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Introduction

— LetX be a smooth algebraic variety over a field k. Among the deepest conjectures in (arithmetic) algebraic geometry,
the Weil conjectures and the Hodge and Tate conjectures are essentially attempts to calculate the «arithmetic filtration»
on a suitable cohomology theory H∗ (X ). This filtration, which is given by

F pH∗ (X ) =
⋃

Z⊂X closed
codimX (Z)=p

ker[H