ1 are given by

(5.31) φ1 = e
ϕ0
h

(
b1/2 0

αb−1/2 − h d
dx(b

−1/2) b−1/2

)(
w

h d
dxw

)
:= K(x, ζ, h)

(
w

h d
dxw

)
,

where (w, h d
dxw) satisfies

(5.32) h
d

dx

(
w

h d
dxw

)
=

(
0 1

C(x, ζ) + hr(x, ζ, h) 0

)(
w

h d
dxw

)
.

Remark 5.6. Since a+d
2 (∞, ζ, h) = μ1+μ2

2 (∞, ζ) = −ζ κ2

ηu (∞), we see that ϕ0 is the
sum of a term with real part ≤ 0 and, by Lemma 5.1, a term that decays exponentially
to 0 as x→ ∞.

Using Remark 5.6, for �ζ > 0 we obtain

(5.33) D(ζ, h) = span Y (x, ζ, h)

⎛
⎝K(x, ζ, h)

(
w

h d
dxw

)
0

⎞
⎠ ,

where (w, hwx) gives a decaying solution of (5.32). Erpenbeck’s stability function
V (ζ, h) is expressed in terms of θ(0, ζ, h), where θ(x, ζ, h) ∈ D(ζ, h).

Our next main task is to construct explicit asymptotic formulas for the exact
solutions of (5.32) that decay to zero as x→ ∞.

15It does not matter which branch of the square root we use here, as long as we always use the
same one.
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DETONATION STABILITY AND TURNING POINTS 1817

6. Reduction to a perturbation of Bessel’s equation in the general case.
In the general case we must consider (5.28),

(6.1) h2w′′ = (C(x, ζ) + hr(x, ζ, h))w,

where C(x, ζ) = (ζ2 + c20η(x))b
2(x). Here the x-dependence enters only through the

detonation profile P (x) = (v, u, S, λ), and b = −κ/ηu.
Since ζ2 + c20η = (ζ − ic0

√
η)(ζ + ic0

√
η), we can write

(6.2) C(x, ζ) = (e(x) + α2)D(x, ζ),

where

(6.3) e(x) = c0
√
η(x)− c0

√
η(∞), α2 = i(ζ − ζ∞), D(x, ζ) = (−iζ + c0

√
η(x))b2(x).

We have

(6.4) D(∞, ζ) > 0 for ζ = i|ζ|,

so the function D(x, ζ) is strictly bounded away from 0 for x large and ζ near ζ∞
(the latter frequency being the endpoint of (iii)+ corresponding to the turning point
at infinity). We take ζ in a small neighborhood of ζ∞ in �ζ ≥ 0. Note that e(x) is
strictly positive on [0,∞) and decreases to 0 at an exponential rate (case D).

For the wedge W(M0, θ) in Proposition 5.2 we now choose M > M0 and R > 0
such that the strip

(6.5) TM,R := {x = xr + ixi : xr ≥M, |xi| ≤ R} ⊂ W(M0, θ),

and consider (6.1) on TM,R. Proposition 4.1 implies that e(x) has an expansion similar
to λ(x) (4.13) on TM,R, so in particular

(6.6) e(x) = ae−μx +m(x)e−μx, where a > 0, |m(x)| ≤ Ce−μ�x,

and m(x) is real-valued on [M,+∞).

Setting d(x, ζ) = D(x, ζ) −D(∞, ζ), the problem (6.1) can now be written

h2w′′ =
(
ae−μx + α2 +m(x)e−μx

)
D(x, ζ)w + hr(x, ζ, h)w

=
(
ae−μx + α2

)
D(∞, ζ)w+

[(
ae−μx + α2

)
d(x, ζ)+m(x)e−μxD(x, ζ)

]
w + hr(x, ζ, h)w.

(6.7)

Recalling that the x-dependence in d(x, ζ) enters only through the profile, using
(4.6), and setting t = 2

μ

√
aD(∞, ζ)e−μx/2, we can rewrite d(x, ζ) using the t variable

as

d(x(t), ζ) = t2b1(t, ζ),(6.8)

where b1 is analytic in t and O(1) on the bounded wedge W(ζ) with vertex at t = 0,
which is the image of the strip TM,R under the change of variable t = t(x, ζ). Similarly,

(6.9) m(x)e−μxD(x, ζ) = t3b2(t, ζ),
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1818 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

where b2(t, ζ) = O(|t|) and is analytic in t on W(ζ). The function r(x, ζ, h) is more
complicated and must be handled carefully. Equations (5.29) and (5.11) show that
the x-dependence in r enters through the components of

(a) P (x), P ′(x), P ′′(x),

(b) hβ11, h
2β′

11, h
3β′′

11, where β11 = d12α21.
(6.10)

Thus, Proposition 5.5 and Lemma 5.1 allow us to write

(6.11) r(x(t), ζ, h) = t2b3(t, ζ, h),

where b3 is analytic in t and O(1) on W(ζ).
Definition 6.1. Recall that W(ζ) was defined below (6.8) as the image of the

strip TM,R under the map t = t(x, ζ). It will be convenient to work on a slightly
smaller wedge W that is independent of ζ and symmetric about the horizontal axis.
So we define W := {t ∈ C : | arg t| < ε1, 0 < |t| < ε2}, where ε1, ε2 are small enough
positive constants so that W ⊂ W(ζ) for ζ near ζ∞. Since (6.4) holds, after shrinking
ω � ζ∞, we can choose ε1 and ε2 so that W still contains the image of TM ′,R′ under
the map t = t(x, ζ) for all ζ ∈ ω for some M ′ > M , R′ < R.

Setting α̃ := 2
μα
√
D(∞, ζ) and

(6.12) z =
t

h
, β =

α

h
, β̃ =

α̃

h
,

we obtain the following two equivalent forms for (6.7):

(a) h2(t2Wtt + tWt) = (t2 + α̃2)W

+
[
(t2 + α2)t2b1(t, ζ) + t3b2(t, ζ) + ht2b3(t, ζ, h)

]
W on W ,

(b) (z2Wzz + zWz) = (z2 + β̃2)W

+
[
h2(z2 + β2)z2b1(hz, ζ) + hz3b2(hz, ζ) + hz2b3(hz, ζ, h)

]
W,

(6.13)

where z lies in the wedge Zh = W/h.16

Remark 6.2. For later reference we note that if we set t = t(x) and W (t(x)) =
w(x), then the right side of (6.13)(a) is 4

μ2 (C(x, ζ) + hr(x, ζ, h))w.

Proposition 6.3. The functions b1(t, ζ), b2(t, ζ), b3(t, ζ, h) satisfy the following
estimates. Here b1(0, ζ), for example, denotes the limiting value of b1 as t → 0, and
k ∈ {0, 1, 2, . . .}.

(a)
∣∣∂kt (b1(t, ζ) − b1(0, ζ))

∣∣ ≤ Ck|t|2−k,
(b)
∣∣∂kt b2(t, ζ)∣∣ ≤ Ck|t|1−k,

(c)
∣∣∂kt (b3(t, ζ, h)− b3(0, ζ, h))

∣∣ ≤ Ck|t|2−kh1−k.
(6.14)

The estimates are uniform for h ∈ (0, 1], ζ in a small neighborhood of ζ∞ in �ζ ≥ 0,
and t ∈ W (as in Definition 6.1).

Proof. (1) Recall t = 2
μ

√
aD(∞, ζ)e−μx/2. Given a function f(x) analytic on the

strip TM,R, let

(6.15) f∗(t) := f

(
− 2

μ
log

μt

2
√
aD(∞, ζ)

)

16In (6.13) the functions bi are nonvanishing constant multiples of their former selves.
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DETONATION STABILITY AND TURNING POINTS 1819

be the corresponding function on W . Suppose

(6.16)
∣∣∂kxf(x)∣∣ ≤ Cke

−|x|μ, x ∈ TM,R.

Then since |x| ∼ − 2
μ ln |t|, (6.15) implies

(6.17) |∂tf∗(t)| ≤ C1e
( 2
μ ln |t|)μ 1

|t| ≤ C1|t|,

and by induction

(6.18) |∂kt f∗(t)| ≤ Ck|t|2−k.

(2) To estimate b1 we use the fact that the x-dependence in D(x, ζ) enters only
through the profile P (x) and write D(x, ζ) = E(P (x), ζ). We have

D(x, ζ) −D(∞, ζ) = (P (x) − P (∞))

∫ 1

0

∂PE(P (∞) + s(P (x) − P (∞)), ζ)ds

= t2(x)b1(t(x), ζ),

(6.19)

where b1(t, ζ) − b1(0, ζ) = f∗(t) for a function f(x) which satisfies (6.16) in view of
the expansion (4.6), so we obtain (6.14)(a).

(3) To estimate b2 we use (6.9) and the fact thatm(x) satisfies the estimates (6.16).

Thus, f(x) := m(x)D(x, ζ) satisfies the same estimates. Since b2(t) =
f∗(t)
t

μ2

4aD(∞,ζ) ,

the estimate (6.14)(b) follows from (6.18).

(4) Estimate of b3. Terms not involving β11 in the expression for b3 can be
estimated like b1; the worst terms involve β11 and its derivatives, where x-dependence
enters not only through the profile P (x) but also through α21(x, ζ, h). For example,
consider the term

(6.20) hβ11b = hd12α21b,

which appears in the expression for 1
h (bc − bc).17 Lemma 5.1 and the argument

giving (6.6) show that d12 = eμx(a + m(x)) for some (new) a and m(x) satisfying
|m(x)| ≤ C−μ�x. Thus

(6.21) hβ11b = eμx(a+m(x))hα21b := t2(x)B3(t(x), ζ, h).

Since α21 satisfies the estimates (5.14), using the explicit form of x = x(t) we obtain

(6.22) |∂kt (B3(t, ζ, h)−B3(0, ζ, h))| ≤ C|t|2−kh1−k

by arguing as for b1. The functions h d
dxα21 and h2 d2

dx2α21 also satisfy the estimates
(5.14) (now with endstates 0), so the terms involving derivatives of β11 (recall (6.10))
can be estimated in the same way.

17Here and in the rest of step (4) we use β11 to denote the appropriate entry of the 2× 2 matrix
β11; recall (5.11). A similar remark applies to d12 and α21.
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7. Differential equations with singularities, turning points, and a large
parameter. Consider equations of the form

(7.1) wσσ = (u2f(σ) + g(σ))w

on a domain D ⊂ C, where u is a large real or complex parameter, and the functions f
and g are analytic except at boundary points or isolated interior points of D. Under
certain conditions on f and g the problem (7.1) can be usefully transformed by a
change of dependent and independent variables into one of the normal forms:

(7.2) Wξξ = (u2ξm + ψ(ξ))W,

where m = 0, 1, or −1, and ψ can be expressed explicitly in terms of f and g. The
transformation of independent variable in these cases is, respectively,

(a) ξ =

∫ σ

σ0

f1/2(r)dr,

(b)
2

3
ξ3/2 =

∫ σ

σ0

f1/2(r)dr,(7.3)

(c) 2ξ1/2 =

∫ σ

σ0

f1/2(r)dr,

where σ0 is a zero or pole of f in (b), (c), respectively [O, Chapter 10]. With σ̇ = dσ
dξ

one defines W = σ̇−1/2w and then finds

(7.4) ψ(ξ) = σ̇2g(σ) + σ̇1/2 d
2

dξ2

(
σ̇−1/2

)
.

The problem (7.2) is easily solved in the elementary case when ψ is identically
zero, so it is natural to use variation of constants and integral equations to solve the
general case. This program is carried out in detail in Chapters 10, 11, and 12 of
[O], which treat the respective cases m = 0, 1, −1. The elementary solutions are
exponentials e±uξ in the case m = 0 and Airy functions in the case m = 1.

In the case m = −1, it is shown in [O, Chapter 12] that if g has a simple or double
pole at σ = σ0, and we define ν by

(7.5)
ν2 − 1

4
= (σ − σ0)

2g(σ)|σ=σ0 ,

then under the above transformations (7.1) takes the form

(7.6) Wξξ =

(
u2

ξ
+ ψ(ξ)

)
W =

(
u2

ξ
+
ν2 − 1

4ξ2
+
φ(ξ)

ξ

)
W,

where φ is analytic at ξ = 0. We now take the equation obtained by neglecting φ(ξ)
ξ

in (7.6) as the “elementary equation”; its solutions are the modified Bessel functions
ξ1/2Iν(2uξ

1/2) and ξ1/2Kν(2uξ
1/2).

8. Three parameter regimes. It is not yet clear whether and in what sense
the equations (6.13) are useful perturbations of Bessel’s equation. The answer turns
out to depend on both the phase of α =

√
i(ζ − ζ∞) and the relative magnitude of
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DETONATION STABILITY AND TURNING POINTS 1821

α and h.18 Here ζ lies in a small neighborhood of ζ∞ in �ζ ≥ 0. Let β = α/h. For
K > 0 sufficiently large and a fixed small δ > 0 we distinguish the following three
regimes, which exhaust the relevant α:

I: |β| ≥ K, 0 ≤ arg β ≤ π
2 − δ, where δ > ε1 (for ε1 as in Definition 6.1).

II: |β| ≥ K, π2 − δ ≤ arg β ≤ π
2 .

III: |β| ≤ K.

It will turn out that the perturbed Bessel problem (6.13) can be analyzed in
regimes I, II, and III by reducing to the normal form (7.2), where m is respectively
0, 1, −1.

8.1. Regime I. To get an idea of how this works in a simple setting closely
related to our perturbed problem, consider the modified Bessel’s equation

(8.1) wzz +
1

z
wz =

(
1 +

β2

z2

)
w,

where first we take β = α/h as in case I and z = t/h for t ∈ W (Definition 6.1). So
z ∈ Zh = W/h.

Setting w = ŵz−
1
2 to eliminate the first derivative, we obtain

(8.2) ŵzz =

(
1 +

β2

z2

)
ŵ − 1

4z2
ŵ on Zh.

Next set v(σ) = ŵ(βσ) for σ in the rotated large wedge W/hβ = W/α := Zα to
obtain

(8.3) vσσ = β2

(
1 +

1

σ2

)
v − 1

4σ2
v on Zα,

which is a problem of the form (7.1) with

(8.4) u = β, f(σ) = 1 +
1

σ2
, g(σ) = − 1

4σ2
.

Note that the condition δ > ε1 in the definition of regime I implies that the points
σ = ±i, where f(σ) = 0, do not lie in Zα for β in regime I. As shown in [O, Chapter 10],
the transformations

(8.5) ξ =

∫
f1/2(σ)dσ, v = f−1/4(σ)W

change (8.3) into a problem satisfied by W (ξ) of the normal form (7.2) with m = 0
and

(8.6) ψ(ξ) =
g(σ)

f(σ)
− 1

f3/4(σ)

d2

dσ2

(
1

f1/4(σ)

)
.

Remark 8.1. The problem (8.3) has a regular singularity at 0 and an irregular
singularity “at ∞,” but no turning points (which are points where f(σ) = 0) in Zα.
The wedge Zα is bounded for fixed α, but since α can be O(h) for some β in regime I,

18The square root is positive when its argument is positive.
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1822 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

and since we are interested in uniform estimates as h→ 0, the domain Zα can become
unbounded as h→ 0. Thus, we effectively have a singularity at infinity.

In our application to Erpenbeck’s stability problem we study (6.1) in the original
x variables on the infinite strip TM,R (6.5), and we need to know how the solution that
decays at x = ∞, which corresponds to σ = 0, behaves at x =M , which corresponds
to σ = e−CM/h, for some C > 0. Obtaining an explicit formula for the exact decaying
solution at x = M is the main step before extending the solution to x = 0, where
the stability function can be assessed. A great advantage of the method presented
in Chapter 10 of [O] is that it produces an asymptotic representation of the exact
solution at once on the entire (large) domain Zα. If instead one tried, say, to use
the theory of regular singularities to construct the decaying solution near σ = 0, and
another method to construct a solution near infinity (i.e., for σ = O(1/h)), there
would remain the difficult problem of matching up the two expansions somewhere in
between.

8.2. Regime II. Next consider (8.1) again, but with large β with argument
close to π/2. So β = iγ, where arg γ is close to 0. Rewriting (8.2) with β2 = −γ2
and setting v(σ) = ŵ(γσ) now for σ ∈ W/(−iα) =: Z−iα, we obtain instead of (8.3)

(8.7) vσσ = γ2
(
1− 1

σ2

)
v − 1

4σ2
v on Z−iα.

This problem has singularities at zero and infinity as before, but now there is a turning
point, namely, σ = 1, in the interior of Z−iα, since arg(−iα) is near 0. Instead of
having turning points converging to z = 0, or running off to infinity in the original x
variables, the device of considering v(σ) = ŵ(γσ) yields a problem with a single fixed
turning point and large parameter u = γ. Using the new variables ξ and W defined
by

(8.8)

(
dξ

dσ

)2

=
σ2 − 1

ξσ2
=
f

ξ
:= f̂ , v =

(
dξ

dσ

)−1/2

W

transforms (8.7) into the normal form (7.2) with m = 1 and

(8.9) ψ(ξ) =
g(σ)

f̂(σ)
− 1

f̂3/4(σ)

d2

dσ2

(
1

f̂1/4(σ)

)
, where g(σ) = − 1

4σ2
.

The method of Chapter 11 of [O] yields an expansion of the exact solution of (8.7)
valid on Z−iα, a large wedge (growing as h → 0) with vertex at σ = 0 and turning
point σ = 1 in its interior.

8.3. Regime III. Now we consider (8.1) for |β| ≤ K, which includes the case
corresponding to the “turning point at infinity,” β = 0. Here it is best to work in the t
variables on the bounded (h-independent) wedge W . The equation in these variables
is

(8.10) wtt +
1

t
wt =

1

h2

(
1 +

α2

t2

)
w.

Setting w = vt−1/2 we obtain

(8.11) vtt =
1

h2

(
1 +

α2

t2

)
v − 1

4t2
v =

1

h2
(v) +

(
β2 − 1

4

t2

)
v on W ,
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DETONATION STABILITY AND TURNING POINTS 1823

where we have used the fact that β2 is now comparable in size to 1/4 to group these
terms together.

One might regard (8.11) as a problem that is already in the normal form (7.2)

with m = 0, u = 1
h , and ψ =

β2− 1
4

t2 and try to apply the method of Chapter 10 of [O].
This does not work; the integrals of |ψ| on paths starting at 0 need to be finite in order
to solve the integral equation arising in the error estimates, but such integrals blow
up. One can see from (8.6) that f must have a singularity at t = 0 to balance that
of g at t = 0 in order for such integrals to be finite. Instead, one might regard (8.11)

as a problem of the form (7.1) with u = 1
h , f(t) = 1 + α2

t2 , and g(t) = − 1
4t2 and use

transformations like (8.5) to reduce (8.11) to the normal form (7.2) with m = 0 and
a different ψ. This also fails; the function ψ now depends on α = O(h), and though
the integrals described above are now finite for fixed h, they blow up as h→ 0.

Instead we proceed as follows. Setting t = 2s1/2 and v̂(s) = s1/4v(2s1/2), we
obtain

(8.12) v̂ss =

(
1

h2s
+
β2 − 1

4s2

)
v̂ on

W2

4
.

This problem already has the form of the “elementary equation” corresponding to the
case m = −1 of section 7 and has solutions that can be expressed in terms of modified
Bessel functions. There is no singularity at ∞ now, since W2, which is bounded, is
independent of h; turning points are absent as well from (8.12).19

When we consider the perturbed Bessel equation in this frequency regime, we
will obtain an equation like (8.12) with the same g(s), but with 1

h2s replaced by 1
h2 f ,

where f = 1
s + fp(s), with fp the perturbation given in (9.6).

9. Transformation of the perturbed Bessel’s equation. Next we describe
how transformations like those described above can be applied to the perturbed equa-
tions given in (6.13). Recalling the definition of β̃ = β̃(ζ, h) from (6.12) and the
formula for D(∞, ζ) (6.3), we see that corresponding to ζ in the each of the parame-
ter regimes of section 8, we have, respectively,

I: |β̃| ≥ K1, −δ1 ≤ arg β̃ ≤ π
2 − δ1, where δ1 > ε1 for ε1 as in Definition 6.1,20

II: |β̃| ≥ K1,
π
2 − δ2 ≤ arg β̃ ≤ π

2 ,

III: |β̃| ≤ K2.

Here 0 < K1 < K2, δj > 0 is small, and K1 can be made arbitrarily large by
taking K in section 8 large.

9.1. Regime I. Applying the same transformations as in section (8.1) to the
perturbed equation (6.13)(b), but with β̃ now playing the role of β, we obtain instead
of (8.3) the equation

(9.1) vσσ =
(
β̃2f(σ) + g(σ)

)
v on W/α̃ := Zα̃,

19Observe, though, that turning points are present in the first equation of (8.11) for argα = π
2
.

They converge to zero as h → 0 since α = O(h).
20Since (6.4) holds, we see that after shrinking ω � ζ∞ if necessary, we can describe regime I here

using a δ1 > ε1 provided δ > ε1 for δ as in the definition of regime I in section 8.
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1824 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

where g(σ) = − 1
4σ2 as before and

f(σ) = f0(σ) + fp(σ), where

f0(σ) = 1 +
1

σ2
and fp(σ) = (α̃2σ2 + α2)b1(α̃σ, ζ) + α̃σb2(α̃σ, ζ) + hb3(α̃σ, ζ, h).

(9.2)

Remark 9.1. It will be important later to take the perturbation fp(σ) sufficiently
small on the relevant domain (e.g., Zα̃ or Z−iα̃). This will be the case provided α̃σ,
α, and h are small enough. One makes α small by restricting ζ to a sufficiently small
neighborhood ω � ζ∞. Since α̃σ ∈ W , α̃σ is small when W , a wedge with vertex at 0
defined in Definition 6.1, is small; more precisely, |α̃σ| ≤ ε2 for ε2 as in Definition 6.1.
When ε2 is reduced,M must be increased so thatW still contains the image of [M,∞)
under the map t = t(x, ζ) for all ζ ∈ ω.

9.2. Regime II. Writing β̃2 = −γ̃2, where arg γ̃ is close to zero, and applying
the same transformations as in section 8.2 to the perturbed equation (6.13)(b), but
with γ̃ now playing the role of γ, we obtain instead of (8.7) the equation

(9.3) vσσ = (γ̃2f(σ) + g(σ))v on W/(−iα̃) := Z−iα̃,

where g(σ) = − 1
4σ2 as before and (since hγ̃ = −iα̃)

f(σ) = f0(σ) + fp(σ), where

f0(σ) = 1− 1

σ2
and fp(σ)(9.4)

=
(
α2 − α̃2σ2

)
b1(−iα̃σ, ζ) − iα̃σb2(−iα̃σ, ζ) + hb3(−iα̃σ, ζ, h).

Clearly the function fp will be small under the same conditions as described in
Remark 9.1.

9.3. Regime III. Starting now with the perturbed equation in the t form
(6.13)(a) and making the same transformations as in section 8.3, in place of (8.12)
we obtain

(9.5) v̂ss =

(
1

h2
f(s) + g(s)

)
v̂ on W2/4,

where g(s) = β̃2−1
4s2 and

f(s) = f0(s) + fp(s) with

f0(s) =
1

s
and(9.6)

fp(s) =
1

s

[
(4s+ α2)b1(2s

1/2, ζ) + 2s1/2b2(2s
1/2, ζ) + hb3(2s

1/2, ζ, h)
]
.

Note that each of the perturbations fp as in (9.2), (9.4), or (9.6) is determined
onceW , ζ, and h are specified, whereW is the wedge defined by the choice of constants
ε1, ε2 as in Definition 6.1. Thus, we can write fp(·) = fp(·, ε1, ε2, ζ, h). Remark (9.1)
and the estimates of bj , j = 1, 2, 3, of Proposition 6.3 directly imply the following.D
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DETONATION STABILITY AND TURNING POINTS 1825

Proposition 9.2. Let fp be a perturbation as above. Set Np = ε2+ |ζ− ζ∞|+h,
where ε2 appears in the definition of W. Then given δ1 > 0 there exists δ2 > 0 such
that

Np < δ2 ⇒ |fp|L∞(Zα̃) < δ1 for regime I,

Np < δ2 ⇒ |fp|L∞(Z−iα̃) < δ1 for regime II,

Np < δ2 ⇒ |sfp|L∞(W2/4) < δ1 for regime III,

(9.7)

Remark 9.3. In later arguments we will reduce the perturbation fp by reducing
Np. We do not include ε1 (as in Definition 6.1) as one of the summands in the
definition of Np, since in that case shrinking Np could produce a wedge W that no
longer contains the image of [M,∞) under the map t = t(x, ζ), even for large M .
Although there are restrictions on the size of ε1 (for example, in the definition of
regime I), Proposition 9.2 implies that for almost all purposes it suffices to shrink Np
as defined above.

10. Leading term expansions. In this section we describe the form of the
leading term expansions for exact solutions to the perturbed problem in each of the
frequency regimes described in section 9. In each case the ξ variable is defined as
in (7.3) for appropriately chosen lower limits σ0, where f is given by (9.2), (9.4), or
(9.6). In each case one achieves the normal form (7.2) by defining W (ξ) and ψ(ξ) as
described in section 7.

The main things to check are that “progressive paths” of integration can be chosen
as required by the contraction arguments and that the integrals involving ψ(ξ) that
arise in the error estimate converge at the singularity at zero and (in the cases of
regimes I and II) at the singularity at infinity. These points are explained in the
following discussion and in the proofs.

10.1. Regime I. Recall the definitions of the variables

(10.1)

t =
2

μ

√
aD(∞, ζ)e−μx/2, z =

t

h
, α̃ =

2

μ
α
√
D(∞, ζ), β̃ =

α̃

h
, σ =

z

β̃
∈ W/α̃ = Zα̃.

When fp(σ) in (9.2) is neglected, the integral defining ξ(σ) is easily evaluated by
trigonometric substitution and yields

(10.2) ξ =

∫ σ

σ0

(1 + s2)1/2

s
ds = (1 + σ2)1/2 + log

σ

1 + (1 + σ2)1/2
,

where the branches of square root and logarithm are the principal ones. Here σ0 is
the point on the positive real axis at which the right side of (10.2) vanishes. Using,
for example, the fact that for small |σ|, ξ = log(12σ) + 1 + o(1), while for large
|σ|, ξ = σ + o(1), it is not hard to draw a picture of the domain in the ξ−plane,
Zξ, that corresponds to the large wedge Zα̃ under the map (10.2) (Figure 7.2, in

[O, Chapter 10]). Progressive paths are of two types: those along which �(β̃ξ) is
nondecreasing, and those along which �(β̃ξ) is nonincreasing. The choice of such
paths is obvious in the ξ-plane and using

(10.3) ψ(ξ) =
1

4
σ2(4− σ2)/(1 + σ2)3,
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1826 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

one sees that in this case (fp neglected) the integrals

(10.4)

∫ ξ

ξ(σj)

|ψ(s)| d|s|, where σ1 = 0, σ2 = ∞,

are finite along such paths.21

When fp is included in the definition of f , the domain in the ξ-plane corresponding
to Zα̃ under the map ξ =

∫ σ
σ0
f1/2(s)ds is a small perturbation of Zξ when fp is small,

and progressive paths are again easy to choose on an appropriate subdomain. Using
the estimates of Proposition 6.3 for the functions bj , j = 1, 2, 3, appearing in the
definition of fp, one can show that integrals (10.4) involving the redefined ψ(ξ) are
again finite.

To get started it is necessary to show that the map σ → ξ defines a good, global
change of variables.

Proposition 10.1. For f0 and fp as in (9.2) let

(10.5) ξf (σ) :=

∫ σ

σ0

(f0 + fp)
1/2(s)ds,

where σ0 is (as before) the point on the positive real axis where the right side of (10.2)
vanishes. For perturbations fp with Np sufficiently small (recall Proposition 9.2) the
function ξ = ξf (σ), is a globally one-to-one analytic map of Zα̃ onto the open set
which is its range.

In the next proposition Zα̃,s is an open subdomain of Zα̃ containing the image of
the segment of the x-axis, [M,∞), under the map x→ σ. The domain Zα̃,s is defined
as ξ−1

f (Δξ), where Δξ (described precisely in the proof given in section 16) is an open
domain in ξ-space on which progressive paths can be chosen.

Proposition 10.2. Suppose β̃ as defined in (6.12) lies in regime I. For fp as in
(9.2) taken sufficiently small (by the choices explained in Remark 9.1), the perturbed
Bessel problem (9.1) has exact solutions

v1(σ) = ξ−1/2
σ (σ)

(
eβ̃ξ(σ) + η1(β̃, ξ(σ))

)
,

v2(σ) = ξ−1/2
σ (σ)

(
e−β̃ξ(σ) + η2(β̃, ξ(σ))

)(10.6)

on Zα̃,s, where the error terms satisfy

(10.7)
∣∣∣ηj(β̃, ξ)∣∣∣ , ∣∣∣∂ξηj(β̃, ξ)∣∣∣ ≤ C

|β̃|
∣∣∣e(−1)j−1β̃ξ

∣∣∣ .
Remark 10.3. The proof, given in section 16, is based on Theorem 3.1 of

Chapter 10 of [O] and the estimates of Proposition 6.3. The result of [O] constructs
solutions

(10.8) Wj(ξ) = e(−1)j−1β̃ξ + ηj(β̃, ξ), j = 1, 2,

of

(10.9) Wξξ = (β̃2 + ψ(ξ))W, where ψ(ξ) =
g(σ)

f(σ)
− 1

f3/4(σ)

d2

dσ2

(
1

f1/4(σ)

)
,

21Here “∞” should be interpreted as a point at the far right extreme of the large wedge Zα̃.
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DETONATION STABILITY AND TURNING POINTS 1827

by solving the integral equation satisfied by ηj (obtained by variation of parameters).
When j = 1 the equation is

η1(β̃, ξ) =

∫ ξ

αj

K(ξ, v)

[
ψ(v)eβ̃v

β̃
+
ψ(v)η1(β̃, v)

β̃

]
dv, where

K(ξ, v) =
1

2

(
eβ̃(ξ−v) − eβ̃(v−ξ)

)
,(10.10)

and the integral is taken on progressive paths. This equation is solved on the domain
Δξ = ξ(Zα̃,s) by iteration. The progressive path property of Δξ gives a useful point-
wise estimate of |K(ξ, v)|. Together with a uniform bound on the integrals (10.4),
this yields convergence of the sequence of iterates.22 Convergence of the sequence of
differentiated iterates follows from a similar pointwise estimate of |∂ξK(ξ, v)| and the
property K(ξ, ξ) = 0.

Consider the first-order system corresponding to (6.1):

(10.11) h
d

dx

(
w
hwx

)
=

(
0 1

C(x, ζ) + hr(x, ζ, h) 0

)(
w
hwx

)
.

The next proposition describes the solutions of (10.11) that are bounded for �ζ = 0
and decaying for �ζ > 0 as x → ∞ in [M,∞), when β̃(ζ, h) lies in regime I. Recall
that Proposition 10.2 is valid for a small enough choice of wedge W , neighborhood
ω � ζ∞, and h0 such that 0 < h ≤ h0.

Proposition 10.4 (choice of decaying solution). Choose M large enough so
that W contains the image of [M,∞) under the map t = t(x, ζ) for all ζ ∈ ω. After
shrinking ω and reducing h0 if necessary, we have, for ζ ∈ ω and 0 < h < h0 such
that β̃(ζ, h) lies in regime I, that the bounded (resp., decaying) solution of (10.11) on
[M,∞) for �ζ = 0 (resp., �ζ > 0) is given by

(10.12) w(x) = z(x)−1/2v1(σ(x)).

Here v1 is defined in (10.6) and the maps x → z(x) and x → σ(x) are defined by
(10.1). The corresponding decaying solution of Erpenbeck’s 5× 5 system (5.1) is thus
given by the formula in (5.33) for this choice of w(x).

Having identified the exact decaying solution of Erpenbeck’s system for β̃ in
regime I, the next step is to show that this solution is of type θ1 at x = M (recall
(0.16) and Definition 0.4). Since x = M is to the left of any turning point x(ζ) for
ζ ∈ ω when ω is small, it will then be rather easy to conclude that the exact decaying
solution is of type θ1 at x = 0. This will allow us to deduce that the stability function
V (ζ, h) is nonvanishing for β̃ in regime I.

Proposition 10.5 (decaying solution is of type θ1 at x = M). Fix M as in
Proposition 10.4. Let θ(x, ζ, h) be the exact decaying solution of (5.1) identified in
Proposition 10.4, and let θ1(x, ζ, h) be the approximate solution given by (0.16). There
exist h0 > 0, a neighborhood ω � ζ∞, and a nonvanishing scalar function H(x, ζ, h)
defined for x near M such that

(10.13) |H(x, ζ, h)θ(x, ζ, h) − θ1(x, ζ, h)| ≤ C

|β̃(ζ, h)| |θ1(x, ζ, h)| for x near M,

where C is independent of x near M and of ζ ∈ ω, 0 < h ≤ h0, such that β̃ lies in
regime I.23

22It is not necessary to take |β̃| large to obtain convergence. See Theorem 10.1 of Chapter 6 in [O].
23Recall that for β̃(ζ, h) in regime I we have h < 1

|β̃| ≤ 1
K1

<< 1.
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1828 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

The final step in the treatment of regime I is to show that the exact decaying
solution of (5.1) is of type θ1 at x = 0. In fact, we show next that a multiple of θ is of
type θ1 on all of [0,M ]. The explicit formula (21.1) for the stability function V (ζ, h)
in terms of θ(0, ζ, h) shows then that V (ζ, h) is nonvanishing for (ζ, h) in regime I
when Assumption 1.4 holds.

Proposition 10.6 (Decaying solution is of type θ1 at x = 0). Let θ(x, ζ, h) be
the exact decaying solution of (5.1) identified in Proposition 10.4, and let H(x, ζ, h)
be the function referred to in Proposition 10.5. There exist h0 > 0 and a neighborhood
ω � ζ∞ such that

(10.14) |H(M, ζ, h)θ(x, ζ, h) − θ1(x, ζ, h)| ≤ C

|β̃(ζ, h)| |θ1(x, ζ, h)| on [0,M ],

where C is independent of x ∈ [0,M ] and of ζ ∈ ω, 0 < h ≤ h0 such that β̃ lies in
regime I.

Proof. Let θj(x, ζ, h), j = 1, . . . , 5, be exact solutions of (5.1) on [0,M ]
(constructed as in [LWZ1, Theorem 3.1], for example) such that

(10.15) |θj − θj | ≤ Ch|θj | on [0,M ],

where the approximate solutions θj are defined on [0,M ], an interval with no turning
points. The formulas (0.7) for the μj(x, ζ) and the fact that 0 < κ(x) < 1 imply that
there exists a neighborhood ω � ζ∞ such that for x ∈ [0,M ] and ζ ∈ ω, we have

(10.16) �μ1 < 0, �μ2 > 0, �μj ≥ 0, j = 3, 4, 5,

and thus for hj(x, ζ) =
∫ x
0 μj(x

′, ζ)dx′ we have

(10.17) −�h1(M, ζ) := a > 0, �h2(M, ζ) := b > 0, �hj(M, ζ) = c ≥ 0, j = 3, 4, 5.

Expanding the exact solution solution H(M, ζ, h)θ(x, ζ,M) in the given basis,

(10.18) H(M, ζ, h)θ(x, ζ, h) = c1(ζ, h)θ1(x, ζ, h) + · · ·+ c5(ζ, h)θ5 on [0,M ],

evaluating at x =M , and then using (10.30), (10.15), and Cramer’s rule, we obtain

c1(ζ, h) = 1 +O(1/|β̃(ζ, h)|), c2 = O
(
e−

a+b
h /|β̃(ζ, h)|

)
,

cj = O
(
e−

a+c
h /|β̃(ζ, h)|

)
, j = 3, 4, 5.(10.19)

In view of (10.15) the behavior of the θj on [0,M ] is given by the explicit formulas for
the θj . Thus, it follows from these formulas and (10.19) that the θ1 term dominates
on [0,M ] or, more precisely, that (10.14) holds.

10.2. Regime II. Recall the definitions of the variables

(10.20) t =
2

μ

√
aD(∞, ζ)e−μx/2, z =

t

h
, γ̃ = −iβ̃, σ =

z

γ̃
∈ Z−iα̃.

With [0, 1] denoting the line segment joining 0 to 1, we define Zcut(1) to be the simply
connected subregion of �σ > 0 given by

(10.21) Zcut(1) = Z−iα̃ \ [0, 1].
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DETONATION STABILITY AND TURNING POINTS 1829

Set Ξ := 2
3ξ

3/2. When fp(σ) in (9.4) is neglected, we define Ξ(σ) by

(10.22) Ξ(σ) =

∫ σ

1

(s2 − 1)1/2

s
ds = (σ2 − 1)1/2 + i log

(
1 + i(σ2 − 1)1/2

σ

)
,

where the branch of (σ2 − 1)1/2 on Zcut(1) is positive for σ > 1, and the branch

of log(1+i(σ
2−1)1/2

σ ) takes negative (resp., positive) values in the limit as σ → a±,
0 < a < 1, from the upper (resp., lower) half-plane.24 The definition of Ξ(σ) is
extended by continuity to a± for 0 < a < 1. Observe that

(10.23) Ξ(a±) = ∓ib, for some b = b(a) > 0, for 0 < a < 1,

and that ∓ib(a) are mapped to the same point on the negative ξ axis under the map
Ξ → ξ. Morever, the map σ → ξ(σ) turns out to extend analytically to a map of a
full neighborhood of σ = 1 onto a full neighborhood of ξ = 0.

In this case (fp neglected) one can draw the domains in the Ξ and ξ planes
corresponding to Zcut(1) under (10.22).25 Progressive paths in the ξ plane now have
the property that on corresponding paths in the Ξ plane �(γ̃Ξ) is monotonic, and it
is easy to identify such paths in the Ξ-plane.

When fp is included in the definition of f , Ξ and ξ are now defined by (7.3)(b)
with f as in (9.4), where σ0 is the point (close to 1) where f(σ0) = 0. In the definition
of Ξ we now take σ ∈ Zcut(σ0) defined by

(10.24) Zcut(σ0) = Z−iα̃ \ [0, σ0],

where [0, σ0] is the line segment joining 0 to σ0. We show below that, unlike Ξ(σ),
the function ξ(σ) extends across the cut to be analytic on all of Z−iα̃.

The domain in ξ space corresponding to Z−iα̃ under the map σ → ξ is a small
perturbation, when fp is small, of the domain in the case fp = 0, and progressive
paths are again not hard to choose. Using the estimates of Proposition 6.3 for the
functions bj , j = 1, 2, 3, appearing in the definition of fp, one can show that integrals
arising in the error analysis,

(10.25)

∫ ξ

αj

∣∣∣ψ(s)s−1/2
∣∣∣ d|s| (on progressive paths),

are finite. Here ψ(ξ) is given by (8.9) with f as in (9.4) and g = − 1
4σ2 .

The next proposition, proved in section 16, is more difficult for regime II than its
analogue for regime I, since f = f0 + fp vanishes at σ0 ∈ Z−iα̃.

Proposition 10.7. For perturbations fp with Np sufficiently small (recall Propo-
sition 9.2) the function ξ = ξf (σ), which is initially defined on Zcut(σ0), extends
across the cut as a globally one-to-one analytic map of Z−iα̃ onto the open set which
is its range.

In the next proposition we use the notation

(10.26) Ai0(z) = Ai(z), Ai1(z) = Ai(ze−2πi/3), Ai−1(z) = Ai(ze2πi/3).

24This branch takes values ib, 0 < b < π
2
, for σ > 1.

25Drawings for the rather different case where f(σ) = 1
σ2 − 1 are given in Figures 10.1–10.4 of [O,

Chapter 10].
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1830 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

We denote by Z−iα̃,s ⊂ Z−iα̃ an open subdomain, chosen as explained in the proof,
and containing the image of the segment of the x-axis, [M,∞), under the map x→ σ.
We denote by Δξ the image of Z−iα̃,s under the map σ → ξ(σ).

Proposition 10.8. Suppose β̃ as defined in (6.12) lies in regime II, and set
β̃2 = −γ̃2, where arg γ̃ is near 0. For fp as in (9.4) taken sufficiently small (by
the choices explained in Remark (9.1)), the perturbed Bessel problem (9.3) has exact
solutions

vj(σ) = ξ−1/2
σ (σ)

(
Aij(γ̃

2/3ξ(σ)) + ηj(γ̃, ξ(σ))
)
, j = 0, 1,−1,(10.27)

on Z−iα̃,s, where the error term ηj satisfies

|ηj(γ̃, ξ)| ≤ C

|γ̃| |Aij(γ̃
2/3ξ)|,

|∂ξηj(γ̃, ξ)| ≤ C

|γ̃|
∣∣∣∂ξ (Aij(γ̃2/3ξ))∣∣∣(10.28)

for ξ ∈ Δξ with |ξ| >> 1 and �ξ > 0.
Remark 10.9. Information about the error terms ηj for ξ near negative infinity is

more complicated to state but is implicit in Proposition 10.10 in the case of η1. For
explicit estimates of the ηj we refer to Theorem 9.1 of Chapter 11 of [O].

The next three propositions are analogues of the last three propositions in
section 10.1.

Proposition 10.10 (choice of decaying solution). After shrinking ω and re-
ducing h0 if necessary, we have, for ζ ∈ ω and 0 < h < h0 such that β̃(ζ, h) lies in
regime II, that the bounded (resp., decaying) solution of (10.11) on [M,∞) for �ζ = 0
(resp., �ζ > 0) is given by

(10.29) w(x) = z(x)−1/2v1(σ(x)).

Here v1 is defined in (10.27) and the maps x → z(x) and x → σ(x) are defined by
(10.20). The corresponding decaying solution of Erpenbeck’s 5×5 system (5.1) is thus
given by the formula in (5.33).

Proposition 10.11 (decaying solution is of type θ1 at x =M). Let θ(x, ζ, h) be
the exact decaying solution of (5.1) identified in Proposition 10.10, and let θ1(x, ζ, h)
be the approximate solution defined in (0.16). There exist h0 > 0, a neighborhood
ω � ζ∞, and a nonvanishing scalar function H(x, ζ, h) defined for x near M such that

(10.30) |H(x, ζ, h)θ(x, ζ, h) − θ1(x, ζ, h)| ≤ C

|β̃(ζ, h)| |θ1(x, ζ, h)| for x near M,

where C is independent of x near M and of ζ ∈ ω, 0 < h ≤ h0 such that β̃ lies in
regime II.

Proposition 10.12 (decaying solution is of type θ1 at x = 0). Let θ(x, ζ, h) be
the exact decaying solution of (5.1) identified in Proposition 10.10, and let H(x, ζ, h)
be the function referred to in Proposition 10.11. There exist h0 > 0 and a neighborhood
ω � ζ∞ such that

(10.31) |H(M, ζ, h)θ(x, ζ, h) − θ1(x, ζ, h)| ≤ C

|β̃(ζ, h)| |θ1(x, ζ, h)| on [0,M ],

where C is independent of x ∈ [0,M ] and of ζ ∈ ω, 0 < h ≤ h0 such that β̃ lies in
regime II.
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DETONATION STABILITY AND TURNING POINTS 1831

10.3. Regime III. Recall the definitions of the variables

(10.32) t =
2

μ

√
aD(∞, ζ)e−μx/2, s = t2/4.

When fp(s) in (9.6) is neglected, the integral defining ξ(s) is

(10.33) ξ1/2 =

∫ s

0

1

2t1/2
dt = s1/2, so ξ = s,

and the relevant domain in the ξ-plane is the bounded wedgeW2/4. Progressive paths
in the ξ-plane are now either those along which both �ξ1/2 and |ξ| are nondecreasing
or those along which both �ξ1/2 and |ξ| are nonincreasing. The image of W2/4
under the map s→ ξ1/2 is just W/2, and progressive paths are easy to choose in the
ξ1/2-plane.

When fp as in (9.6) is included in the integral defining ξ

(10.34) 2ξ1/2 =

∫ s

0

f1/2(t)dt,

the image of W2/4 under the map s → ξ1/2 is a small perturbation of W/2 when fp
is small, and progressive paths satisfying the above conditions are again not hard to
choose.

Proposition 10.13. For perturbations fp with Np sufficiently small (recall
Proposition 9.2) the function ξ = ξf (s) is a globally one-to-one analytic map of W2/4
onto its image.

In the next proposition we denote by Ws ⊂ W2/4 an open subdomain, chosen as
explained in the proof, and containing the image of the segment of the x-axis, [M,∞)
under the map x → s given by (10.32). We let Δξ denote the image of Ws under

the map s → ξ(s). With v̂(s) as in (9.5) and W (ξ) defined by v̂ = (dξds )
−1/2W , the

problem satisfied by W has the form

(10.35) Wξξ =

(
1

h2ξ
+ ψ(ξ)

)
W =

(
1

h2ξ
+
β̃2 − 1

4ξ2
+
φ(ξ)

ξ

)
W on Wξ,

where (with g(s) as in (9.5))26

(10.36) φ(ξ) =
1− 4β̃2

16ξ
+
g(s)

f(s)
+

4f(s)f ′′(s)− 5f
′2(s)

16f3(s)
.

Using the estimates of Proposition 6.3, one checks the finiteness of the integrals
required for the error analysis of Theorem 9.1 of [O, Chapter 12]:

(10.37)

∫ ξ

αj

∣∣∣φ(t)t−1/2
∣∣∣ d|t| (on progressive paths).

In this case there is no singularity at infinity, since Δξ is bounded independent of h.

Proposition 10.14. Suppose β̃ as defined in (6.12) lies in regime III. For sfp(s)
as in (9.6) taken sufficiently small (by the choices explained in Remark (9.1)), the
perturbed Bessel problem (9.5) has exact solutions on Ws given by

(10.38) v̂j(s) = ξ−1/2
s (s)Wj(ξ(s)), j = 1, 2,

26Observe that when f(s) = 1/s and ξ = s, we have φ(ξ) = 0.
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1832 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

where the Wj(ξ) are exact solutions of (10.35) of the form

(a)W1(ξ) = ξ1/2Iβ̃(2ξ
1/2/h) + η1(h, ξ),

(b)W2(ξ) = ξ1/2Kβ̃(2ξ
1/2/h) + η2(h, ξ).

(10.39)

Here the error term η1 satisfies

|η1(h, ξ)| ≤ Ch|ξ1/2Iβ̃(2ξ1/2/h)|,
|∂ξη1(h, ξ)| ≤ Ch

∣∣∣∂ξ (ξ1/2Iβ̃(2ξ1/2/h))∣∣∣(10.40)

for ξ ∈ Δξ with |ξ1/2/h| large. The error η2 satisfies analogous estimates.

Remark 10.15. Information about the error terms ηj for ξ near 0 is more com-
plicated to state but is implicit in Proposition 10.16 in the case of η1. For explicit
estimates of the ηj we refer to Theorem 9.1 of Chapter 12 of [O]. That theorem

deals only with real β̃, but we show how the result can be extended to �β̃ ≥ 0 in
section 16.

Proposition 10.16 (choice of decaying solution). After shrinking ω and re-
ducing h0 if necessary, we have, for ζ ∈ ω and 0 < h < h0 such that β̃(ζ, h) lies
in regime III, that the bounded (resp., decaying) solution of (10.11) on [M,∞) for
�ζ = 0 (resp., �ζ > 0) is given by

(10.41) w(x) =

√
2

t(x)
v̂1(s(x)),

where v̂1 is defined in (10.38) and the maps x → t(x) and x → s(x) are defined by
(10.32). The corresponding decaying solution θ(x, ζ, h) of Erpenbeck’s 5 × 5 system
(5.1) is thus given by the formula in (5.33).

The next step is to show that this solution is of type θ1 at x =M .

Proposition 10.17 (decaying solution is of type θ1 at x =M). Let θ(x, ζ, h) be
the exact decaying solution of (5.1) identified in Proposition 10.16, and let θ1(x, ζ, h)
be the approximate solution defined in (0.16). There exist h0 > 0, a neighborhood
ω � ζ∞, and a nonvanishing scalar function H(x, ζ, h) defined for x near M such that

(10.42) |H(x, ζ, h)θ(x, ζ, h) − θ1(x, ζ, h)| ≤ Ch|θ1(x, ζ, h)| for x near M,

where C is independent of x near M and of ζ ∈ ω, 0 < h ≤ h0 such that β̃ lies in
regime III.

The proof of the next proposition is exactly like that of Proposition 10.12.

Proposition 10.18 (decaying solution is of type θ1 at x = 0). Let θ(x, ζ, h) be
the exact decaying solution of (5.1) identified in Proposition 10.16, and let θ1(x, ζ, h)
and H(x, ζ, h) be as in Proposition 10.17. There exist h0 > 0 and a neighborhood
ω � ζ∞ such that

(10.43) |H(M, ζ, h)θ(x, ζ, h) − θ1(x, ζ, h)| ≤ Ch|θ1(x, ζ, h)| on [0,M ],

where C is independent of x ∈ [0,M ] and of ζ ∈ ω, 0 < h ≤ h0 such that β̃ lies in
regime III.
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DETONATION STABILITY AND TURNING POINTS 1833

11. Multistep reactions. The treatment of the turning point at infinity in
the case of a scalar reaction equation works verbatim for type D multistep reactions
provided the reactant k-vector λ(x) is analytic and has the structure

(11.1)
λ(x) = Ae−μx +m(x)e−μx, where A is constant, μ > 0, and |m(x)| ≤ Ce−μ�x,

on a wedge W(M0, θ) for some θ > 0. With (11.1) the function e(x) again has
the structure in (6.6) and the proof of Proposition 6.3, giving the estimates of the
functions bj, j = 1, 2, 3, that appear in the perturbation of Bessel’s equation (6.13),
goes through unchanged. We now show that the eigenvalue separation condition (2.9)
implies (11.1); thus, Example 2.3 satisfies (11.1).

We write the equation satisfied by λ as

(11.2)
d

dx
λ = f(λ) = Bλ+N(λ), where f(0) = 0 and B = df(0),

and denote by Πws, Πss the projections of Ck onto, respectively, the weakly stable
subspace corresponding to the eigenvalue −μ1 of B, and the complementary strongly
stable subspace. We can suppose λ is already given as an Rk-valued decaying solution
of (11.2) on R. For M0 sufficiently large and θ small enough, the problem (11.2) with
initial condition λ|x=M0 = λ(M0) can be solved on the wedge W(M0, θ) by a classical
contraction argument applied to the integral equation

(11.3) λ(x) = eBxλ(0) +

∫ x

0

eB(x−s)N(λ(s)) ds.

Here by a translation we have replaced M0 by 0. By (2.9) the weakly stable subspace
is simple with eigenvalue −μ := −μ1, so we can rearrange (11.3) as

λ(x) = e−μx
(
λws(0) +

∫ x

0

eμsΠwsN(λ(s)) ds

)

+

(
eBxλss(0) +

∫ x

0

eB(x−s)ΠssN(λ(s)) ds

)
=: I + II.

Using |λ(x)| ≤ C|λ(0)|e−μ�x, |N | ≤ C2|λ(x)|2, and the estimate

(11.4)
∣∣∣eB(x−s)Πss

∣∣∣ ≤ Ce−2μ̃(x−s), where μ̃ > 2μ,

which follows from the separation condition (2.9), we find that II is bounded in mod-
ulus by C3|λ(0)|2e−2μ�x and so can be viewed as part of the second term on the right
in (11.1). Splitting I now as

I = e−μx
(
λws(0) +

∫ ∞

0

eμsΠwsN(λ(s)) ds

)
−
∫ ∞

x

e−μ(x−s)ΠwsN(λ(s)) ds =: I1+I2,

we see that |I2| ≤ C4

∫
e−μ�(x−s)e−2μ�sd(�s) ≤ C5e

−2μ�x, and so I2 can be treated
like II above. Setting

A := λws(0) +

∫ ∞

0

eμsΠwsN(λ(s)) ds,

we obtain (11.1).
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1834 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

The treatment of frequencies ζ = ζ∞ with �ζ ≥ 0 does not require (11.1), so for
such frequencies the proofs in the scalar case work for multistep reactions as long as
the assumptions of section 1 hold. Thus, our main result, Theorem 2.1, holds also for
for type D multistep reactions under the additional separation condition (2.9).

Part III. Finite turning point and nonturning point frequencies.

In this part we treat nonturning point frequencies as well as frequencies ζ ∈ (iii)o+,
for each of which there exists a turning point x(ζ) ∈ (0,∞). We also study the
upper endpoint frequency ζ0 for which the corresponding turning point is the endpoint
x(ζ0) = 0 of the reaction zone [0,∞).

First we give a lemma that extends the map ζ → x(ζ) to a neighborhood of a
turning point frequency.

Lemma 11.1. Fix a basepoint ζ ∈ (iii)
0
+. There exist neighborhoods ω � ζ and

O � x(ζ) and an analytic homeomorphism x : ω → O, where x(ζ) is defined to be the
unique root of

(11.5) f(x, ζ) := ζ2 + c20η(x) = 0.

Moreover,

(11.6) 
x(ζ) ≥ 0 for �ζ ≥ 0 and 
x(ζ) = 0 ⇔ �ζ = 0.

Proof. The profile P (x) is of type D, so ∂xf(x(ζ), ζ) < 0. The fact that x(ζ) is
analytic thus follows from the implicit function theorem. We have

(11.7) ∂xf(x(ζ), ζ)xζ (ζ) + 2ζ = 0,

so xζ(ζ) = 0 since ζ = 0. Hence we have an analytic homeomorphism of some
neighborhoods ω and O. Since 
ζ > 0, (11.7) implies 
xζ(ζ) > 0, which yields
(11.6).

The frequencies ζ ∈ {�ζ ≥ 0} \ (iii) := N , for which there are no associated
turning points, are divided into two sets:

(11.8) N = (N ∩ {|ζ| ≥M}) ∪ (N ∩ {|ζ| ≤M})
for some sufficiently largeM . The unbounded set is studied in section 14. The bounded
set was treated in [LWZ1] using the following theorem, which we reproduce here since
it is needed for the analysis of finite turning points. In this theorem the μj(x, ζ),
j = 1, . . . , 5, are the eigenvalues of Φ0(x, ζ) given in (0.7), and μ > 0 is the constant
determining the rate of profile decay in (4.7).

Theorem 11.2 (see [LWZ1, Theorem 2.1]). (1) Consider the system (5.1)

(11.9) θ′ =
1

h
[Φ0(x, ζ) + hΦ1(x)] θ

on an interval [a,∞), a ≥ 0, and for values of ζ such that

(11.10) |μ1(x, ζ) − μj(x, ζ)| ≥ Cζ > 0, j = 2, . . . , 5, for 0 < h ≤ h(ζ) small enough.

Then there exists an exact solution θ(x, ζ, h) such that for any 0 < δ∗ < μ

(11.11)∣∣∣θ − e
1
h

∫
x
0
μ�
1(s,ζ,h)ds [T1(x, ζ) +O(h)]

∣∣∣ ≤ Cζhe
−δ∗x

∣∣∣e 1
h

∫
x
0
μ�
1(s,ζ,h)ds

∣∣∣ on [a,∞),
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DETONATION STABILITY AND TURNING POINTS 1835

where T1(x, ζ) as in (0.10), and

(11.12) μ�1 = μ1(x, ζ) +O(he−μx).

(2) Let K ⊂ {�ζ ≥ 0}\ (iii) be compact. Then (11.10) and (11.11) hold on [0,∞)
with constants h(ζ), Cζ that can be taken independent of ζ ∈ K.

(3) Let ζ ∈ (iii)
o
+ and δ > 0. There exists a neighborhood ω1 � ζ in �ζ ≥ 0 such

that

(11.13) x(ζ)− δ < �x(ζ) < x(ζ) + δ for all ζ ∈ ω1

and such that (11.10) and (11.11) hold on [x(ζ) + δ,∞) with constants h(ζ), Cζ that
can be taken independent of ζ ∈ ω1.

As an immediate corollary of part (2) we have the following.
Corollary 11.3 (nonturning point frequencies). Let K ⊂ {�ζ ≥ 0} \ (iii) be

compact. The exact bounded solution θ(x, ζ) of (11.9) given by Theorem 11.2 satisfies

(11.14) |θ(0, ζ, h)− T1(0, ζ)| ≤ CKh for 0 ≤ h ≤ hK ,

where CK and hK can be taken independent of ζ ∈ K.
The corollary implies that for ζ ∈ K, 0 < h ≤ hK , the solution θ is of type θ1 at

x = 0 and thus the stability function V (ζ, h) is nonvanishing. In view of (11.11) and
(11.12), part (3) of Theorem 11.2 yields the following.

Corollary 11.4. Let ω1 � ζ and δ > 0 be as in (11.13). For ζ ∈ ω1 there is a
bounded, nonvanishing function H(x, ζ, h) and an h0 > 0 such that

(11.15) |H(x, ζ, h)θ(x, ζ, h) − θ1(x, ζ, h)| ≤ Ch|θ1(x, ζ, h)| on [x(ζ) + δ,∞)

for 0 < h ≤ h0.
In the next section we show that there is a nonvanishing scalar function s(ζ, h)

such that s(ζ, h)θ(x, ζ, h) is of type θ1 at x(ζ)−2δ for ζ ∈ ω1. This is done by matching
arguments that use Airy functions to represent exact solutions on a full neighborhood
of the turning points. It then follows as in Proposition 10.12 that s(ζ, h)θ(x, ζ, h) is
of type θ1 at x = 0.

12. Turning points in (0,∞). We now fix a basepoint ζ ∈ (iii)
o
+ with asso-

ciated turning point x(ζ) ∈ (0,∞). The goal is to find a neighborhood ω � ζ and a
constant h0 > 0 such that the stability function V (ζ, h) = 0 for ζ ∈ ω and 0 < h ≤ h0.
The first step is to conjugate the system (11.9) to the block form (5.11):

h
d

dx
φ =

(
A0

11 + hd11 + h2β11 0
0 A0

22 + hd22 + h2β22

)
,

φ :=

(
A11(x, ζ, h) 0

0 A22(x, ζ, h)

)
φ,(12.1)

for ζ near ζ and x in a complex neighborhood of x(ζ).
Proposition 12.1. Let ζ ∈ (iii)

o
+ and let x(ζ) ∈ (0,∞) be the corresponding

turning point. There exists a constant h0 > 0 and simply connected open neighbor-
hoods ω � ζ, O � x(ζ) such that for ζ ∈ ω and 0 < h ≤ h0 a conjugator Y (x, ζ, h)
can be constructed on O with the property that θ(x, ζ, h) satisfies the Erpenbeck sys-
tem (11.9) on O if and only if φ defined by θ = Y φ satisfies (12.1). The conjugator
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1836 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

Y (x, ζ, h) is bounded and analytic in its arguments. The entries of the 2 × 2 block
A11(x, ζ, h) in (12.1) again have the form given in (5.13).

Proof. The conjugator is constructed as Y = Y1Y2, where Y1(x, ζ) is given by (5.5)
and Y2(x, ζ, h) has the form (5.10). The entries of Y2 satisfy equations like (5.15) and
are constructed by a classical contraction argument; see, for example, Theorem 6.1-1
of [Wa]. The analyticity of the Yj in x is a consequence of the fact that the profile
P (x) extends analytically to a complex neighborhood of x(ζ). As in Proposition 5.2,

the argument uses the fact that the blocks A0
11(x, ζ) and A0

22(x, ζ) in (5.8) have no
eigenvalues in common for (x, ζ) ∈ O × ω for small enough O, ω.

Writing φ = (φ1, φ2) and letting ϕ0(x, ζ, h) denote any function such that d
dxϕ0 =

a+d
2 , we obtain by the same calculations that produced (5.31) that solutions of

h d
dxφ1 = A11(x, ζ, h)φ1 in O are given by

(12.2) φ1 = e
ϕ0
h

(
b1/2 0

αb−1/2 − h(b−1/2)x b−1/2

)(
w
hwx

)
:= K(x, ζ, h)

(
w
hwx

)
,

where (w, hwx) satisfies

(12.3) h
d

dx

(
w
hwx

)
=

(
0 1

C(x, ζ) + hr(x, ζ, h) 0

)(
w
hwx

)
.

Thus, we can construct two independent solutions on O of the original system (11.9)
of the form

(12.4) θ = Y (x, ζ, h)

⎛
⎝K(x, ζ, h)

(
w
hwx

)
0

⎞
⎠ ,

using independent solutions of (12.3).

Remark 12.2. In the remainder of this section the simply connected neighborhoods
ω � ζ and O � x(ζ) may need to be reduced in size a finite number of times. These
reductions will often be performed without comment.

The following propositions will allow us to construct solutions of (12.3) in terms

of Airy functions. Recall that for ζ ∈ (iii)
0
+ the number x(ζ) ∈ (0,∞) is the unique

root of ζ2 + c20η(x) = 0.

Let us write the function C(x, ζ) in (12.3) as

C(x, ζ) = (ζ2 + c20η(x))b
2(x) = (x − x(ζ))d(x, ζ),

where d(x, ζ) =

∫ 1

0

Cx(x(ζ) + t(x− x(ζ)), ζ)dt.
(12.5)

Proposition 12.3. The equation

(12.6) (ρx)
2ρ = C(x, ζ)

has a solution for (x, ζ) ∈ O × ω given by

(12.7) ρ(x, ζ) = (x(ζ) − x)

(∫ 1

0

3u2
√
−d(x(ζ) + u2(x− x(ζ)), ζ) du

)2/3

,
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DETONATION STABILITY AND TURNING POINTS 1837

where the expression inside the square root and the square root itself are positive when
x is real and �ζ = 0. The function ρ is analytic in both x and ζ and satisfies

(a) ρ(x(ζ), ζ) = 0 for ζ ∈ ω;

(b) for x real and �ζ = 0, ρ(x, ζ) is real and ρx(x, ζ) < 0;

(c) for each ζ ∈ ω, ρ(·, ζ) is an analytic homeomorphism of O onto a neighborhood

Oζ � 0;

(d) for �ζ = 0, we have (−iρζ)(x(ζ), ζ) > 0.

(12.8)

Remark 12.4. The inequality (12.8)(d) implies that the map ζ → ρ(x(ζ), ζ) is
an analytic homeomorphism of a neighborhood of ζ onto a neighborhood of 0. From
(12.8)(b) and (d) we see that for ζ near ζ, when �ζ > 0 we have 
ρ(x(ζ), ζ) > 0.
After shrinking ω if necessary, we conclude that for real x near x(ζ) and ζ ∈ ω with
�ζ > 0, we have 
ρ(x, ζ) > 0.

The system (12.3) is equivalent to the scalar equation

(12.9) h2wxx = (C(x, ζ) + hr(x, ζ, h))w.

Using (12.6), the property (12.8)(c), and for each ζ ∈ ω making the changes of
variables

(12.10) y = ρ(x, ζ), W (y, ζ) := w(x(y, ζ)),

we find that (12.9) takes the form (suppressing some ζ arguments and setting
ρx = ∂xρ)

(12.11) h2ρx(x(y))dy (ρx(x(y))Wy) = [yρ2x(x(y)) + hr(x(y), ζ, h)]W.

The transformation

(12.12) f(y) = (ρx(x(y)))
1/2W (y)

leads to

(12.13) h2fyy = (y + hq(y, h))f, where q(y, h) = rρ−2
x + hρ−1/2

x d2y(ρ
1/2
x ).

This is a perturbation of Airy’s equation that we can rewrite as

(12.14) h

(
f
hfy

)
y

=

(
0 1

y + hq(y, h) 0

)(
f
hfy

)
.

The following proposition is a classical result of turning point theory. A reference
for the proof is [Wa, Theorem 6.5-1].

Proposition 12.5 (exact conjugation to Airy’s equation). There exists h0 > 0
and a conjugator P (y, ζ, h) = I + hQ(y, ζ, h), with Q bounded and analytic in its
arguments x ∈ O, ζ ∈ ω, 0 < h ≤ h0,

27such that the transformation (f, hfy) = PZ
takes (12.14) into the equation

(12.15) hZy =

(
0 1
y 0

)
Z.

27Recall Remark 12.2.
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1838 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

For any ζ ∈ ω two independent solutions of (12.15) on Oζ (as in (12.8)(c)) are
given by

(12.16) Z±(y) =
(

Ai(h−2/3e±2πi/3y)

h1/3e±2πi/3Ai(h−2/3e±2πi/3y)

)
.

We recall that the phase function ϕ0 in (12.2) is required to be a primitive of a+d2 ,
where a = a+O(h), d = d+ O(h) (see (5.11) and (5.13)). Since a = d is defined for
all x ≥ 0 and for all ζ, and morever extends analytically to a complex neighborhood
of the positive real axis, we may (and do) henceforth take ϕ0 of the form

(12.17) ϕ0(x, ζ, h) =

∫ x

0

a(s, ζ)ds +O(h).

Using the formula (12.4) for θ and retracing through the changes of variables, we
obtain the next proposition.

Proposition 12.6 (exact solutions of (11.9)). For each ζ ∈ ω two exact inde-
pendent solutions θ±(x, ζ, h) on O of the original 5 × 5 system (11.9) are given by
formula (12.4) with

(12.18)(
w
hwx

)
±
=

(
ρ
−1/2
x 0

hρxdy(ρ
−1/2
x ) ρ

1/2
x

)(
f
hfy

)
±
=

(
ρ
−1/2
x 0

hρxdy(ρ
−1/2
x ) ρ

1/2
x

)
P (ρ, ζ, h)Z±(ρ).

Ignoring relative O(h) errors in (12.4), we obtain by these substitutions
θ±(x, ζ, h) ∼

eϕ0/h
[
b1/2(ρx)

−1/2Ai(h−2/3ρe±2πi/3)P0

+ b−1/2h1/3(ρx)
1/2e±2πi/3Ai′(h−2/3ρe±2πi/3)Q0

]
.(12.19)

We now choose δ > 0 and a neighborhood ω1 � ζ satisfying (11.13) as in
Corollary 11.4, and so that for O � x(ζ) as Proposition 12.6 we have

(12.20) x(ω1) ∪ [x(ζ)− 2δ, x(ζ) + 2δ] ⊂ O.

The next proposition shows that for H as in Corollary 11.4, a nonvanishing multiple
of the exact decaying solution H(x(ζ) + 2δ, ζ, h)θ is of type θ1 at x(ζ)− 2δ.

Proposition 12.7. Let xL = x(ζ)− 2δ and xR = x(ζ) + 2δ. For ζ ∈ ω1 there is
an h0 > 0 and a nonvanishing scalar function α(ζ, h) such that

(12.21) |α(ζ, h)H(xR, ζ, h)θ(xL, ζ, h)− θ1(xL, ζ, h)| ≤ Ch|θ1(xL, ζ, h)|

for 0 < h ≤ h0.
The proof, given in section V, is based on expanding H(xR, ζ, h)θ(x, ζ, h) in

a basis of local exact solutions of (11.9), B = {θ−, θ+, θ3, θ4, θ5}, where the θj ,
j = 3, 4, 5, are of type θj for approximate solutions θj as in (0.16). Using the ex-
pansions (16.66) for the Airy function, we show first that appropriate multiples of θ−
and θ+ are, respectively, of type θ1 and θ2 at xR. Corollary 11.4 and the explicitly
known asymptotic behavior (in h) of the elements of B at both xR and xL then allow
us to conclude that (12.21) holds.
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DETONATION STABILITY AND TURNING POINTS 1839

Finally, the proof of Proposition 10.6 yields the following.
Proposition 12.8. There is a neighborhood ω1 � ζ and an h0 > 0 such that for

ζ ∈ ω1 and α as in Proposition 12.7,

(12.22) |α(ζ, h)H(xR, ζ, h)θ(x, ζ, h) − θ1(x, ζ, h)| ≤ Ch|θ1(x, ζ, h)| on [0, xL]

for 0 < h ≤ h0.

13. The turning point at 0. For the boundary point frequency ζ0 ∈ (iii)+ the
point x = 0, where we need explicit information about the exact decaying solution θ
in order to evaluate the stability function V (ζ, h), coincides with the turning point.
This fact presents some new difficulties that we sketch after stating Proposition 13.1.

The first step in treating the turning point at x = 0 is to extend the detonation
profile p(x) analytically to a complex neighborhood of x = 0; this allows us to study
the Erpenbeck system (11.9) on a neighborhood of x = 0. We can then immediately
extend Lemma 11.1 to obtain an analytic homeomorphism x : ω → O, where now
x(ζ0) = 0, ω � ζ0 and O � 0. Similarly, with no changes in the proofs we obtain
extensions of Theorem 11.2 (3), Corollary 11.4, and Propositions 12.1, 12.3, 12.5, and
12.6 to the case where ζ is now ζ0. In particular, we obtain exact solutions θ± on O
satisfying (12.19).

We now choose δ > 0 and a neighborhood ω1 � ζ0 satisfying (11.13) as in
Corollary 11.4 and so that for O � 0 as Proposition 12.6 we have

(13.1) x(ω1) ∪ [−2δ, 2δ] ⊂ O.

The next proposition shows that for H as in Corollary 11.4, a nonvanishing multiple
of the exact decaying solution H(2δ, ζ, h)θ is of type θ1 at 0.

Proposition 13.1. Fix κ > 0. There exists a neighborhood ω2 � ζ0 with ω2 ⊂ ω1,
an h0 > 0, and a nonvanishing scalar function α(ζ, h) such that

(13.2) |α(ζ, h)H(2δ, ζ, h)θ(0, ζ, h)− θ1(0, ζ, h)| ≤ κ|θ1(0, ζ, h)|

for ζ ∈ ω2 and 0 < h ≤ h0. Both ω2 and h0 depend on κ.
As with Proposition 12.7 the proof involves working with a local basis of exact

solutions B = {θ−, θ+, θ3, θ4, θ5}, and again we make use of the expressions (12.19)
for θ± in terms of Airy functions. However, since ρ(0, ζ0) = 0, we cannot use the
Airy function expansions ((16.66), for example) when ζ is too close to ζ0. Since the
arguments of the Airy functions in (12.19) are h−2/3ρ(x, ζ)e±2πi/3, we see that there
are two natural frequency regimes to consider:

regime A = {(ζ, h) : |ρ(0, ζ)h−2/3| ≤M,

regime B = {(ζ, h) : |ρ(0, ζ)h−2/3| ≥M.
(13.3)

Here ζ ∈ ω1 andM is chosen large enough so that standard expansions of Ai(z) apply
in |z| ≥M ; thus, we are able to use those expansions in the analysis of regime B.

In the proof of Proposition 12.8 for turning points in (0,∞), it was helpful that
the arguments of ρ(xR, ζ) and ρ(xL, ζ) were always close to π and 0, respectively, for
ζ near ζ, and thus e±2πi/3ρ(xR,L, ζ) stayed away from the negative real axis, where
the zeros of Ai and Ai′ are located. Now, however, the argument of ρ(0, ζ) can take
on all values in [0, π] for ζ near ζ0. The analysis of θ+ is complicated by the fact that
for arg(ρ(0, ζ)) ∼ π/3, we have arg

(
e2πi/3ρ(0, ζ)

) ∼ π.
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1840 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

The formula (0.16) for the approximate solution θ1 shows that

(13.4) θ1(0, ζ, h) = P0(0, ζ) + s(0, ζ)Q0 +O(h).

The proof of Proposition 13.1 makes use of the fact that for ζ near ζ0, the functions
s(0, ζ) and ρ(0, ζ) are both close to zero. This implies that the terms involving Q0

in both (13.4) and the expression (12.19) for θ− are small compared to the terms
involving P0.

14. The case |ζ| ≥ M . We conclude Part III by treating the case |ζ| ≥M >>
1. We must show that there exists h0 > 0 and M such that for all 0 < h ≤ h0 and
|ζ| ≥ M with �ζ ≥ 0, the decaying (or bounded when �ζ = 0) solution θ(x, ζ, h) of
Erpenbeck’s 5× 5 system,

(14.1) h
d

dx
θ = (Φ0(x, ζ) + hΦ1(x))θ,

is of type θ1 at x = 0. As noted above, this implies nonvanishing of the stability
function V (ζ, h). Here there are no turning points, but the difficulty is to give a
uniform treatment of the noncompact set of parameters ζ. This case was studied on
p. 610 of [E3], but the choice of h0 there was not uniform with respect to large ζ, and
so we are not able to use this result.

Proposition 14.1. Let θ(x, ζ, h) be as just described and let h0 = 1. There
exists M > 0 such that for |ζ| ≥M and 0 < h ≤ h0 we have

(14.2) |θ(0, ζ, h)− T1(0, ζ)| ≤ Ch/|ζ|,

where C > 0 is independent of (ζ, h).

Proof. (1) First we rewrite 14.1 as

(14.3)
d

dx
θ =

|ζ|
h

(
Φ̃0(x, ζ) +

h

|ζ|Φ1(x)

)
,

where Φ1(x) = ((Ax)−1B(x))t as before, and

(14.4) Φ̃0(x, ζ) =
1

|ζ|Φ0 =
ζ

|ζ| ((A
x)−1)t +

i

|ζ| ((A
x)−1Ay)t.

The eigenvalues of Φ̃0(x, ζ) are μ̃j(x, ζ) :=
1
|ζ|μj(x, ζ) for μj as in (0.7).

(2) As in section 2 of [LWZ1], direct computation and the use of Assumption 1.3
shows that for μ > 0 as in (5.4)

(14.5) ((Ax)−1B)t(x) = O(e−μx) +
(

0
row 5

)
, where row 5 = (∗, ∗, ∗, ∗,−rλ/u).

This implies that the eigenvalues of Φ̃0(x, ζ) +
h
|ζ|Φ1(x) are

μ∗
j :=

1

|ζ|μj(x, ζ) +O(h̃e−μx), j = 1, 2, 3, 4, h̃ :=
h

|ζ| ,

μ∗
5 =

1

|ζ|μ3(x, ζ) − h̃
rλ
u

+O(h̃e−μx), where rλ < 0.

(14.6)D
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DETONATION STABILITY AND TURNING POINTS 1841

(3) Uniform separation of eigenvalues. Using the fact that

μ2(x, ζ)− μ1(x, ζ) =
2κs

ηu
, s(x, ζ) =

√
ζ2 + c20η(x),

μ3(x, ζ)− μ1(x, ζ) =
ζ + κs

ηu
,

(14.7)

and noting that s(x, ζ) ∼ ζ for |ζ| >> 1, we obtain for large enough M

(14.8) |μ̃1(x, ζ) − μ̃j(x, ζ)| ≥ C > 0, j = 2, . . . , 5,

where C is independent of x ∈ [0,∞) and |ζ| ≥ M . Moreover, since �μj ≥ �μ1,
j = 2, . . . , 5, we find from (14.6) that

(14.9) �μ∗
j (x, ζ, h̃)−�μ∗

1(x, ζ, h̃) ≥ O(h̃e−μx), j = 2, . . . , 5,

uniformly for x ∈ [0,∞) and |ζ| ≥M .
(4) Conclusion. As a consequence of the separation inequalities (14.8) and (14.9),

we are in a position to apply (verbatim) the proof of Theorem 2.1 of [LWZ1] to the
system

(14.10)
d

dx
θ =

1

h̃

(
Φ̃0(x, ζ) + h̃Φ1(x)

)
,

where Φ̃0 and h̃ play the roles of, respectively, Φ0 and h in the earlier proof. For a
possibly larger choice of M , the argument there28 shows that θ satisfies

(14.11)∣∣∣θ(x, ζ, h) − e
1
h̃

∫
x
0
μ�
1(s,ζ,h̃)ds

[
T1(x, ζ) +O(h̃)

]∣∣∣ ≤ Ch̃e−δx
∣∣∣e 1

h̃

∫
x
0
μ�
1(s,ζ,h̃)ds

∣∣∣ on [0,∞),

where 0 < δ < μ, C is independent of |ζ| ≥M , and

(14.12) μ�1(s, ζ, h̃) = μ∗
1(s, ζ, h̃) +O(h̃e−μx).

Evaluating (14.11) at x = 0 we obtain (14.2).

Part IV. Proofs for Part II.

15. Conjugation to block form. In this section we prove Lemma 5.1 and
Proposition 5.2.

Proof of Lemma 5.1. We give the proof for d12; the proof for d11 is quite sim-
ilar. The assertion for β11 then follows from β11 = d12α21 and the boundedness
of α21.

Since the x-dependence of d12 enters only through the profile, it suffices to show
d12(∞) = 0. We have

(15.1) D :=

(
d11 d12
d21 d22

)
= Y −1

1 Φ1Y1 − Y −1
1

d

dx
Y1,

so we need only show that that (1, 2) entry of Y −1
1 Φ1Y1 is 0 at x = ∞. Here d12 is a

2× 3 submatrix of the 5× 5 matrix D.

28This argument is based on the Variable Coefficient Gap Lemma stated in Appendix A of [LWZ1]
and first proved in [Z1].
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1842 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

On pp. 116–117 of [E2] Erpenbeck writes Φ1 = W10 +W11, where W10(∞) = 0
and W11 is a matrix whose first four rows vanish at ∞.29 So it suffices to consider
Y −1
1 W11Y1(∞). Suppressing evaluations at ∞, we write

(15.2) W11 =

(
wa wb
wc wd

)
,

where wa = 0 (wa is 2× 2), wb = 0, and

(15.3) wc =

⎛
⎝0 0
0 0
∗ ∗

⎞
⎠ , wd =

⎛
⎝0 0 0
0 0 0
∗ ∗ ∗

⎞
⎠ .

Writing

(15.4) Y1 =

(
ta tb
tc td

)
and Y −1

1 =

(
sa sb
sc sd

)
,

the (1, 2) submatrix of Y −1
1 W11Y1 is then sb(wctb + wdtd). From (5.6) we see that

(15.5) tb =

(∗ 0 0
∗ 0 0

)
, td =

⎛
⎝∗ 0 0
0 ∗ 0
0 0 ∗

⎞
⎠ , sb =

(∗ 0 0
∗ 0 0

)
.

Computing sb(wctb + wdtd) we find that all entries vanish.
Proof of Proposition 5.2.
(1) Integral equation for α21. In order for Y2 to conjugate solutions of (5.8) to

solutions of (5.10), we must have

(15.6) h
d

dx
Y2 = AY2 − Y2B on the wedge W = W(M0, θ),

where A and B are the coefficient matrices of (5.8) and (5.10), respectively. Direct
computation shows that the functions α12 and α21 must therefore satisfy the equations

h
d

dx
α12 = A0

11α12 − α12A
0
22 + h(d11α12 − α12d22) + d12 − h2α12d21α12,

h
d

dx
α21 = A0

22α21 − α21A
0
11 + h(d22α21 − α21d11) + d21 − h2α21d12α21.(15.7)

Thinking of the 3× 2 matrix α21 as an element of C6 and using obvious notation, we
rewrite the second equation as

h
d

dx
α21 =

(A(ζ, h) +O(e−μ�x)
)
α21 +

(
d21(∞, ζ) +O(e−μ�x)

)
(15.8)

+O(h2e−μ�x)(α21, α21),

where (with slight abuse)

(15.9)
A(ζ, h)α21 = A0

22(∞, ζ)α21 − α21A
0
11(∞, ζ) + h (d22(∞, ζ)α21 − α21d11(∞, ζ)) .

Here we have used (5.4) and the fact that d12(∞, ζ) = 0.

29Here we use Assumption 1.3.
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DETONATION STABILITY AND TURNING POINTS 1843

The eigenvalues of A0
11(∞, ζ) (resp., A0

22(∞, ζ)) are μj(∞, ζ), j = 1, 2 (resp.,
μj(∞, ζ), j = 3, 4, 5). The six eigenvalues aj(ζ, h) of A(ζ, h) are differences λ2 − λ1,
where λj(ζ, h) is an eigenvalue of A0

jj(∞, ζ)+hdjj(∞, ζ). From the formulas (0.7) for
the μj we see that there exist constants a and h0 and a neighborhood ω � ζ∞ such
that all the eigenvalues aj(ζ, h) satisfy

(15.10) 
aj(ζ, h) > a > 0 for 0 < h ≤ h0, ζ ∈ ω.

Given any ε0 > 0, after reducing h0 and shrinking ω if necessary, we will also have
for all j

(15.11) |�aj(ζ, h)| < ε0 for 0 < h ≤ h0, ζ ∈ ω.

In view of (15.8), we will construct α21 as a fixed point of the map (analyzed below)

Tα21(x) = h−1

∫ x

∞−
eh

−1A(ζ,h)(x−y)
[
O(e−μ�y)α21 +

(
d21(∞, ζ) +O(e−μ�y)

)
(15.12)

+ O(h2e−μ�y)(α21, α21)
]
dy,

where x ∈ W(M0, θ), ∞− is the point at ∞ on the lower boundary of the wedge W,
and the path of integration is a straight segment.

(2) Estimate of eh
−1A(ζ,h)(x−y). Write x = xr + ixi and let y(s) = s + iyi(s) be

a parametrization of the segment from ∞− to x. If a(ζ, h) = ar + iai denotes any
eigenvalue of A(ζ, h), we have

(15.13) �(a(x− y(s))) = ar(xr − s)− ai(xi − yi(s)) := arΔr − aiΔi.

Choosing ε0 in (15.11) such that 0 < ε0 < a tan θ and noting that |Δi

Δr
| ≥ tan θ, we

estimate

arΔr − aiΔi ≤ ε0|Δr| − a|Δi| ≤ ε0|Δr| − a|Δr| tan θ = −κ|Δr|,(15.14)

where κ = a tan θ − ε0 > 0.

The Jordan form of the matrix A(ζ, h) can have nontrivial blocks, but the semisim-
plicity of the eigenvalues μj(∞) j = 3, 4, 5, of A0

22(∞, ζ) implies that such a block can
be at most of size 4× 4.30 Thus, (15.13) and (15.14) yield the estimate

(15.15)
∣∣∣eh−1A(ζ,h)(x−y)

∣∣∣ ≤ C

(
1 +

|xr − s|3
h

)
e−κ

|xr−s|
h

on the path y(s).
(3) Contraction. Using the estimate (15.15) we can choose K > 0 such that

(15.16)∣∣∣∣∣h−1

∫ x

∞−
eh

−1A(ζ,h)(x−y)d21(∞, ζ)dy

∣∣∣∣∣ ≤ K for 0 < h ≤ h0, ζ ∈ ω, x ∈ W(M0, θ).

30This is because A(ζ, h) has at least three independent eigenvectors.
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1844 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

In fact the integral in (15.16) is independent of x, so we call it D(ζ, h). For later use
we note that for x = xr + ixi ∈ W(M0, θ),

(15.17) h−1

∫ xr

∞

(
1 +

|xr − s|3
h

)
e−κ

|xr−s|
h e−μsds ≤ Ce−μxr .

Denoting the set of analytic functions on W by H(W), we let

(15.18) B = {α21 ∈ H(W) : |α21|L∞(W) ≤ K + 1}.
After increasing M0 if necessary, we see that (15.12), (15.15), and (15.17) imply that
T : B → B. Using the same facts and again increasing M0 if necessary, we see that
T gives a contraction on B. So we now have a solution α21 to (15.8) satisfying

(15.19) |α21|L∞(W) ≤ K + 1.

The contraction argument for α12 is similar, and we leave it to the reader.
(4) Decay of α21 to its endstate. Recall that D(ζ, h) is the (x-independent) inte-

gral in (15.16). From (15.12) and (15.17) we see that

(15.20) |Tα21(x) −D(ζ, h)| = |α21(x)−D(ζ, h)| ≤ Ce−μxr for x ∈ W(M0, θ),

so D(ζ, h) = α21(∞, ζ, h).
(5) Derivative estimates. The estimates (5.14) are obtained by differentiating

(15.12) and again applying (15.17).

16. Regimes I and II. Regime II is the most difficult of the regimes to treat.
We give the proofs for this regime first; the proofs for regime I are generally similar
but much simpler.

16.1. Proofs for regime II. After establishing some notation, we give the
proofs of Propositions 10.7, 10.8, 10.10, and 10.11.

16.1.1. The change of variable σ → ξ(σ). An application of Rouché’s
theorem shows that for |fp|L∞(Z−iα̃) sufficiently small, the function f(σ) =

(1− 1
σ2 )+fp(σ) has a unique simple zero σ0 on Z−iα̃, and that σ0 → 1 as |fp|L∞ → 0.

We set f0(σ) := 1− 1
σ2 and introduce subscripts to distinguish

Ξf (σ) =
2

3
ξ

3
2

f (σ) =

∫ σ

σ0

√
f0 + fp (σ)dσ, σ ∈ Zcut(σ0) and

Ξf0 (σ) =
2

3
ξ

3
2

f0
(σ) =

∫ σ

1

√
f0 (σ)dσ, σ ∈ Zcut(1).(16.1)

Our analysis of ξf (σ) is based on comparison with ξf0(
σ
σ0
), and for this we must

carefully choose the branches of the square roots in (16.1). Write

f0(σ) = (σ − 1)d1(σ), where d1(σ) =
σ + 1

σ2
, and

f(σ) = (σ − σ0)dσ0(σ) where dσ0(σ) =
σ2 − 1 + σ2fp(σ)

(σ − σ0)σ2
.(16.2)

Now define

(16.3)
√
f0(σ) =

√
σ − 1

√
d1(σ) on Zcut(1),
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DETONATION STABILITY AND TURNING POINTS 1845

where
√
σ − 1 is the branch on Zcut(1) that is positive for σ > 1, and

√
d1(σ) =

√
σ+1
σ ,

defined on �σ > 0, is positive for σ > 0.31 Similarly, define

(16.4)
√
f(σ) =

√
σ − σ0

√
dσ0(σ) on Zcut(σ0),

where
√
σ − σ0 on Zcut(σ0) is given by

(16.5)
√
σ − σ0 =

√
σ0

√
σ

σ0
− 1 with

√
σ0 ∼ 1 and

√· − 1 as above,

and
√
dσ0 (σ) is close to

√
d1(σ) for fp small. Other powers of σ− σ0 on Zcut(σ0) are

defined similarly.
Proof of Proposition 10.7.
(1) Analyticity on Z−iα̃. In the integral

(16.6)
3

2
Ξf (σ) =

3

2

∫ σ

σ0

√
s− σ0

√
dσ0 (s)ds

we make the changes of variable t =
√
s− σ0 and then t =

√
σ − σ0 u to obtain

3

2
Ξf (σ) =

∫ √
σ−σ0

0

3t2
√
dσ0(t

2 + σ0) dt(16.7)

= (σ − σ0)
3
2

∫ 1

0

3u2
√
dσ0((σ − σ0)u2 + σ0) du.

Estimates given below (see step (3)) imply that the second integral in (16.7) is non-
vanishing on Z−iα̃ for fp sufficiently small. Thus, this integral has a well-defined
analytic logarithm, which we use to define roots of the integral.32 In particular, we
obtain33

(16.8) ξf (σ) = (σ − σ0)

(∫ 1

0

3u2
√
dσ0((σ − σ0)u2 + σ0) du

)2/3

.

Using the above logarithm we define
√
ξf on Zcut(σ0) and we have

(16.9)
√
ξf ξ

′
f =

√
f on Zcut(σ0).

From (16.8) it is clear that ξf is analytic on Z−iα̃. With (16.9) it follows that ξ′f is
nonvanishing on Z−iα̃. Thus ξf is a locally one-to-one, conformal map of Z−iα̃ onto
its range.

(2) Global injectivity. For some sufficiently small δ > 0 and sufficiently large
K > 0 to be chosen, we divide Z−iα̃ into regions A, B, and C, where, respectively,
|σ| < δ, δ ≤ |σ| ≤ K, and |σ| > K. The first and main step is to prove injectivity of
ξf restricted to each of these subsets. The proof relies on the global injectivity of ξf0 ,
which follows from direct analysis of (10.22).

The next lemma is essential for proving the injectivity and mapping properties of
ξf .

31This definition yields the branch of
√
σ2 − 1 used in (10.22).

32The logarithm is chosen so that its argument is close to zero for z large and positive.
33Of course, we have a formula for ξf0(σ) similar to (16.8) in which σ0 is replaced by 1.
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1846 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

Lemma 16.1. There exist constants εj = εj(fp) > 0, j = A,B,C, which approach
zero as Np → 0,34such that

(a)

∣∣∣∣ξf (σ)− ξf0

(
σ

σ0

)∣∣∣∣ ≤ εA/

∣∣∣∣ξf0
(
σ

σ0

)∣∣∣∣
1
2

for σ ∈ A,

(b)

∣∣∣∣ξf (σ) − ξf0

(
σ

σ0

)∣∣∣∣ ≤ εB for σ ∈ B,

(c)

∣∣∣∣Ξf (σ)− Ξf0

(
σ

σ0

)∣∣∣∣ ≤ εC

∣∣∣∣Ξf0
(
σ

σ0

)∣∣∣∣ for σ ∈ C.

(16.10)

Proof. Estimates (a) and (b). We set w = w(σ, u) = ( σσ0
− 1)u2 + 1 and write

ξf (σ)− ξf0 (
σ

σ0
) = (

σ

σ0
− 1)

[(
σ

3
2
0

∫ 1

0

3u2
√
dσ0(σ0w)du

)2/3

(16.11)

−
(∫ 1

0

3u2
√
d1(w)du

)2/3
]
.

Thus, estimates (a) and (b) follow from the fact that given ε > 0, we have (for small
fp)

(16.12)
∣∣∣σ3/2

0

√
dσ0(σ0w)−

√
d1(w)

∣∣∣ ≤ ε|w| for all (u, σ) ∈ [0, 1]× (A ∪B).

To see this one computes (observing important cancellations) the difference in (16.12)
to be

(16.13)
w
(
σ2
0 − 1 + σ2

0fp(σ0w)
)

√
w − 1

(√
σ2
0w − 1 + σ2

0w
2fp(σ0w) +

√
w2 − 1

) .
For w bounded away from 0 we can factor w − 1 out of numerator and denominator
(since (f0 + fp)(σ0) = 0) to obtain (16.12) when (fp, f

′
p) is small. When w is near 0,

we obtain (16.12) since

(16.14) |σ2
0 − 1 + σ2

0fp(σ0w)| ≤ ε when fp is small.

We remark that the individual integrals in (16.11) do blow up since w → 0 as
(σ, u) → (0, 1). In fact it is clear from (10.22) that

(16.15) |ξf0 (σ)| ∼ C(| ln |σ||)2/3 as σ → 0.

Estimate (c). We use again the formula (16.13). Since |w| ∼ |σ| for |σ| large and

|(σ2
0 − 1 + σ2

0fp(σ0w)| ≤ ε for fp small, we have |(16.13)| ≤ ε/|σ| 12 for |σ| large. The
estimate follows since |Ξf0( σσ0

)| ∼ |σ| for |σ| large.
(3) The nonvanishing of the second integral in (16.7) for small fp can be de-

duced from the above estimates of (16.13) together with the nonvanishing of the
(computable) integral

(16.16)

∫ 1

0

3u2
√
d1(w)du.

34Np occurs in Proposition 9.2.
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DETONATION STABILITY AND TURNING POINTS 1847

(4) Region B. Writing

(16.17) ξf (σ)− ξf (a) = (σ − a)
(
ξ′f (a) + (σ − a)h(σ, a)

)
for σ, a ∈ B,

and noting that there exist positive constants C1, C2 such that |ξ′f (σ)| ≥ C1 on B
and |h(σ, a)| ≤ C2 on B ×B, we see that there exists κ > 0 such that

(16.18) ξf (σ) = ξf (a) for (σ, a) ∈ B ×B, σ = a, |σ − a| ≤ κ.

Since region B is compact, ξf0 is injective on B, and ξ′f0 is everywhere nonvan-
ishing, there exists a constant C > 0 such that

(16.19)

∣∣∣∣ξf0
(
σ1
σ0

)
− ξf0

(
σ2
σ0

)∣∣∣∣ ≥ C|σ1 − σ2| for all σ1, σ2 ∈ B.

Suppose now that for all μ > 0 injectivity of ξf |B fails for some perturbation fp with
|fp, f ′

p|L∞(B) < μ. Then estimate (16.10)(b) implies that there exists a sequence of
perturbations fp,k, sequences of points σ1,k, σ2,k in B, and a sequence of positive
constants εB,k → 0 such that

0 = |ξf0+fp,k(σ1,k)− ξf0+fp,k(σ2,k)| ≥
∣∣∣∣ξf0
(
σ1,k
σ0

)

− ξf0

(
σ2,k
σ0

)∣∣∣∣− εB,k ≥ C|σ1,k − σ2,k| − εB,k.(16.20)

So |σ1,k − σ2,k| → 0, which contradicts (16.18).

(5) Region A. For σ1, σ2 ∈ A we write

(16.21) ξf (σ1)− ξf (σ2) = (σ1 − σ2)

∫ 1

0

ξ′f (σ2 + s(σ1 − σ2))ds.

We claim that for δ as in step (2) small enough, the integral on the right in (16.21) is
nonvanishing (and in fact very large) for small fp. Using the explicit form of f0 one
computes directly (e.g., using partial fractions) that the dominant contribution to ξ′f0
for σ ∈ A is a term of the form

(16.22)
C

σ(log σ)1/3
.

Since argσ ∼ 0 for σ ∈ A, we deduce35

(16.23)∣∣∣∣
∫ 1

0

ξ′f0

(
σ2 + s(σ1 − σ2)

σ0

)
ds

∣∣∣∣ ≥ C
1

|σ1|| ln |σ1||1/3 , where |σ1| ≥ |σ2|, σ1, σ2 ∈ A.

To see that (16.23) holds with ξf in place of ξf0 , we use the estimate

(16.24)

∣∣∣∣ξ′f (σ)− 1

σ0
ξ′f0

(
σ

σ0

)∣∣∣∣ ≤ ε

|σ|| ln |σ||1/3 ,

35This can also be derived from the explicit formula (10.22).
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1848 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

where ε → 0 as Np → 0. To prove this we write out the derivatives in (16.22)
explicitly, forming two differences A1 − A2 and B1 −B2 in the obvious way, and use
Lemma 16.1(a) to estimate

(16.25) |A1 −A2| :=
∣∣∣∣∣
(∫ 1

0

3u2
√
dσ0du

)2/3

−
(∫ 1

0

3u2
√
d1du

)2/3
∣∣∣∣∣ ≤ ε

| ln |σ||1/3 .

Here and below dσ0 is evaluated at σ0w, and d1 is evaluated atw. Since σ−σ0 ∼ σ0 ∼ 1
we have |B1 −B2| ≤

C

∣∣∣∣∣ 1σ2
0

(∫ 1

0

u2
√
d1du

)− 1
3
(∫ 1

0

u4
d′1√
d1
du

)
−
(∫ 1

0

u2
√
dσ0du

)− 1
3
(∫ 1

0

u4
d′σ0√
σz0

du

)∣∣∣∣∣
�
∣∣∣∣∣√σ0

(∫ 1

0

u2
√
d1du

)− 1
3

−
(∫ 1

0

u2
√
dσ0du

)− 1
3

∣∣∣∣∣
∣∣∣∣∣
(

1

σ
5/2
0

∫ 1

0

u4
d′1√
d1
du

)∣∣∣∣∣
+

∣∣∣∣∣
(∫ 1

0

u2
√
dσ0du

)− 1
3

∣∣∣∣∣
∣∣∣∣∣
(

1

σ
5/2
0

∫ 1

0

u4
d′1√
d1
du

)
−
(∫ 1

0

u4
d′σ0√
dσ0

du

)∣∣∣∣∣ .

(16.26)

By (16.12) and the computation that produced (16.22) we see that the second line of
(16.26) is dominated by the right side of (16.24).

Next we show that the third line of (16.26) is dominated by the right side of
(16.24). We write

(16.27)
d′σ0√
dσ0

− d′1√
d1σ

5/2
0

=

(
d′σ0

− d′1
σ4
0

)
1√
dσ0

+
d′1
σ4
0

(
1√
dσ0

− σ
3/2
0√
d1

)
:= C +D.

Using (16.12) we obtain by the computation that produced (16.22) that the contribu-
tion from the term involving D to the third line of (16.26) is dominated by the right
side of (16.24). To estimate the contribution from C we write after observing some
cancellations

(16.28)

C =
(1 − σ2

0 − σ2
0fp(σ0w)) + (w − 1)σ3

0f
′
p(σ0w)

(w − 1)2σ4
0

· σ
3/2
0

√
w − 1 w√

σ2
0w

2 − 1 + σ2
0w

2fp(σ0w)
.

We claim |C| ≤ ε for (u, σ) ∈ [0, 1]× A when Np is small, and thus the contribution
from the term involving C to the third line of (16.26) is dominated by the right side
of (16.25). To estimate C we note that when w is bounded away from 0, (w− 1)2 can
be factored out of the first factor in (16.28) yielding

(16.29)

∣∣∣∣d′σ0
(σ0w)− 1

σ4
0

d′1(w)
∣∣∣∣ =
∣∣∣∣12
∫ 1

0

(1− s)f ′′
p (σ0 + s(σ0w − σ0))ds

∣∣∣∣ ≤ ε.

The second factor is treated similarly. Here we use that f ′
p(σ0w) and f ′′

p (σ0w) are
both small for w bounded away from 0 when Np is small (recall Proposition 6.3). For
w near 0 the smallness of C follows from the smallness of f ′

p(σ0w)w.
(6) Region C. For σ ∈ Z−iα̃ with |σ| large the correspondence Ξf ↔ ξf is one-to-

one, so it suffices to show Ξf is one-to-one on region C.
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DETONATION STABILITY AND TURNING POINTS 1849

Choose 0 < κ < 1 and for σ, a ∈ C with |σ − a| ≤ κ|σ| write

(16.30) Ξf (σ)− Ξf (a) = (σ − a)

[
Ξ′
f (a) +

(σ − a)

2

∫ 1

0

(1 − s)Ξ′′
f (a+ s(σ − a))ds

]
.

For |σ| large we claim

(16.31) |Ξ′′
f (σ)| ≤ ε/|σ|,

where ε → 0 as Np → 0. Since |Ξ′
f (a)| ∼ 1 for |a| large, the modulus of the right

side of (16.31) is ≥ 1
2 |σ − a| for ε small enough. The estimate (16.31) follows by

direct computation after noting |f ′
p(σ)| ≤ ε/|σ| for |σ| large. For example, using

Proposition 6.3 we estimate the term

(16.32) | − α̃2σb′2(−iα̃σ, ζ)| ≤ C|α̃||α̃σ| ≤ ε/|σ| since |α̃σ| ≤ 2ε2.

The formula (10.22) shows that there exists m > 0 such that

(16.33)

∣∣∣∣Ξf0
(
σ

σ0

)
− Ξf0

(
a

σ0

)∣∣∣∣ ≥ m|σ − a| for σ, a ∈ C.

For |σ − a| > κ|σ| (σ, a ∈ C) use estimate (16.10)(c) to write

(16.34)

|Ξf (σ)−Ξf (a)| ≥
∣∣∣∣Ξf0

(
σ

σ0

)
− Ξf0

(
a

σ0

)∣∣∣∣−εC
∣∣∣∣Ξf0

(
σ

σ0

)∣∣∣∣−εC
∣∣∣∣Ξf0

(
a

σ0

)∣∣∣∣ ≥ m

2
|σ−a|

for εC small enough.
(7) Adjacent regions. Recall that the regions A,B,C are determined by the choice

of parameters δ and K. The above arguments show that there exist δ0, K0 such that
for δ < δ0 and K > K0, ξf is injective (for Np small) on each of the regions A,B,C
determined by the choice (δ,K). It is immediate from (10.22) and the estimates
(16.10) that ξf (σ1) = ξf (σ2) for σ1 ∈ A, σ2 ∈ C, so it remains to consider σj in
adjacent regions.

Choose positive constants δj and Kj, j = a, b, such that δb < δa < δ0 and
Kb > Ka > K0, and which have the following additional property. There exists
M > 0 such that if Aj , Bj , Cj are the regions determined by the choice (δj ,Kj), we
have

(16.35) |ξf (σ)| ≤M for σ ∈ Ba and |ξf (σ)| > M for σ ∈ Ab ∪ Cb.

Suppose now that σ1 ∈ Aa, σ2 ∈ Ba. Considering the two cases σ1 ∈ Ab, σ1 ∈ Bb
and using (16.35) and the above results for single regions, we conclude ξf (σ1) = ξf (σ2).
The case σ1 ∈ Ba, σ2 ∈ Ca is treated similarly.

Proof of Proposition 10.8. In order to apply Theorem 9.1 of [O, Chapter 11],
we must choose a suitable open subdomain of the ξ-plane on which to solve (16.36)
below. There are three requirements:

(a) The domain should include the image of an interval [M,∞) under the map
x→ ξ (here, x ∈ TM,R as in (6.1)), whereM can chosen independent of the parameters
(ζ, h).

(b) It must be possible to choose “progressive paths” (defined below) for all points
in the domain.
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1850 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

(c) The integrals (10.25) should all be finite; more precisely, there should be a
finite upper bound independent of the choice of path and of relevant parameters such
as ζ and h.

(1) Choice of ξ-domain. Let v(σ) be a solution to the perturbed Bessel problem
(9.3) on the dilated wedge Z−iα̃. In the new variables ξ = ξf (σ),

v = ( dξdσ )
−1/2W the problem (9.3) becomes

(16.36) Wξξ = (γ̃2ξ + ψ(ξ))W.

We are not able to solve (16.36) on the full open set ξf (Z−iα̃), because of problems
choosing progressive paths created by the perturbation fp. Instead, we explain how
to choose a subdomain where such paths can be chosen and which also contains the
image of the segment of the x-axis, [M,∞), under the map x→ ξ. At first we ignore
the right boundary segment of Z−iα̃ and treat the wedge as if it were infinite.

We begin by specifying a domain in the Ξ-plane. For small positive constants κ,
ε both less than 1, let ΔΞ(κ, ε) = AΞ ∪ BΞ, where AΞ and BΞ are the open subsets
of C defined as follows. AΞ is the connected open set bounded by the parametrized
segments

(16.37) {it : t ≥ 0}, {t : t ≥ 0}, {t− i(κt+ ε) : t ≥ −ε}, {−ε+ it : t ≥ κε− ε},
while BΞ is the connected open set bounded by the segments

(16.38) {it : t ≥ 0}, {t : t ≥ 0}, {t+ i(κt+ ε) : t ≥ −ε}, {−ε+ it : t ≤ −κε+ ε}.
Next let Δξ(κ, ε) = Aξ ∪Bξ ∪R, where Aξ is the image of AΞ under the map Ξ → ξ,
where the branch of the 2/3 root is defined by taking − 3π

2 < argΞ < 0 for Ξ ∈ AΞ,
and 0 < argΞ < 3π

2 for Ξ ∈ BΞ. Observe that Δξ(κ, ε) is an open neighborhood of

the real axis whose intersection with �ξ = t has width ∼ t2/3 for t > 0 large and
width ∼ |t|−1/2 for t < 0, |t| large.

It follows from the formula (10.22) that the image of Z−iα̃ under σ → ξf0 (
σ
σ0
)

contains a subdomain of the form Δξ(κ, ε) for some choice of κ, ε. This is because
the image of Zcut(σ0) under σ → Ξf0(

σ
σ0
) contains a set of the form ΔΞ(κ, ε).

36 By
Proposition 10.7 and the estimates of Lemma 16.1 we deduce, after further reduction
of Np if necessary, that ξf (Z−iα̃) must also contain a subdomain of the form Δξ(κ, ε)
for some smaller κ and ε.

Finally, we recall that the dilated wedge Z−iα̃ = W/(−iα̃) has a right boundary
arc of radius ε2/|α̃| >> 1, where ε2 is the radius of the right boundary arc of W
(Definition 6.1). Thus, we define ΔΞ(κ, ε, ε2) to be the bounded open set obtained
by cutting off ΔΞ(κ, ε) with this boundary arc. With Δξ(κ, ε, ε2) the corresponding
ξ domain, we can repeat the procedure of the previous paragraph to deduce that
ξf (Z−iα̃) contains a subdomain of the form Δξ(κ, ε, ε

′
2) for some ε′2 < ε2.

37

We may now define the subdomain Z−iα̃,s appearing in the statement of Propo-
sition 10.8 as

(16.39) Z−iα̃,s := ξ−1
f (Δξ(κ, ε, ε

′
2)) .

This domain contains the image of [M ′,∞) under the map x→ σ, whereM ′ is slightly
greater than M (we have M ′ =M +O(| ln(1 − εC)|)).

36We have Ξf0 (σ) ∼ σ for σ > 0, |σ| large.
37Using estimate (16.10)(c) we can take ε′2 = (1− εC)ε2.
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DETONATION STABILITY AND TURNING POINTS 1851

(2) Choice of progressive paths. Define the sectors S0, S1, and S−1 by | argσ| ≤ π
3 ,

π
3 ≤ arg σ ≤ π, and −π ≤ arg σ ≤ −π

3 , respectively. Let ω = arg γ̃ (recall γ̃ = −iβ̃
for β̃ as in (6.12)). From the definition of regime II we have for some small δ > 0,

(16.40) −δ ≤ arg γ̃ ≤ 0.

Definition 16.2. Let Δ ⊂ C be a connected open set, let ∂Δ denote its boundary,
and take j ∈ {0, 1,−1}. We say that progressive j-paths can be chosen in Δ provided
there exists a point αj ∈ ∂Δ ∩ e−2iω/3Sj, possibly at infinity, such that for all ξ ∈ Δ
there is a path Pj from ξ to αj in Δ with the following properties:

(a) As v traverses Pj from ξ to αj, the real part of (γ̃2/3v)3/2 is nondecreasing.
The branch of (γ̃2/3v)3/2 is chosen so that �(γ̃2/3v)3/2 ≥ 0 in e−2iω/3Sj and so that
this real part is ≤ 0 in e−2iω/3Sk, k = j.

(b) The path Pj has a parametrization v(τ) such that v′′ is continuous and v′

always nonvanishing or consists of a finite chain of such paths.38

Remark 16.3. For example, in the case j = 1 the correct branch of (γ̃2/3v)3/2 is
the one for which

(16.41) −π
3
+ 2π − 2ω

3
≤ arg v ≤ 5π

3
+ 2π − 2ω

3
.

The condition in part (a) of the definition is linked to the choice of weight functions
Ej(z) defined in section 8.3 of [O, Chapter 11]. The definition of Ej and Sj reflects
the fact that Aij(z) is recessive in Sj and dominant in Sk, k = j.

For a given j it is easy to draw level curves of the correct branch of �(γ̃2/3ξ)3/2.
A picture in the case j = 0, arg γ̃ = 0 is given in Figure 9.1 of [O, Chapter 11].
Aided by such a picture together with the explicit description of the (drawable) region
Δ = Δξ(κ, ε, ε

′
2) given in step (1), ones sees that progressive j-paths can be chosen

in Δ for j = 0, 1,−1. The point αj ∈ ∂Δ ∩ e−2iω/3Sj is chosen to be a point where
�(γ̃2/3ξ)3/2 > 0 is maximized on ∂Δ∩e−2iω/3Sj. Depending on the value of ω = arg γ̃,
the point α1 or α−1 may need to be taken at infinity.

(3) Finiteness of the integrals
∫ ξ
αj
|ψ(s)s−1/2|

d|s|. By “finiteness” we mean here

a finite bound that can be taken independent of the choice of j-progressive path and
of the parameters ε1, ε2, ζ, and h appearing in the definitions of γ̃ = γ̃(ζ, h) and
fp(σ) = fp(σ, ε1, ε2, ζ, h) (recall Proposition 9.2). Here ζ ∈ ω∞, a neighborhood of
ζ∞, and 0 ≤ h ≤ h0, where ε2, ω∞ and h0 were chosen in step (1) above and in the
proof of Proposition 10.7 to make fp sufficiently small; moreover, |γ̃| ≥ K1 (regime II).

Clearly, for a given fixed N > 0 we need only check the finiteness when at least one
of |αj |, |ξ| is ≥ N . Observe that Δ is unbounded on the left (�ξ < 0) and, although
Δ is bounded on the right for fixed h, there are choices of (ζ, h) in regime II for which
the right boundary moves to infinity as h → 0. Thus, Δ is effectively unbounded in
both directions.

With f = f0 + fp for f0(σ) =
σ2−1
σ2 and fp as in (9.2), function ψ(ξ) in (8.9) may

be rewritten

(16.42)

ψ(ξ) =
5

16ξ2
+
[
4f(σ)f ′′(σ) − 5f ′(σ)2

] ξ

16f3(σ)
+
ξg(σ)

f(σ)
, where g(σ) = − 1

4σ2
.

38This definition corrects an ambiguity in the definition given in section 9.1 of [O, Chapter 11.]
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1852 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

Here and in the remainder of this step ξ = ξf . Letting ψ0(ξ) denote the function
obtained by replacing f by f0 in (16.42), but leaving ξ = ξf ,

39 we compute

(16.43) ψ0(ξ) =
5

16ξ2
− ξσ2(σ2 + 4)

4(σ2 − 1)3
,

observing an important cancellation. We can write

ψ(ξ) =
5

16ξ2
+
[
4(f0 + fp)(f

′′
0 + f ′′

p )− 5(f ′
0 + f ′

p)
2
] ξ

16(f0 + fp)3
+

ξg(z)

f0 + fp
(16.44)

= ψ0(ξ) + ψ1(ξ),

which defines ψ1. First we check the finiteness of the integral

(16.45)

∫ ξ

αj

|ψk(s)s−1/2| d|s|

when k = 0.
Observe that when |σ| is small or large, we have |ξ| large with �ξ < 0 or > 0,

respectively, and |fp|/|f0| << 1. For |σ| large by (10.22) we have σ2 ∼ 4
9ξ

3, so (16.43)
implies ψ0(ξ) ∼ −1

4ξ2 . For |σ| small we have |ξ| large and (10.22) implies

(16.46) σ ∼ 2 exp

(
−2

3
|ξ|3/2 − 1

)
.

In this case (16.43) implies ψ0(ξ) ∼ 5
16ξ2 , so the finiteness is again clear.

Next consider (16.45) when k = 1. First we write

(16.47)
ξ

16(f0 + fp)3
∼ ξ

16f3
0

(
1− 3

fp
f0

)
and

ξg

f0 + fp
∼ ξg

f0

(
1− fp

f0

)
.

Now we can read off the (largest) terms appearing in ψ1 and estimate them one by
one. For example, the terms involving second derivatives are (ignoring some constant
factors)

(16.48) fp(f
′′
0 + f ′′

p )

(
ξ

f3
0

− 3
ξfp
f4
0

)
, f0f

′′
p

(
ξ

f3
0

− 3
ξfp
f4
0

)
, f0f

′′
0

ξfp
f4
0

.

Now fp is given by (9.4), so we can list the terms appearing in f ′′
p (ignoring some

constant factors):

(α2 − α̃2σ2)α̃2b′′1 , σα̃3b′1, α̃2b1,

σα̃3b′′2 , α̃2b′2,

α̃2hb′′3 ,

(16.49)

where the bj derivatives are d/dt derivatives (t as in Proposition 6.3). Using Propo-
sition 6.3 we obtain

b′1 = O(|α̃σ|), b′′1 = O(1),

b′2 = O(1), b′′2 = O(|α̃σ|−1),(16.50)

b′3 = O(|α̃σ|), b′′3 = O

(
1

h

)
,

39The definition of ξf involves fp.
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DETONATION STABILITY AND TURNING POINTS 1853

and recall that we have for σ ∈ Z−iα̃ ⊃ ξ−1
f (Δ),

(16.51) |α̃σ| ≤ ε2 (for ε2 as in Definition 6.1).

We now estimate two typical terms from (16.48):

(16.52)

∣∣∣∣f0f ′′ξ
fp
f4
0

∣∣∣∣ = 6

∣∣∣∣ ξσ2fp
(σ2 − 1)3

∣∣∣∣ .
When |σ| is large, the right side of (16.52) is ≤ C|ξ|/|σ|4, so the finiteness of the
corresponding terms in (16.45) is clear from |σ|2 ∼ 4

9 |ξ|3. When |σ| is small the
finiteness follows from (16.46).

Next consider one of the “worst” terms appearing in
ξf ′′

p

f2
0
, namely, the one corre-

sponding to the term σα̃3b′′2 from (16.49). When |σ| is large we have, using (16.50),

(16.53)

∣∣∣∣ξ σ4

(σ2 − 1)2
σα̃3b′′2

∣∣∣∣ ≤ C|ξσα̃3(α̃σ)−1| = C|ξ||α̃|2 ≤ C
|ξ|
|σ|2 ≤ C

|ξ|2 ,

since |α̃| ≤ ε2/|σ|. This gives the finiteness of the corresponding term in (16.45) at
right infinity. When |σ| is small, we write

(16.54)

∣∣∣∣ξ σ4

(σ2 − 1)2
σα̃3b′′2

∣∣∣∣ ≤ C|ξ||σ5||α̃3||α̃σ|−1 = C|ξ||α̃|2|σ|4

so the finiteness at left infinity follows from (16.46).

Next consider the term in
ξf ′′

p

f2
0

corresponding to the term α̃2hb′′3 in (16.49). When

|σ| is large we have

(16.55)

∣∣∣∣ξ σ4

(σ2 − 1)2
α̃2hb′′3

∣∣∣∣ ≤ C

∣∣∣∣ξα̃2h
1

h

∣∣∣∣ ≤ C|ξ|/|σ|2 ≤ C/|ξ|2.

When |σ| is small,

(16.56)

∣∣∣∣ξ σ4

(σ2 − 1)2
α̃2hb′′3

∣∣∣∣ ≤ C

∣∣∣∣ξσ4α̃2h
1

h

∣∣∣∣ ,
so finiteness at left infinity follows again from (16.46).

The estimates corresponding to the remaining terms in ψ1 are entirely similar to
those above.

(4) Conclusion. We have now checked that all the requirements for an applica-
tion of Theorem 9.1 of [O, Chapter 11] are satisfied, so this concludes the proof of
Proposition 10.8.

Proposition 10.10 describes the decaying solutions of (10.11) on [M,∞). In the
proof we will of course use the fact that Ai±1(z) is recessive in the sector S±1.

Proof of Proposition 10.10. The explicit formulas for β̃ and γ̃ = −iβ̃ show that
for β̃ in regime II, we have

(16.57) arg γ̃ ≤ 0 and arg γ̃ = 0 ⇔ �ζ = 0.

The image of [M,∞) under the map x → ξ is a curve that approaches left infinity
in Δξ (16.39) as x → ∞. The image of [M,∞) under x → γ̃2/3ξ thus lies for x
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1854 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

large enough in the interior of S1 when arg γ̃ < 0. So Proposition 10.8 implies that
w(x) = z(x)−1/2v1(σ(x)) gives a decaying solution of (10.11) on [M,∞), and thus

(16.58) θ(x, ζ, h) = Y (x, ζ, h)

⎛
⎝K(x, ζ, h)

(
w
hwx

)
0

⎞
⎠

is a decaying solution of (5.1). Here we use the fact that the explicit estimates of η1
and ∂ξη1 given in Theorem 9.1 of Chapter 11 of [O] imply their contributions to w(x)
and wx(x) decay as well. The matrix K involves a factor of eϕ0/h, so here we have
used Remark 5.6. When �ζ = 0, Remark 5.6 and the formula for w imply that θ is
the desired bounded and oscillating, but not decaying, solution of (5.1).

In the proof of Proposition 10.11 we will sometimes speak of “relative errors of
size O(p)” defined as follows.

Definition 16.4 (relative error). When a term η(p) depending on a small pa-
rameter p (and possibly other variables) in an expression A = B+η satisfies for some
positive constant C,

(16.59) |η| ≤ C|p||B|,

uniformly with respect to all the variables on which A, B, and η depend, we say that η
is a relative error of size O(p). When η = η1+ · · ·+ηN and ηj satisfies |ηj | ≤ C|p||B|,
we say that ηj contributes a relative error of size O(p).

Proof of Proposition 10.11.

(1) The proof is based on the formula (16.58), the expression for w(x) given by
Proposition 10.8, and a standard expansion of the Airy function.

Recall the definitions of the variables

(16.60) t =
2

μ

√
aD(∞, ζ)e−μx/2, z =

t

h
, γ̃ = −iβ̃, σ =

z

γ̃
.

The variable z occurs in (6.13)(b), but now instead of W (z) we write w(z) and we
will abuse notation by writing, for example, w(z) = w(x) to mean W (z(x)) = w(x).
The variable σ occurs in (9.3) and (9.4). Recalling the tranformations that relate the
dependent variables w(z) of (6.13)(b) and v(σ) of (9.3), we have

v(σ) = ŵ(γ̃σ) = w(γ̃σ)(γ̃σ)1/2 = w(z)z1/2, z ∈ W/h, so(16.61)

w(z) = z−
1
2 v(σ) = z−

1
2 ξ−1/2
σ (σ)

(
Ai1(γ̃

2/3ξ(σ)) + η1(γ̃, ξ(σ))
)
, σ ∈ Z−iα̃.

(2) We first express the factor C(x, ζ) + hr(x, ζ, h) appearing in the equation for
w(x) in terms of ξ = ξf (σ), where f = f0 + fp. Using Remark 6.2 and (16.9), we
obtain

(16.62)

4

μ2
(C(x, ζ) + hr(x, ζ, h)) = h2z2

[(
1− γ̃2

z2

)
+ (h2z2 + α2)b1(hz, ζ) + hzb2 + hb3

]

= −α̃2σ2

[(
1− 1

σ2

)
+ (α2 − α̃2σ2)b1(−iα̃σ, ζ)− iα̃σb2 + hb3

]
= −α̃2σ2f(σ) = −α̃2σ2ξ(ξσ)

2.
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DETONATION STABILITY AND TURNING POINTS 1855

The function
√
ξ was defined on Zcut(z0) just below (16.8), so we can use the equation

(16.63) −μ
2
iα̃σ
√
ξξσ =

√
C(x, ζ) + hr(x, ζ, h)

to define a branch of
√
C + hr on the corresponding x-domain. Since the argument

of −iα̃σ√ξξ′ is close to zero for x near M ,40 we have

(16.64)
√
C + hr = −

√
ζ2 + c20η(x) b(x)+O(h) = −s(x, ζ)b(x)+O(h) for x near M

and thus

(16.65) −μ
2
iα̃σ
√
ξξσ =

μ

2
hz
√
ξξσ = −s(x, ζ)b(x) +O(h) for x near M.

(3) Preliminaries. We will use the standard asymptotic expansions valid for |z|
large on | arg z| ≤ π − δ:

Ai(z) ∼ e−χ

2
√
πz1/4

∞∑
0

(−1)s
us
χs
,(16.66)

Ai′(z) ∼ −z
1/4e−χ

2
√
π

∞∑
0

(−1)s
vs
χs
, where χ =

2

3
z3/2, u0 = v0 = 1.

In the expression for the approximate solution θ1,

(16.67) θ1(x, ζ, h) = e
1
hh1(x,ζ)+k1(x,ζ)T1(x, ζ),

we have

T1 = P0 + sQ0 and, with μ1(x, ζ) = a+ sb, where a = −κ
2ζ

ηu
, b = − κ

ηu
,

h1(x, ζ) =

∫ x

0

μ1(x
′, ζ)dx′ =

∫ x

0

a(x′, ζ)dx′ +
∫ x

0

s(x′, ζ)b(x′)dx′ := h1a + h1b.

(16.68)

Since d
dxϕ0(x, ζ, h) =

a+d
2 = a+d

2 +O(h) = a+O(h), we obtain

(16.69) ϕ0 − h1a = O(h) + Ca(ζ, h) near x =M, where Ca(ζ, h) = O(1).

(4) Approximations. Using the formula (16.61) for w(z) and the expansions

(16.66), and setting ψ = e−
2πi
3 γ̃2/3ξ, for x near M we approximate41

(a) w(z) ∼ z−1/2ξ−1/2
σ Ai1(γ̃

2/3ξ) ∼ 1

2
√
π
z−1/2ξ−1/2

σ e−
2
3ψ

3/2

ψ−1/4,

(b) wz(z) ∼ z−1/2ξ−1/2
σ Ai′1(γ̃

2/3ξ)γ̃2/3ξσ
1

γ̃
(16.70)

∼ − 1

2
√
π
z−1/2ξ−1/2

σ e−
2πi
3 e−

2
3ψ

3/2

ψ1/4γ̃−1/3ξσ.

40This is because z is large with arg z ∼ 0 for x near M .
41Here the roots of ψ are defined for | argψ| ≤ π − δ.
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1856 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

In the first “∼” of (16.70)(a) we have ignored the η1 contribution to w, while in
the second “∼” we have ignored contributions from terms in the expansion of Ai(z)
corresponding to s ≥ 1. The computations below will make it clear that these approxi-
mations contribute relative errors of size O(1/β̃) in our approximation of θ(x, ζ, h). In
the approximation (16.70)(b) we have ignored similar terms contributing relative er-

rors of the same size. In addition, we have ignored the term dz(z
−1/2ξ

−1/2
σ )Ai1(γ̃

2/3ξ),
which contributes a relative error of size O(h). Thus, we obtain

(16.71) h
d

dx
w = −μ

2
hzwz ∼ μ

2
h

1

2
√
π
z1/2ξ−1/2

σ e−
2πi
3 e−

2
3ψ

3/2

ψ1/4γ̃−1/3ξσ

for x near M .
(5) Using the formula (16.58) for the exact decaying solution θ, we find

(16.72) θ(x, ζ, h) ∼ e
ϕ0
h [b1/2wP0 + b−1/2(hwx)Q0].

Here we have ignored relative errors of size O(h) by ignoring the O(h) entries in
Y2 (recall Y = Y1Y2) and the (2,1) entry of K, which is of size O(h). Plugging in
(16.70)(a) and (16.71) we obtain42

(16.73)

θ ∼ e
ϕ0
h − 2

3ψ
3/2

(
1

2
√
π
b1/2z−1/2ξ−1/2

σ ψ−1/4

)[
P0 +

μ

2
b−1hzψ1/2e−

2πi
3 γ̃−1/3ξσQ0

]

= e
ϕ0
h + 2

3 γ̃ξ
3/2

(
1

2
√
π
b1/2z−1/2ξ−1/2

σ ψ−1/4

)[
P0 − μ

2
b−1hz

√
ξξσQ0

]
.

From (16.65) and b = b+O(h) we find

− μ

2
b−1hz

√
ξξσ = s(x, ζ) +O(h),

d

dx

(
2

3
γ̃ξ3/2

)
= −

√
ξξσ

μ

2
z =

sb

h
+O(1) =

1

h

d

dx
h1b +O(1) ⇒ 2

3
γ̃ξ3/2

=
h1b
h

+
Cb(ζ, h)

h
+O(1)

(16.74)

near x =M . With (16.69) we obtain

(16.75)
ϕ0

h
+

2

3
γ̃ξ3/2 =

h1(x, ζ)

h
+ g(x, ζ, h);

here g = g1(ζ,h)
h + g2(x, ζ, h) with g1 = O(1) and g2 = O(1) near x = M . Using

(16.74) and ignoring another O(h) relative error, we can now rewrite (16.73)

(16.76)

θ ∼ e
h1(x,ζ)

h +g

(
1

2
√
π
b1/2z−1/2ξ−1/2

σ ψ−1/4

)
T1 = G(x, ζ, h)θ1(x, ζ, h) near x =M,

where the nonvanishing scalar function

(16.77) G(x, ζ, h) = ege−k1
(

1

2
√
π
b1/2z−1/2ξ−1/2

σ ψ−1/4

)
.

42Here we use
√
ψ = e−

πi
3 γ̃1/3

√
ξ.
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DETONATION STABILITY AND TURNING POINTS 1857

Setting

(16.78) H(x, ζ, h) = G−1(x, ζ, h),

we obtain the estimate of Proposition 10.11.

16.2. Proofs for regime I. This subsection gives the proofs of Propositions
10.1, 10.2, 10.4, and 10.5. We begin by examining the change of variable σ → ξf (σ).

Proof of Proposition 10.1. The proof is parallel to that of Proposition 10.7 for
regime II, but simpler.

(1) The analyticity of ξf follows immediately from the fact that f + fp is nonvan-
ishing on Zα̃ for Np sufficiently small. This nonvanishing makes regime I much easier
to treat than regime II.

(2) Estimates of ξf−ξf0 . Here we provide the analogue of Lemma 16.1 for
regime I. For Np small we have

(16.79)
√
f0 + fp =

√
f0 +O(fp/

√
f0) on Zα̃.

Thus, given K >> 1, there exists a positive constant ε = ε(Np), which can be taken
to approach 0 as Np → 0, such that

|ξf (σ)− ξf0(σ)| ≤ ε for |σ| ≤ K,

|ξf (σ)− ξf0(σ)| ≤ ε|ξf0(σ)| for |σ| ≥ K.
(16.80)

(3) Injectivity. Parallel to the proof of Proposition 10.7, we divide Zα̃ into subre-
gions A, B, and C consisting of σ with respectively small, medium, and large modulus,
and first prove injectivity on each subregion. The arguments used to treat regions B
and C in the case of regime II can be repeated (almost) verbatim here. The treatment
of region A is much the same as before, but easier. Again, one starts with (16.21)
and shows that the integral has large modulus. The case of adjacent regions can be
treated as in regime II to finish the proof.

Proof of Proposition 10.2. In order to apply Theorem 3.1 in [O, Chapter 10],
there are three requirements:

(a) We must choose a suitable subdomain Δξ of the ξ plane on which to solve
(10.9). The domain should include the image of an interval [M,∞) under the map
x → ξ (here, x ∈ TM,R as in (6.1)), where M can be chosen independent of the
parameters (ζ, h).

(b) It must be possible to choose “progressive paths” (defined below) for all points
in the domain.

(c) The integrals (10.4) should all be finite, with bounds independent of the choice
of path and the parameters ζ and h.

(1) Definition of progressive paths. Let Δ ⊂ C be an open, connected set and let
∂Δ denote its boundary.

(a) We say that progressive 1-paths can be chosen in Δ provided there exists a
point α1 ∈ ∂Δ, possibly at infinity, such that any point ξ ∈ Δ can be linked to α1

by a path P1 in Δ such that as v traverses P1 from α1 to ξ, the quantity �(β̃v) is
nondecreasing.

(b) We say that progressive 2-paths can be chosen in Δ provided there exists a
point α2 ∈ ∂Δ, possibly at infinity, such that any point ξ ∈ Δ can be linked to α2

by a path P2 in Δ such that as v traverses P2 from α2 to ξ, the quantity �(β̃v) is
nonincreasing.

D
ow

nl
oa

de
d 

11
/2

4/
15

 to
 1

94
.2

54
.1

65
.1

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1858 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

The paths are assumed to have a parametrization with the same regularity as
described in Definition 16.2(b).

(2) Choice of the domain Δξ. At first we ignore the right boundary segment of
Zα̃ and treat this wedge as if it were infinite.

For small positive constants κ, ε define a domain Δξ(κ, ε) to be the open set
whose boundary consists of the segments

(16.81) {t+ iε : t ≤ 0}, {t− iε : t ≤ 0}, {t+ i(κt+ε) : t ≥ 0}, {t− i(κt+ε) : t ≥ 0}.

Recall that we have

(16.82) ξf0(σ) =

{
log(σ2 ) + 1 + o(1) for |σ| small,

σ + o(1) for |σ| large.

Together with the formula (10.2) for ξf0 , this implies that when arg α̃ ∼ 0, the open
set ξf0(Zα̃) contains a set of the form Δξ(κ, ε) for some choice of κ, ε. Proposition
10.1 and the estimates (16.80) then imply, after further reduction of Np if necessary,
that the perturbed domain ξf (Zα̃) also contains a subdomain of the form Δξ(κ, ε) for
some smaller κ and ε.43

Recall that the dilated wedge Zα̃ has a right boundary arc of radius ε2/|α̃| >> 1
for ε2 as in Definition 6.1. We define Δξ(κ, ε, ε2) to be the bounded open set obtained
by cutting off Δξ(κ, ε) with this boundary arc. We then repeat the procedure above
to conclude that ξf (Zα̃) contains a subdomain of the form Δξ = Δξ(κ, ε, ε

′
2) for some

ε′2 < ε2 (but close to ε2). Finally, we define the subdomain Zα̃,s appearing in the
statement of Proposition 10.2 as

(16.83) Zα̃,s := ξ−1
f (Δξ(κ, ε, ε

′
2)).

Provided Np is small enough, this domain contains the image of [M ′,∞) under the
map x→ σ, where M ′ is slightly greater than M .

Next consider the other extreme case where arg α̃ = π
2 −δ. The wedge Zα̃ = W/α̃

then consists of points σ with

(16.84) −ε1 − π

2
+ δ < arg σ < ε1 − π

2
+ δ, 0 < |σ| < ε2/|α̃|

for ε1 < δ as in Definition 6.1. Using (16.82) and the formula (10.2) for ξf0 , we see
that ξf0(Zα̃) contains a domain, call it Δξ(ρ1, ρ2, ε2), similar to Δξ(κ, ε, ε2) above,
except that the part of Δξ(ρ1, ρ2, ε2) corresponding to small (resp., large) |σ| consists
of points satisfying44

(16.85) ρ1 < 
ξ < ρ2, respectively, ρ1 < arg ξ < ρ2,

for constants ρj such that

(16.86) −ε1 − π

2
+ δ < ρ1 < ρ2 < ε1 − π

2
+ δ.

43Helpful drawings of the range of ξf0 are given in Figures 7.1 and 7.2 of Chapter 10 of [O].
44There is a sharp bend in the domain, downward and to the right, which occurs near points

ξf0(σ) for σ close to −i, since f0(−i) = 0. However, note that −i /∈ Zα̃.
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DETONATION STABILITY AND TURNING POINTS 1859

As above the estimates (16.80) imply that for Np small the perturbed domain ξf (Zα̃)
contains a set Δξ = Δξ(ρ1, ρ2, ε2) of the same form for a slightly different choice of
(ρ1, ρ2, ε2), and we define

(16.87) Zα̃,s := ξ−1
f (Δξ(ρ1, ρ2, ε

′
2)).

As before this set can be chosen to include the image of [M ′,∞) under the map x→ σ,
where M ′ is slightly greater than M .

Domains Δξ corresponding to other choices of β̃ in regime I are chosen by the
method just described. If we write α̃ = (a1+ia2), a progressive 1-path is characterized
by the property that its tangent vector v1+iv2 at any given point satisfies v1a1−v2a2 ≥
0; that is, the vector (v1, v2) makes an angle ≤ π

2 with (a1,−a2). A sketch of the
range of admissible tangent vectors shows that progressive 1-paths can be chosen in
the domain Δξ described above if we take α1 to be any point at left infinity in Δξ.
Similar considerations show that progressive 2-paths can be chosen if α2 is taken to
be a point on the right boundary arc of Δξ where �(β̃ξ) is maximized.

(3) Finiteness of the integrals
∫ ξ
αj
|ψ(r)| d|r|. The argument is much like that

for regime II, so here we focus on the main differences. First observe that since
ξ(σ) =

∫ σ
σ0

√
f(s)ds,

(16.88)

∫
P
|ψ(ξ)| d|ξ| =

∫
ξ−1(P)

|ψ(ξ(σ))
√
f(σ)| d|σ|,

for a given path P in Δξ. So we must check the finiteness of the integral on the right
at 0 and ∞.

We have f = f0 + fp, where f0 and fp are now defined in (9.2), and

(16.89) ψ(ξf (σ)) =
g(σ)

f(σ)
+

4f(σ)f ′′ − 5f ′2

16f3
, where g(σ) = − 1

4σ2
and f ′ = dσf.

Observe that for Np small,

(16.90)
√
f(σ) ∼

√
f0(σ) ∼

{
1
σ for |σ| small,

1 for |σ| large.

Letting ψ0(σ) denote the function obtained by setting fp = 0 on the right in (16.89),
we have

(16.91) ψ0(σ) =
1

4

σ2(4 − σ2)

(1 + σ2)3
,

so the integral on the right in (16.88), with ψ(ξ(σ)) replaced by ψ0(σ), is integrable
at 0 and at ∞. We note that in the computation of ψ0(σ), a bad term of order O(1)
near σ = 0 cancels out.

Next define ψ1(σ) by

(16.92) ψ(ξf (σ)) = ψ0(σ) + ψ1(σ).

Writing

(16.93)
1

f0 + fp
=

1

f0

(
1− fp

f0
+ · · ·

)
,

1

(f0 + fp)3
=

1

f3
0

(
1− 3

fp
f0

+ · · ·
)
,
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1860 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

we see that the main contribution of g/f to ψ1 is

(16.94) −gfp
f2
0

=

{
O(σ2) near σ = 0,

O( 1
σ2 ) near ∞,

so the corresponding contributions to (16.88) are finite.
It remains to consider the contribution of (4ff ′′ − 5f ′2)/16f3 to ψ1. The terms

involving second derivatives have the same form as the terms in (16.48) after setting
the factor of ξ there equal to one. The terms in f ′′

p have the same form as (16.49), and
the estimates (16.50) still apply. We estimate the contribution of one of the “worst

terms” appearing in
f ′′
p

f2
0
, namely, the one corresponding to the term α̃2hb′′3 in (16.49).

When |σ| is large we have

(16.95)

∣∣∣∣ σ4

(σ2 + 1)2
α̃2hb′′3

∣∣∣∣ ≤ C

∣∣∣∣α̃2h
1

h

∣∣∣∣ ≤ C/|σ|2.

The corresponding contribution of (16.95) to (16.88) is thus integrable near infinity.
When |σ| is small,

(16.96)

∣∣∣∣ σ4

(σ2 + 1)2
α̃2hb′′3

∣∣∣∣ ≤ C

∣∣∣∣σ4α̃2h
1

h

∣∣∣∣ = |σ4α̃2| ≤ |σ|4,

so the corresponding contribution to (16.88) is integrable near σ = 0.
The estimates corresponding to the remaining terms in ψ1 are similar to those

above.
(4) Conclusion. We have now checked that all the requirements for an applica-

tion of Theorem 3.1 of [O, Chapter 10] are satisfied, so this concludes the proof of
Proposition 10.2.

Proof of Proposition 10.4. The image of [M,+∞) under the map x → ξ(σ(x)))
is a curve that remains close to the real axis and approaches left infinity in Δξ as

x → ∞. Thus, �(β̃ξ(σ(x))) → −∞ as x → ∞ for β̃ in regime I. Since ξσ(σ) = O( 1σ )

for σ near 0 and z = σβ̃, we have

(16.97) z−1/2(x)ξ−1/2
σ (σ(x)) = O(1/|β̃|1/2) for large |x|.

Together with the estimates for η1 in Proposition 10.2, the above statements imply
that for w(x) given by (10.12), (w, hwx) is a decaying solution of (10.11).

Proof of Proposition 10.5. (1) The proof is parallel to that of Proposition 10.11,
so we focus on the main differences. Recall the definitions of the variables

(16.98) t =
2

μ

√
aD(∞, ζ)e−μx/2, z =

t

h
, σ =

z

β̃
.

With notation similar to (16.61) we write w(z) for the unknown function W (z) in
(6.13)(b) and

(16.99) w(z) = z−
1
2 v1(σ) = z−

1
2 ξ−1/2
σ (σ)

(
eβ̃ξ(σ) + η1(β̃, ξ(σ))

)
, σ ∈ Zα̃.

(2) Using Remark 6.2 and ξσ =
√
f , we obtain

4

μ2
(C(x, ζ) + hr(x, ζ, h)) = α̃2σ2

[(
1 +

1

σ2

)
+ (α2 + α̃2σ2)b1(α̃σ, ζ) + α̃σb2 + hb3

]
= α̃2σ2f(σ) = α̃2σ2ξ2σ.

(16.100)

D
ow

nl
oa

de
d 

11
/2

4/
15

 to
 1

94
.2

54
.1

65
.1

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DETONATION STABILITY AND TURNING POINTS 1861

Thus,

(16.101)
μ

2
α̃σξσ =

μ

2
hzξσ =

√
C(x, ζ) + hr(x, ζ, h) = −s(x, ζ)b(x) +O(h) for x near M.

(3) Approximations. Using the formula (16.99), for x near M we approximate

(a) w(z) ∼ z−1/2ξ−1/2
σ eβ̃ξ,

(b) wz(z) ∼ z−1/2ξ−1/2
σ eβ̃ξβ̃ξσ

1

β̃
= z−1/2ξ1/2σ eβ̃ξ.(16.102)

In (16.102)(a) we have ignored an O(1/|β̃|) relative error coming from the η1 con-
tribution to w. In the approximation (16.102)(b) we have ignored a similar term
contributing a relative error of the same size. In addition, we have ignored the term

dz(z
−1/2ξ

−1/2
σ )eβ̃ξ, which contributes a relative error of size O(h). Thus, we obtain

(16.103) hwx = −μ
2
hzwz ∼ −μ

2
hz1/2ξ1/2σ eβ̃ξ

for x near M .
(4) Using the formula (16.58) for the exact decaying solution θ, we find as before

(16.104) θ(x, ζ, h) ∼ e
ϕ0
h [b1/2wP0 + b−1/2(hwx)Q0].

Plugging in (16.102)(a) and (16.103) we obtain

(16.105) θ ∼ e
ϕ0
h +β̃ξ

(
b1/2z−1/2ξ−1/2

σ

) [
P0 − μ

2
b−1hzξσQ0

]
.

From (16.101) and b = b+O(h) we find

−μ
2
b−1hzξσ = s(x, ζ) +O(h),

d

dx
(β̃ξ) = −ξσ μ

2
z =

sb

h
+O(1) =

1

h

d

dx
h1b +O(1) near x =M(16.106)

for h1b as in (16.68). As in (16.75) we obtain

(16.107)
ϕ0

h
+ β̃ξ =

h1(x, ζ)

h
+ g(x, ζ, h) near x =M

for a function g as in (16.75). Using (16.106) and ignoring another O(h) relative error,
we can now rewrite (16.105) as

(16.108) θ ∼ e
h1(x,ζ)

h +g
(
b1/2z−1/2ξ−1/2

σ

)
T1 = G(x, ζ, h)θ1(x, ζ, h) near x =M,

where the nonvanishing scalar function

(16.109) G(x, ζ, h) = ege−k1
(
b1/2z−1/2ξ−1/2

σ

)
.

Setting

(16.110) H(x, ζ, h) = G−1(x, ζ, h),

we obtain the estimate of Proposition 10.5.
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1862 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

17. Regime III. In this section we prove Propositions 10.13, 10.14, 10.16, and
10.17. Recall that f = f0 + fp, where

f0(s) =
1

s
and fp(s) =

1

s

[
(4s+ α2)b1(2s

1/2, ζ) + 2s1/2b2(2s
1/2, ζ) + hb3(2s

1/2, ζ, h)
]
.

(17.1)

First we prove Proposition 10.13, which concerns the change of variable defined by

(17.2) 2ξ1/2(s) =

∫ s

0

f1/2(r)dr for s ∈ W2/4.

Proof of Proposition 10.13. For Np small we have

(17.3)
√
f =

1√
s
(1 + ε1(s)) where |ε1(s)| << 1;

thus, ξ(s) is analytic on W2/4. From (17.3) and (17.2) we obtain

(17.4)
√
ξ(s) =

√
s(1 + ε2(s)), |ε2(s)| << 1,

and thus, since ξ−1/2ξs =
√
f , we have

(17.5) ξs(s) = 1 + ε3(s), where |ε3(s)| << 1.

This implies injectivity on W2/4 since

(17.6) |ξ(s1)− ξ(s2)| =
∣∣∣∣(s1 − s2)

∫ 1

0

ξs(s2 + r(s1 − s2))dr

∣∣∣∣ ≥ 1

2
|s1 − s2|.

The proof of Proposition 10.14 can be based on Theorem 9.1 of Chapter 12 of
[O] in the case where β̃ ≥ 0. However, the latter theorem does not treat the case of
β̃ nonreal needed here, and the proof given in [O] fails in that case.45 We show next
how the proof of this theorem can be modified to treat the case �β̃ ≥ 0.

Proof of Theorem 9.1 of Chapter 12 of [O] for �β̃ ≥ 0. (1) The modified argument
uses the following estimates for the Bessel functions Iν , Kν proved in section 16 of
[O2]. Let M denote a bounded subset of the half-plane �ν ≥ 0. For ν ∈ M and
| arg z| ≤ π/2 we have

(17.7) |Iν(z)| ≤ kVν(z), |Kν(z)| ≤ kXν(z),

where

Vν(z) =
|zαez|

1 + |z|α+ 1
2

, Xν(z) = �ν(z)
1 + |z|α
1 + |z| 12

e−z

|z|α ,

�ν(z) = ln
1 + 2|z|

|z| (|ν| < δ), �ν(z) = 1 (|ν| ≥ δ),

(17.8)

where α = �ν ≥ 0 and δ is an arbitrary number in the range 0 < δ < 1
2 . The constant

k is independent of μ and z but depends on δ.

45For example, the properties of the weight function Eν(z) defined in (8.08) of Chapter 12 of [O]
are derived using the fact that when ν ≥ 0, the modified Bessel function Kν(z) does not vanish in
| arg z| ≤ π/2. But when ν = i|ν| �= 0, for example, Kν has infinitely many zeros on the positive real
axis [FS].
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DETONATION STABILITY AND TURNING POINTS 1863

(2) Next, in place of the weight function Eν defined in (8.08) of [O, Chapter 12],
we redefine Eν as

(17.9) Eν(z) :=

(
Vν(z)

Xν(z)

)1/2

for ν ∈M, | arg z| ≤ π/2.

It is easy to check that for ν ∈ M

Eν(z) ∼
{
|ez|, |z| large
|z|α, |z| small

for |ν| ≥ δ,

Eν(z) ∼
{
ln 2 |ez|, |z| large
(ln 1

|z| )
− 1

2 |z|α, |z| small
for |ν| < δ.

(17.10)

For |z| of intermediate size Eν(z) is continuous and bounded away from 0 for each
ν ∈ M; positive upper and lower bounds can be chosen independently of ν ∈ M,
| arg z| ≤ π/2.

Following [O] we next define functions Mν(z) and ϑ(z) by the equations

(17.11)
|Iν(z)| = Eν(z)Mν(z) cosϑ(z), |Kν(z)| = E−1

ν (z)Mν(z) sinϑ(z), for | arg z| ≤ π/2.

Thus,

(17.12) Mν(z) = [E−2
ν (z)|Iν(z)|2 + E2

ν(z)|Kν(z)|2]1/2.

Using (17.7) and (17.10) one readily verifies

(17.13) Mν(z) ≤ C

⎧⎪⎨
⎪⎩

1
|z|1/2 , |z| large ,
1, |z| small, |ν| ≥ δ,

(ln 1
|z| )

1/2 , |z| small, |ν| < δ,

where C can be chosen independent of ν ∈M . One can now define bounded constants
μj , j = 1, . . . , 4, as in (8.26), (8.27) of [O, Chapter 12]; they can now be chosen
independent of ν ∈ M.

(3) With these definitions the remainder of the proof of Theorem 9.1 in [O, Chap-
ter 12] goes essentially as before. For example, in the error estimate for the solution
expressed in terms of Iν , progressive paths are those along which both �t1/2 and |t|
are nondecreasing as t passes from 0 to ξ. It follows from this and the properties of
Eν given in and below (17.10) that E−1

ν (uξ1/2)Eν(ut
1/2) ≤ N , for some N that can

be chosen independently of t, ζ and the particular progressive path being considered.
Here u > 0 is a large parameter, taken to be 2

h in our application to Proposition
10.14. Thus, the key estimate (9.08) of [O, Chapter 12] of the kernel K(ξ, v) in
the integral equation for the error term still holds, but with 2 replaced by a larger
constant.46

46The estimate of K(ξ, v) just above (9.08) in [O, Chapter 12] (ζ is used in place of ξ there) is
incorrect, but a slightly modified estimate of |K(ξ, v)| leading to (9.08) is easily given.
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1864 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

Proof of Proposition 10.14. In order to apply this version of Theorem 9.1 in [O,
Chapter 12], there are three requirements:

(a) We must choose a suitable subdomain Δξ of the ξ plane on which to solve
(10.35). The domain should include the image of an interval [M,∞) under the map
x → ξ (here, x ∈ TM,R as in (6.1)), where M can be chosen independent of the
parameters (ζ, h).

(b) It must be possible to choose “progressive paths” (defined below) for all points
in the domain.

(c) The integrals (10.37) should all be finite, with bounds independent of the
choice of path and the parameters ζ and h.

(1) Definition of progressive paths. Let Δ be an open, connected subset of {ξ :
| arg ξ| < π/2} and let ∂Δ denote its boundary. We suppose 0 ∈ ∂Δ.

(a)We say that progressive 1-paths can be chosen in Δ provided that any point
ξ ∈ Δ can be linked to the origin by a path P1 in Δ such that as v traverses P1 from
0 to ξ, both �v1/2 and |v| are nondecreasing.

(b)We say that progressive 2-paths can be chosen in Δ provided there exists a
point α ∈ ∂Δ with the following property: any point ξ ∈ Δ can be linked to α by
a path P2 in Δ such that as v traverses P2 from α to ξ, both �v1/2 and |v| are
nonincreasing.

The paths are assumed to have a parametrization with the same regularity as
described in Definition 16.2(b).

(2) Choice of the domain Δξ. Recall the definition of W from Definition 6.1, we
see that

(17.14) W2/4 = {s ∈ C : | arg s| < 2ε1, |s| < ε22/4}.

The estimate (17.4) implies

(17.15) |ξ(s) − s| ≤ ε0|s|, where ε0 << 1,

and therefore the image of W2/4 under the map s→ ξ(s) will contain

(17.16) Δξ :=

{
ξ ∈ C : | arg ξ| < 3

2
ε1, |ξ| < (1− ε0)

ε21
4

}
.

If we take α to be the point on the right boundary arc of Δξ where �ξ1/2 is maximized,
it is obvious that progressive 1- and 2-paths can be chosen in Δξ. For example, in
the ξ1/2 plane one can choose these paths to be line segments. Moreover, the domain
Δξ contains the image of [M ′,∞) under the map x→ ξ, where M ′ is slightly greater
than M (we have M ′ =M +O(| ln(1− ε0)|). We define the domain Ws appearing in
the statement of Proposition 10.14 to be

(17.17) Ws := ξ−1(Δξ).

(3) Finiteness of the integrals
∫ ξ
0
|φ(r)r−1/2|d|r|. Since Δξ is bounded independent

of h (and ζ), we need only consider behavior of the integrals near the origin. Recall
that

(17.18) φ(ξ) =
1− 4β̃2

16ξ
+
g(s)

f(s)
+

4f(s)f ′′(s)− 5f
′2(s)

16f3(s)
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DETONATION STABILITY AND TURNING POINTS 1865

where f = f0 + fp as in (17.1). Clearly, we must look for some cancellation of the
singularity of φ due to the vanishing of ξ at s = 0 and the singularity of f at s = 0.

Let us first rewrite f as f(s) = a
s + f2(s), where

a := 1 + α2b1(0, ζ) + hb3(0, ζ, h)(17.19)

f2(s) =
α2
(
b1(2s

1/2, ζ)− b1(0, ζ)
)

s
+
h
(
b3(2s

1/2, ζ, h)− b3(0, ζ, h)
)

s

+

(
4b1 +

2b2(2s
1/2, ζ)

s1/2

)
.

The estimates of Proposition 6.3 for the bj imply that f2(s) =
O(s)
s , and thus

(17.20) f(s) =
a

s
(1 +O(s)) ⇒

√
f =

√
a

s
(1 +O(s)) ⇒ ξ1/2 =

√
as+O(s

3
2 ).

This gives ξ(s) = as+O(s2), and thus

(17.21)
1− 4β̃2

16ξ
=

1− 4β̃2

as
(1 +O(s)) =

1− 4β̃2

as
+O(1) := A(s) +B(s).

Set f̃0(s) =
a
s . A short computation shows

(17.22) A(s) +
g(s)

f̃0(s)
+

4f̃0(s)f̃
′′
0 (s)− 5f̃

′2
0 (s)

16f̃3
0 (s)

= 0.

Since the contribution of B(s) to

(17.23)

∫ ξ

0

|φ(r)r−1/2|d|r|

is finite,47 it just remains to examine the contribution of

(17.24)

(
g(s)

f(s)
+

4f(s)f ′′(s)− 5f
′2(s)

16f3(s)

)
−
(
g(s)

f̃0(s)
+

4f̃0(s)f̃
′′
0 (s)− 5f̃

′2
0 (s)

16f̃3
0 (s)

)
.

Recall f = f̃0 + f2. Thus, the terms in (17.24) involving second derivatives are
(ignoring some constant factors)48

(17.25) f2(f̃
′′
0 + f ′′

2 )

(
1

f̃3
0

− 3
f2

f̃4
0

)
, f̃0f

′′
2

(
1

f̃3
0

− 3
f2

f̃4
0

)
, f̃0f̃

′′
0

f2

f̃4
0

.

Setting q(2s1/2, ζ, h) = b3(2s
1/2, ζ, h) − b3(0, ζ, h), we consider for example the con-

tribution of f̃2 := hq/s to f ′′
2 /f̃

2
0 (one of the “worst” terms in (17.25)). We compute

(17.26)

f̃ ′′
2

f̃2
0

=
s2

a2
f̃ ′′
2 =

s2

a2
h

[
qtts

−2 − 5

2
qts

−5/2 + 2qs−3

]
=

1

a2
h

[
qtt − 5

2
qts

−1/2 + 2qs−1

]
.

47Here we use dξ = ξsds and (17.5).
48Compare (16.48).
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1866 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

The estimates of Proposition 6.3 show that the right side of (17.26) is O(1), so its

contribution to the integrand of (17.23) is O(s−
1
2 ), which is integrable near 0. The

terms in (17.24) involving first derivatives are estimated similarly.
(4) Conclusion. We have now checked that all the requirements for an applica-

tion of Theorem 9.1 of [O, Chapter 12] are satisfied, so this concludes the proof of
Proposition 10.14.

Next we show that for �ζ > 0 the decaying solution of (10.11) is given by

(17.27) w(x) =

√
2

t(x)
v̂1(s(x)) =

√
2

2s1/2
ξ−1/2
s

(
ξ1/2Iβ̃(2ξ

1/2/h) + η1(β̃, ξ)
)
.

Proof of Proposition 10.16. As x→ ∞ we have s→ 0 and ξ(s) → 0. Recall from
(17.4) and (17.5) that

(17.28) ξ(s) = s+ εa(s), ξs(s) = 1 + εb(s), where |εj(s)| << 1,

so in estimating w(x) we can ignore the factors multiplying Iβ̃ and η1. For |z| small
with | arg z| ≤ π

2 we have

(17.29) |Iβ̃(z)| ≤ k|z|�β̃.
Since �β̃ > 0 for �ζ > 0, this implies decay of the term involving Iβ̃ as x → ∞.
The estimate of η1 in Theorem 9.1 of Chapter 12 of [O] implies that this contribution
decays to zero as well. Differentiating (17.27) and arguing as above we obtain that
wx also decays to 0 as x→ ∞.

We now show that the exact decaying solution θ of Erpenbeck’s system (5.1)
identified in Proposition 10.16 is of type θ1 at x =M .

Proof of Proposition 10.17. The proof runs parallel to that of Proposition 10.11.
The variables are

(17.30) t =
2

μ

√
aD(∞, ζ)e−μx/2, t = 2s1/2, 2ξ1/2 =

∫ s

0

√
f(r) dr.

(1) We recall from Remark 6.2 that

(17.31)
4

μ2
(C(x, ζ) + hr(x, ζ, h)) = t2

[(
1 +

α̃2

t2

)
+ (t2 + α2)b1(t, ζ) + tb2 + hb3

]
.

Using (17.30) and recalling the definition of f(s) (17.1), we rewrite this as

(17.32)
4

μ2
(C(x, ζ) + hr(x, ζ, h)) = α̃2 + 4s2f(s) = α̃2 + 4s2ξ−1ξ2s .

For x near M and ζ ∈ ω we have |C(x, ζ)| > k > 0, argC(x, ζ) ∼ 0. We have
α̃ = O(h) in regime III, so (17.32) implies

(17.33) μsξ−1/2ξs =
√
C + hr +O(h) = −s(x, ζ)b(x) +O(h) for x near M.

(2) For |z| large with | arg z| < π
2 we have asymptotic expansions [AS, Chapter 9]

Iβ̃(z) ∼
ez√
2πz

(1 +O(1/z)),

I ′
β̃
(z) ∼ ez√

2πz
(1 +O(1/z)),

(17.34)

where (1 +O(1/z)) can be expanded explicitly in powers of z−1.
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DETONATION STABILITY AND TURNING POINTS 1867

(3) Approximations. Using the formula (17.27) for w, the expansions (17.34), and
the fact that

(17.35) dt(ξ
1/2(s(t))) = ξ−1/2ξs

t

4
,

we approximate for x near M

w ∼
√
2

t
ξ−1/2
s ξ1/2Iβ̃(2ξ

1/2/h) ∼ 1√
2π

t−1ξ−1/2
s ξ1/4h1/2e2ξ

1/2/h,

hwt ∼ h

√
2

t
ξ−1/2
s ξ1/2I ′

β̃
(2ξ1/2/h)

1

h
ξ−1/2ξs

t

2
∼
√

2

π

1

4
ξ1/2s h1/2ξ−1/4e2ξ

1/2/h.

(17.36)

Here we have ignored relative errors of size O(h) associated with higher-order terms
in the expansions (17.34), with η1, and with other terms in the expression for hwt.
This gives

(17.37) hwx = −μ
2
htwt ∼ −

√
2

π

μ

8
tξ1/2s h1/2ξ−1/4e2ξ

1/2/h.

(4) Using the formula (16.58) for θ and ignoring O(h) relative errors as in (16.72),
we obtain

(17.38) θ(x, ζ, h) ∼ e
ϕ0
h [b1/2wP0 + b−1/2(hwx)Q0].

Substituting in the expressions for w and hwx and using (17.33), we find

θ ∼ e
ϕ0
h + 2ξ1/2

h

(
b1/2
√

h

2π

1

t
ξ−1/2
s ξ1/4

)[
P0 − μ

4
b−1t2ξsξ

−1/2Q0

]

∼ e
ϕ0
h + 2ξ1/2

h

(
b1/2
√

h

2π

1

t
ξ−1/2
s ξ1/4

)
[P0 + s(x, ζ)Q0] .

(17.39)

We have

(17.40)
d

dx
(2ξ1/2) = −ξ−1/2ξsμs = bs(x, ζ) = bs(x, ζ) +O(h) near x =M

for h1b as in (16.68). As in (16.75) we obtain

(17.41)
ϕ0

h
+

2ξ1/2

h
=
h1(x, ζ)

h
+ g(x, ζ, h) near x =M

for a function g as in (16.75). Thus, we can now rewrite (17.39)

(17.42)

θ ∼ e
h1(x,ζ)

h +g

(
b1/2
√

h

2π

1

t
ξ−1/2
s ξ1/4

)
T1 = G(x, ζ, h)θ1(x, ζ, h) near x =M,

where the nonvanishing scalar function

(17.43) G(x, ζ, h) = ege−k1
(
b1/2
√

h

2π

1

t
ξ−1/2
s ξ1/4

)
.

Setting

(17.44) H(x, ζ, h) = G−1(x, ζ, h),

we obtain the estimate of Proposition 10.17.
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1868 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

Part V. Proofs for Part III.

18. Turning points in (0,∞). Here we prove Propositions 12.3 and 12.7.
Proof of Proposition 12.3. For �ζ = 0 and x < x(ζ) we take

(18.1) ρ3/2(x, ζ) =
3

2

∫ x

x(ζ)

√
x(ζ) − y

√
−d(y, ζ) dy,

where the square roots are taken to be positive.49 Making the changes of variable
t =
√
x(ζ) − y and then t = u

√
x(ζ) − x, we obtain

(18.2) ρ3/2(x, ζ) = −(x(ζ)− x)3/2
∫ 1

0

3u2
√
−d(x(ζ) + (x− x(ζ))u2, ζ) du,

which implies (12.7). The analyticity of ρ in x and ζ and the properties (12.8)(a)–(c)
are evident from the formula (12.7). Property (12.8)(d) is proved by differentiating
ρ2xρ = C(x, ζ) with respect to ζ and evaluating at x = x(ζ). The analyticity of both
sides of (12.6) implies that ρ is a solution on O × ω.

Proof of Proposition 12.7. (1) First we show that appropriate multiples of θ− and
θ+ are, respectively, of type θ1 and θ2 at xR. For ζ ∈ ω1 and x near xR, ρ(x, ζ) takes
values near the negative real axis. Noting that we must take

(18.3) −π < arg(h−2/3ρe±2πi/3) < π

in order to use the expansions to rewrite the expressions in (12.19), we obtain for x
near xR

(18.4) θ− ∼ e
ϕ0
h − 2

3h
−1i(−ρ)3/2

(
1

2
√
π
b1/2ρ−1/2

x (h−2/3ρe−2πi/3)−1/4

)
[P0+s(x, ζ)Q0].

Here we have used50

(18.5)

−2

3
(h−2/3ρe−2πi/3)3/2 = −2

3
ih−1(−ρ)3/2 and iρxb

−1(−ρ)1/2 = s(x, ζ) +O(h).

Similarly, we obtain for x near xR

(18.6) θ+ ∼ e
ϕ0
h + 2

3h
−1i(−ρ)3/2

(
1

2
√
π
b1/2ρ−1/2

x (h−2/3ρe2πi/3)−1/4

)
[P0 − s(x, ζ)Q0].

For x near xR and ζ ∈ ω1 we have

− 2

3
i(−ρ)3/2(x, ζ) =

∫ x

xR−δ
sb(y, ζ) dy − 2

3
i(−ρ)3/2(xR − δ, ζ) and so

∫ x

0

sb(y, ζ) dy = −2

3
i(−ρ)3/2(x, ζ) +

∫ xR−δ

0

sb(y, ζ) dy +
2

3
i(−ρ)3/2(xR − δ, ζ).

(18.7)

49Here we use the fact that d(y, ζ) is negative for real y near x(ζ) ∈ R.
50Recall that ρ2xρ = C(x, ζ) = s2b2 and that for ζ = i|ζ| ∈ ω1 and real x near xR, we have

s = i|s| = i
√

|ζ|2 − c20η(x).
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DETONATION STABILITY AND TURNING POINTS 1869

Since μ1(x, ζ) = a+ s(x, ζ)b and T1(x, ζ) = P0 + sQ0, (18.4) implies

θ−(x, ζ, h) ∼ θ1(x, ζ, h)G−(x, ζ, h) for x near xR where G−(x, ζ, h)(18.8)

=

(
1

2
√
π
b1/2ρ−1/2

x (h−2/3ρe−2πi/3)−1/4

)

× exp

[
− 1

h

(∫ xR−δ

0

sb(y, ζ) dy +
2

3
i(−ρ)3/2(xR − δ, ζ)

)]
ek−(x,ζ,h)

for a function k− = O(1). Similarly, we obtain from (18.6)

θ+(x, ζ, h) ∼ θ2(x, ζ, h)G+(x, ζ, h) for x near xR where G+(x, ζ, h)(18.9)

=

(
1

2
√
π
b1/2ρ−1/2

x (h−2/3ρe2πi/3)−1/4

)

× exp

[
1

h

(∫ xR−δ

0

sb(y, ζ) dy +
2

3
i(−ρ)3/2(xR − δ, ζ)

)]
ek+(x,ζ,h)

for a function k+ = O(1).

From (18.8) and (18.9) we see that the functions

(18.10) θ1 := G−1
− (xR, ζ, h)θ−(x, ζ, h) and θ2 := G−1

+ (xR, ζ, h)θ+(x, ζ, h)

are exact solutions of (11.9) on O, which are respectively of type θ1 and θ2 at xR.
51

For later use we note that the growth rates in h of the factors G−1
∓ (xR, ζ, h) are

(18.11)

R∓(ζ, h) := h−1/6 exp

[
± 1

h
�
(∫ xR−δ

0

sb(y, ζ) dy +
2

3
i(−ρ)3/2(xR − δ, ζ)

)]
.

(2) Computations like those that produced (18.4) and (18.6) show that for x near
xL we have

θ− ∼ e
ϕ0
h + 2

3h
−1ρ3/2

(
1

2
√
π
b1/2ρ−1/2

x (h−2/3ρe−2πi/3)−1/4

)
[P0 + s(x, ζ)Q0],(18.12)

θ+ ∼ e
ϕ0
h + 2

3h
−1ρ3/2

(
1

2
√
π
b1/2ρ−1/2

x (h−2/3ρe2πi/3)−1/4

)
[P0 + s(x, ζ)Q0],

since b−1ρx
√
ρ = s(x, ζ) + O(h) for x near xL and ζ ∈ ω1.

52 From (18.12) and the
fact that T1 = P0 + sQ) it is evident that

(18.13) θ−(x, ζ, h) ∼ θ1(x, ζ, h)K−(x, ζ, h) for x near xL

for a nonvanishing scalar function K−.

51Caution: It is not necessarily true that θ1, for example, is of type θ1 for x �= xR.
52Recall that ρ(x, ζ) > 0 for real x near xL and for ζ ∈ ω1 such that ζ = i|ζ|.
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1870 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

(3) Exact solutions θi, i = 3, 4, 5. After shrinking the neighborhoods O and ω1

and reducing δ > 0 if necessary, we choose an open ball B(ζ, R) centered at x(ζ) such
that

(18.14) x(ω1) ∪ [xL, xR] ⊂ O ⊂ B(x(ζ), R/2)

and such that the profile p(x) has an analytic extension to B(ζ, R). The exact

solutions θi(x, ζ, h) are constructed for ζ ∈ ω1 from approximate solutions θi of the
form (0.16), which are defined initially on [0, xL], and then extended to a simply
connected neighborhood of {xL, xR} by analytic continuation in

(18.15) S := B(x(ζ), R) ∩ {x : 
x ≥ 0} \ x(ω2), where ω1 ⊂⊂ ω2

and ω2 is a slight enlargement of ω1. As explained in section 4.2 of [LWZ1], the θi
are exact solutions of (11.9) and satisfy53

(18.16) |θi(x, ζ, h)− θi(x, ζ, h)| ≤ Ch|θi(x, ζ, h)| in S for ζ ∈ ω1.

Like θi, i = 1, 2, the functions θi, i = 3, 4, 5, are solutions of (11.9) in a full neigh-
borhood of x(ζ) for ζ ∈ ω1; however, the asymptotic behavior (18.16) is known only
in S.

(4) Growth rates. From the expressions (0.16) for the θi we can read off the
growth rates with respect to h of the θi(x, ζ, h), i = 1, . . . , 5 at xR for ζ ∈ ω1:

θ1(xR, ζ, h) : e
1
h� ∫ xR

0 [a(y,ζ)+s(y,ζ)b(y)] dy := eA(ζ)/h,

θ2(xR, ζ, h) : e
1
h� ∫ xR

0 [a(y,ζ)−s(y,ζ)b(y)] dy := eB(ζ)/h,

θi(xR, ζ, h), i ≥ 3 : e
1
h� ∫ xR

0
ζ

u(y)
dy := eC(ζ)/h.

(18.17)

(5) ExpandH(xR, ζ, h)θ(x, ζ, h). The exact bounded (or decaying) solutionH(xR, ζ, h)θ
on [xR,∞) extends analytically to a complex neighborhood of [0,∞]. On S we can
expand it as

(18.18) H(xR, ζ, h)θ(x, ζ, h) = c1(ζ, h)θ1 + · · ·+ c5(ζ, h)θ5 for ζ ∈ ω1.

Corollary 11.4 implies that H(xR, ζ, h)θ(x, ζ, h) is of type θ1 at xR. Evaluating (18.18)
at xR and using Cramer’s rule and (18.17), we determine the growth rates of the
coefficients in (18.18):

(18.19) c1(ζ, h) = 1+O(h), c2 = O(he(A(ζ)−B(ζ))/h), ci = O(he(A(ζ)−C(ζ))/h), i ≥ 3,

where

A(ζ) −B(ζ) = 2�
∫ xR

0

s(y, ζ)b(y) dy and A(ζ) − C(ζ)(18.20)

= �
∫ xR

0

(
s(y, ζ)b(y)− ζ

ηu(y)

)
dy.

53The proof by a contraction argument is based on being able to choose “progressive paths” in S;
see Theorem 3.1 of [LWZ1].
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(6) Conclusion. Using (18.10), (18.11), (18.12), and (18.19), we can now read off
the growth rates at xL of the individual terms in the expansion (18.18):

(a) c1(ζ, h)θ1(xL, ζ, h) : (1 +O(h)) ·R−(ζ, h)

× h1/6 exp

[
1

h
�
(∫ xL

0

a(y, ζ) dy +
2

3
ρ3/2(xL, ζ)

)]
,

(b) c2(ζ, h)θ2(xL, ζ, h) : he
(A(ζ)−B(ζ))/h ·R+(ζ, h)

× h1/6 exp

[
1

h
�
(∫ xL

0

a(y, ζ) dy +
2

3
ρ3/2(xL, ζ)

)]
,

(c) ci(ζ, h)θi(xL, ζ, h), i ≥ 3 : he(A(ζ)−C(ζ))/h · e� 1
h

∫ xL
0

ζ
u(y)

dy.

(18.21)

First we compare the rates in (18.21)(a),(b). Recalling the expressions (18.11) for
R±, and noting from (18.20) that

(18.22)

e(A(ζ)−B(ζ))/h · exp
(
− 1

h
�
∫ xR−δ

0

s(y, ζ)b dy

)
≤ exp

(
1

h
�
∫ xR−δ

0

s(y, ζ)b dy

)

and from Remark 12.4 that

(18.23) 
(−ρ)3/2(xR − δ, ζ) ≤ 0 for ζ ∈ ω1,

we obtain

(18.24) |c2(ζ, h)θ2(xL, ζ, h)|/|c1(ζ, h)θ1(xL, ζ, h)| ≤ Ch.

Next we compare the rates in (18.21)(a),(c). From (18.23), the fact that
�ρ3/2(xL, ζ) > 0, and

(18.25) e
1
h (A(ζ)−� ∫ xR

0
ζ

u(y)
dy+� ∫ xL

0
ζ

u(y)
dy) ≤ e

1
h� ∫ xR−δ

0 s(y,ζ)b dy · e 1
h� ∫ xL

0 a(y,ζ) dy,

we see that

(18.26) |c3(ζ, h)θ3(xL, ζ, h)|/|c1(ζ, h)θ1(xL, ζ, h)| ≤ Ch.

Thus, c1(ζ, h)θ1(xL, ζ, h) is, for small h, the dominant term in the expansion (18.18)
evaluated at xL. Since c1(ζ, h) = 1 +O(h), we see from (18.13) and (18.10) that the
estimate of Proposition 12.7 holds with α(ζ, h) := G−(xR, ζ, h)K−1

− (xL, ζ, h).

19. The turning point at 0. This section gives the proof of Proposition 13.1.
Proof of Proposition 13.1.
(1) Basis of exact solutions near 0. As noted before the statement of Proposition

13.1, we have exact solutions θ± on O � 0 satisfying θ±(x, ζ, h) ∼

eϕ0/h
[
b1/2(ρx)

−1/2Ai(h−2/3ρe±2πi/3)P0 + b−1/2h1/3(ρx)
1/2e±2πi/3(19.1)

×Ai′(h−2/3ρe±2πi/3)Q0

]
modulo O(h) errors. Exact solutions θ1 and θ2, which are respectively of type θ1
and θ2 at xR = 2δ, are again given by the formulas (18.10). Here the functions
G−1

∓ (2δ, ζ, h) have growth rates in h, R∓(ζ, h), given by (18.11).
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1872 OLIVIER LAFITTE, MARK WILLIAMS, AND KEVIN ZUMBRUN

To construct exact solutions θj , j = 3, 4, 5, near x = 0, we use the block diagonal
form provided by our extension of Proposition 12.1 to a neighborhood of x = 0. The
3× 3 block A22(x, ζ, h) in (12.1) has semisimple eigenvalues

(19.2) μ∗
j (x, ζ, h) = μj(x, ζ) +O(h) =

ζ

h
+O(h), j = 3, 4, 5.

Since this block has no turning points, we can apply standard results (for exam-
ple, Theorem 3.1 of [LWZ1]) to construct exact solutions φ2,j(x, ζ, h) of d

dxφ2,j =
A22(x, ζ, h)φ2,j on [0, 3δ] satisfying

(19.3)
∣∣∣φ2,j(x, ζ, h) − e

1
h

∫ x
0
μj(s,ζ)dsaj(x, ζ, h)

∣∣∣ ≤ Ch
∣∣∣e 1

h

∫ x
0
μj(s,ζ)ds

∣∣∣ , j = 3, 4, 5,

for appropriate aj = O(1). We then obtain exact solutions θj of type θj on [0, 3δ] by
setting

(19.4) θj = Y (x, ζ, h)

(
0
φ2,j

)
, j = 3, 4, 5,

where Y is the conjugator of Proposition 12.1.
We note that the elements of the basis B = {θ1 . . . , θ5} have the growth rates at

xR = 2δ given by (18.17).
(2) Expand H(2δ, ζ, h)θ. As in (18.18) we expand the exact solution H(2δ, ζ, h)θ

in the basis B and, after evaluating at xR = 2δ, we again obtain the growth rates
(18.19) for the coefficients cj(ζ, h), j = 1, . . . , 5.

(3) Regime A. We show that for (ζ, h) in regime A, the term c1θ is the dominant
term in the expansion (18.18) at x = 0. Observe that for all ζ ∈ ω1 we have

(a) arg ρ(0, ζ) ∈ [0, π], and thus

(b) arg(e−2πi/3ρ(0, ζ)) ∈ [−2π/3, π/3], while

(c) arg(e2πi/3ρ(0, ζ)) ∈ [2π/3, 5π/3].

(19.5)

In case (b) the zeroes of Ai(z), which all lie on the negative real axis, are avoided;
thus, there exist positive constants Ai such that

(19.6) A1 ≤ |Ai(h−2/3ρ(0, ζ)e−2πi/3)| ≤ A2 for (ζ, h) in regime A.

Ignoring an error of size h−1/3, we have

(19.7) θ−(0, ζ, h) ∼ b1/2(ρx)
−1/2Ai(h−2/3ρe−2πi/3)P0 := q(0, ζ, h)P0 in regime A.

With (18.10), (18.11), and (18.19) this gives for some positive constant C,

|c1(ζ, h)θ1(0, ζ, h)| ≥ CR−(ζ, h) = Ch−1/6(19.8)

× exp

[
1

h
�
(∫ δ

0

sb(y, ζ) dy +
2

3
i(−ρ)3/2(δ, ζ)

)]
.

Similarly, we obtain

|c2(ζ, h)θ2(0, ζ, h)| ≤ Che
1
h2�(

∫
2δ
0
sb(y,ζ) dy)R+(ζ, h), where

R+(ζ, h) = h−1/6 exp

[
− 1

h
�
(∫ δ

0

sb(y, ζ) dy +
2

3
i(−ρ)3/2(δ, ζ)

)]
,(19.9)

|cj(ζ, h)θj(0, ζ, h)| ≤ Che
1
h� ∫

2δ
0 (s(y,ζ)b(y)− ζ

ηu(y) )dy, j = 3, 4, 5,

where in the last estimate we have used |θj(0, ζ, h)| = O(1), j = 3, 4, 5.
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DETONATION STABILITY AND TURNING POINTS 1873

Recalling (18.23), from (19.8) and (19.9) we see that in regime A at x = 0

(19.10) |c2θ2/c1θ1| ≤ Ch and |cjθj/c1θ1| ≤ Ch7/6, j = 3, 4, 5,

and thus c1θ1 is the dominant term in the expansion (18.18) at x = 0. Using (18.10)
and (19.7) we obtain

(19.11) θ1(0, ζ, h) = G−1
− (2δ, ζ, h)q(0, ζ, h)P0.

Since θ1(0, ζ, h) = P0 + s(0, ζ)Q0 + O(h), for fixed κ > 0 we therefore obtain (13.2)
with α(ζ, h) := G−(2δ, ζ, h)q−1(0, ζ, h) provided (ζ, h) lies in regime A, ζ ∈ ω2, and
0 < h ≤ h0 for small enough ω2 � ζ0 and h0.

(4) Regime B with arg ρ(0, ζ) away from π/3. First we determine the size of
c1θ1(0, ζ, h) in regime B. By (19.5)(b) we can use the expansions (16.66) of Ai(z) and
Ai′(z) for all (ζ, h) in regime B to obtain, modulo O(h) relative errors,

c1θ1(0, ζ, h) ∼ k(ζ, h)R−(ζ, h)e−
2
3 (h

−2/3ρ(0,ζ)e−2πi/3)3/2

× b1/2ρ−1/2
x (h−2/3ρ(0, ζ)e−2πi/3)−1/4(19.12)

×
[
P0 − b−1ρxe

−2πi/3h1/3(h−2/3ρ(0, ζ)e−2πi/3)1/2Q0

]
,

where k(ζ, h) = O(1) and is bounded away from 0. Letting arg ρ(0, ζ) = β ∈ [0, π]
and noting that for ζ near ζ0 the second term inside the brackets is small compared
to the first, we obtain for some positive constant K
(19.13)

c1θ1(0, ζ, h) ≥ Ke
1
h�(

∫
δ
0
sb(y,ζ) dy+ 2

3 i(−ρ)3/2(δ,ζ))|ρ(0, ζ)|−1/4e
1
h

2
3 |ρ(0,ζ)|3/2 cos( 3β

2 ).

For a small positive ε0 we note that for β ∈ [0, π3 −ε0] (resp., β ∈ [π3 +ε0, π]), c2θ2
has an expansion similar to (19.12), except that c1 is replaced by c2, R− by R+, and
all factors of e−2πi/3 are replaced by e2πi/3 (resp., e−4πi/3). Thus, for β ∈ [0, π3 − ε0]
we obtain

c2θ2(0, ζ, h) ≤ Che
1
h 2�(

∫ 2δ
0
sb(y,ζ) dy)e−

1
h�(

∫ δ
0
sb(y,ζ) dy+ 2

3 i(−ρ)3/2(δ,ζ))(19.14)

× |ρ(0, ζ)|−1/4e
1
h

2
3 |ρ(0,ζ)|3/2 cos( 3β

2 ).

while for β ∈ [π3 + ε0, π] we obtain

c2θ2(0, ζ, h) ≤ Che
1
h 2�(

∫ 2δ
0
sb(y,ζ) dy)e−

1
h�(

∫ δ
0
sb(y,ζ) dy+ 2

3 i(−ρ)3/2(δ,ζ))(19.15)

× |ρ(0, ζ)|−1/4e−
1
h

2
3 |ρ(0,ζ)|3/2 cos( 3β

2 ),

From (19.14) and (19.13) we see that at x = 0

(19.16) |c2θ2/c1θ1| ≤ Ch for β ∈
[
0,
π

3
− ε0

]
.

The same estimate holds for β ∈ [π3 + ε0, π], but this is much less clear since now
cos(3β/2) ≤ 0! Inspection of (19.13) and (19.15) shows that the estimate holds for
this range of β provided

(19.17) �
(
i(−ρ)3/2(δ, ζ)

)
≥ |ρ(0, ζ)|3/2| cos(3β/2)| for ζ ∈ ω2,
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where ω2 ⊂ ω1 is a neighborhood of ζ0. Writing ζ = ζr + iζi and setting γ =
arg(−ρ(δ, ζ)), we have

(19.18) 
(−ρ3/2(δ, ζ)) = |ρ(δ, ζ)|3/2 sin(3γ/2),
and (12.8) implies γ ≤ 0. Now γ is close to zero and, by (12.8)(d), we have |
ρ(δ, ζ)| ≥
C|ζr|, so

(19.19) | sin 3γ/2| ∼ |3γ/2| ∼ 3

2
|tan γ| = 3

2

∣∣∣∣
ρ(δ, ζ)�ρ(δ, ζ)
∣∣∣∣ ≥ C1|ζr|/|ρ(δ, ζ)|.

With (19.18) this implies

(19.20) |
(−ρ3/2(δ, ζ))| ≥ C1|ζr||ρ(δ, ζ)|1/2.
To have (19.17) it now suffices to choose ω2 so that

(19.21) | cos(3β/2)| ≤ C1
|ζr||ρ(δ, ζ)|1/2
|ρ(0, ζ)|3/2 for ζ ∈ ω2.

Using (12.8) again, we have

(19.22) ρ(0, ζ) = ρ(0, ζ0)+ρζ(ζ0)(ζ−ζ0)+O(|ζ−ζ0|2) ∼ C|ζ−ζ0| = C|ζr,
(ζ−ζ0)|.
When |ρ(0, ζ)| ∼ |ζ − ζ0| ∼ |ζr|, we can choose ω2 so that |ρ(δ, ζ)|/|ρ(0, ζ)| is large
and thereby arrange to have (19.21). When |ζr| ≤ κ|
(ζ − ζ0)| for κ small, we must
have β close to π. Setting α = π − β we have

(19.23) | cos(3β/2)| = | sin(3α/2)| ∼ | tanα| ∼ |
ρ(0, ζ)|
|�ρ(0, ζ)| ∼

|ζr|
|ρ(0, ζ)| .

We can now shrink ω2 if necessary, so that |ρ(δ, ζ)|/|ρ(0, ζ)| is large for ζ ∈ ω2, thereby
arranging to have (19.21). This establishes (19.17),54 and thus for (ζ, h) in regime B
we have at x = 0,

(19.24) |c2θ2/c1θ1| ≤ Ch for β ∈
[π
3
+ ε0, π

]
, ζ ∈ ω2.

The estimate (19.9) for j = 3, 4, 5 still holds for regime B, so (19.13) and (19.17)
imply that at x = 0

(19.25) |cjθj/c1θ1| ≤ Ch for ζ ∈ ω2

and (ζ, h) in Regime B, when β ∈ [0, π3 − ε0] ∪ [π3 + ε0, π]. With (19.16) and (19.24),
we obtain (13.2) as before for these (ζ, h).

(5) Regime B with arg ρ(0, ζ) near π/3. To treat θ2 we now use the fact that for
large |z| with | arg z| ≤ 2π/3

Ai(−z) ∼ π−1/2z−1/4

[
sin
(
γ +

π

4

) ∞∑
0

akγ
−2k − cos

(
γ +

π

4

) ∞∑
0

bkγ
−2k−1

]

Ai′(−z) ∼ −π−1/2z1/4

[
cos
(
γ +

π

4

) ∞∑
0

ckγ
−2k + sin

(
γ +

π

4

) ∞∑
0

dkγ
−2k−1

]
,

(19.26)

54The argument shows that (19.17) holds for ζ ∈ ω2 when β ∈ [ε0, π].
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DETONATION STABILITY AND TURNING POINTS 1875

where γ := 2
3z

3/2 [AS, 10.4.60, 10.4.62]. We write, for example,

(19.27) Ai(h−2/3ρ(0, ζ)e2πi/3) = Ai(−h−2/3e−iπ/3ρ(0, ζ)),

where now arg(e−iπ/3ρ(0, ζ)) := θ is close to 0. We have

(19.28)

∣∣∣∣cos
(
2

3
(h−2/3e−πi/3ρ(0, ζ))3/2 +

π

4

)∣∣∣∣ ≤ Ce
1
h

2
3 |ρ(0,ζ)|3/2| sin( 3θ

2 |,

and (19.15) now holds with the exponential on the right in (19.28) replacing that on
the far right in (19.15). Since arg(ρ(0, ζ)) is near π/3, we have |ζr| ∼ |ζ−ζ0| ∼ |ρ(0, ζ)|,
so we can arrange to have (19.21), with | sin(3θ/2)| now in place of | cos(3β/2)|,
by choosing ω2 so that |ρ(δ, ζ)|/|ρ(0, ζ)| is large for ζ ∈ ω2. Thus, we can obtain
the estimates (19.24) and (19.25) for this range of β, and the estimate (13.2) is a
consequence of these as before.

Part VI. Appendices.

20. Coefficients appearing in the linearized systems. The matrix coef-
ficients appearing in the reduced system (0.4) are

Ax =

⎛
⎜⎜⎜⎜⎝

u −v 0 0 0
vpv u 0 vpS vpλ
0 0 u 0 0
0 0 0 u 0
0 0 0 0 u

⎞
⎟⎟⎟⎟⎠ , Ay =

⎛
⎜⎜⎜⎜⎝

0 0 −v 0 0
0 0 0 0 0
vpv 0 0 vpS vpλ
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

B =

⎛
⎜⎜⎜⎜⎝

−u′ v′ 0 0 0
p′ − v(c20/v

2)′ u′ 0 vp′S vp′λ
0 0 0 0 0

−Φv S′ 0 −ΦS −Φλ
−rv λ′ 0 −rS −rλ

⎞
⎟⎟⎟⎟⎠ ,

(20.1)

where (′) denotes differentiation with respect to x and c20 = −v2pv(v, S, λ).
The matrix Φ0(x, ζ) in the system (0.6) is computed in [E3, p. 112] to be

(20.2) Φ0(x, ζ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

− (1−η)ζ
ηu −mζ

ηu − im
1−η 0 0

− (1−η)ζ
ηmu − (1−η)ζ

ηu 0 0 0
i(1−η)
ηm

i
η

ζ
u 0 0

(1−η)pSζ
ηm2u

(1−η)pSζ
ηmu

ipS
m

ζ
u 0

(1−η)pλζ
ηm2u

(1−η)pλζ
ηmu

ipλ
m 0 ζ

u

⎞
⎟⎟⎟⎟⎟⎟⎠
.

This computation can be done using (0.6) and (20.1).

21. The stability function V (ζ, h). The stability function V (ζ, h) is given
by

(21.1) V (ζ, h) = θ(0, ζ, h) · P (0+)− θ(0, ζ, h) · 1
h
(ζHt + iHy).

Here m = u/v, the mass flux, is a constant independent of x,

(21.2) Ht =
v− − v+
v−T+η+

⎛
⎜⎜⎜⎜⎝

2(1− η+)g+/m
T+η+ + 2(1− η+)g+

0
−m(v− − v+)η+

0

⎞
⎟⎟⎟⎟⎠ ,D
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and Hy has the single nonzero component (Hy)3 = m(v− − v+). By v±, for example,
we denote components of the profile states P± := P (0±) just to the right and left of
the von Neumann shock, and

(21.3) g+ = T+ − 1

2
(v− − v+)pS+.

The expression (21.1) for V (ζ, h), found in [CJLW], is simpler than the expression
derived in [E1] and used in [E2, E3]. The equality of the two forms of V was proved
in section 4 of [CJLW].

The stability function for the von Neumann shock, L1(ζ), which appears in As-
sumption 1.4, is given explicitly in [E2] as

L1(ζ) = −u−(1 − χv)

η+

[
�+ζ(ζ + κ+s+)

u+u−
+ η+

(
1− ζ2

u+u−

)]
,

� = 2− (1 − η)(1− χv)v−pS/T, χv = v+/v−.(21.4)

From the expression (21.1) and the fact that

(21.5) L1(ζ) = −T1(0, ζ) · (ζHt + iHy),

it is clear that Assumption 1.4 implies that V (ζ, h) is nonvanishing for small h when
θ(0, ζ, h) is of type θ1.

22. Classical asymptotic ODE results used. Here we state the theorems
from [O] that are used in this paper. To keep this section brief, we state the results
only in the simplified form that we actually use; also, we refer to earlier parts of
this paper for definitions of some terms that appear below. We note that Theorem
22.3 below is an extension of Theorem 9.1 of [O, Chapter 12], to the case where the
parameter ν satisfies �ν ≥ 0 instead of just ν ≥ 0. The extension was proved in
section 17.

For a parameter u ∈ C with |u| large, we consider equations of the form

(22.1) Wξξ = (u2ξm + ψ(ξ))W, where m = 0, 1,−1,

on a simply connected, open subset Δ, possibly unbounded, of the complex ξ-plane.
The function ψ is analytic on Δ but may have singularities at isolated points on its
boundary. The following three theorems deal respectively with the casesm = 0, 1,−1.

Theorem 22.1 (Theorem 3.1 of [O, Chapter 10]). Let m = 0 in (22.1) and
suppose | arg u| < π/2. For j = 1, 2 let αj ∈ ∂Δ and suppose that for any ξ ∈ Δ a
progressive j-path can be chosen in Δ from αj to ξ.55Suppose also that there is an
upper bound for the integrals

(22.2)

∫ ξ

αj

|ψ(s)|d|s| on progressive j-paths,

which is independent of ξ ∈ Δ. Then (22.1) has solutions Wj on Δ satisfying

(22.3) Wj(ξ) = e(−1)j−1uξ + ηj(u, ξ), j = 1, 2,

where the errors ηj satisfy the estimates (10.7).

55Such paths are defined in step (1) of the proof of Proposition 10.2.

D
ow

nl
oa

de
d 

11
/2

4/
15

 to
 1

94
.2

54
.1

65
.1

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DETONATION STABILITY AND TURNING POINTS 1877

With Ai(z) the standard Airy function, we set

(22.4) Ai0(z) = Ai(z), Ai1(z) = Ai(ze−2πi/3), Ai−1(z) = Ai(ze2πi/3).

Theorem 22.2 (Theorem 9.1 of [O, Chapter 11]). Let m = 1 in (22.1) and for
small δ > 0, suppose | argu| < δ. For j = 0, 1,−1 let αj ∈ ∂Δ and suppose that for
any ξ ∈ Δ a progressive j-path can be chosen in Δ from αj to ξ.56 Suppose also that
there is an upper bound for the integrals

(22.5)

∫ ξ

αj

|ψ(s)s−1/2|d|s| on progressive j-paths,

which is independent of ξ ∈ Δ. Then (22.1) has solutions Wj on Δ satisfying

(22.6) Wj(ξ) = Aij(u
2/3ξ) + ηj(u, ξ), j = 0, 1,−1,

where the errors ηj satisfy the estimates (10.28).
Theorem 22.3 (Theorem 9.1 of [O, Chapter 12],). Let m = −1 in (22.1) and

suppose u > 0. We now assume Δ ⊂ {ξ : | arg ξ| < π/2}, 0 ∈ ∂Δ, and that ψ(ξ) has
the form

(22.7) ψ(ξ) =
ν2 − 1

4ξ2
+
φ(ξ)

ξ
,

where φ is analytic at ξ = 0. Let α1 = 0, α2 ∈ ∂Δ and suppose that for j = 1, 2 and
any ξ ∈ Δ a progressive j-path can be chosen in Δ from αj to ξ.57 Suppose also that
there is an upper bound for the integrals

(22.8)

∫ ξ

αj

|φ(s)s−1/2|d|s| on progressive j-paths,

which is independent of ξ ∈ Δ. Then (22.1) has solutions Wj on Δ satisfying

(a)W1(ξ) = ξ1/2Iν(2uξ
1/2) + η1(u, ξ),

(b)W2(ξ) = ξ1/2Kν(2uξ
1/2) + η2,

(22.9)

where the errors ηj satisfy the estimates (10.40).
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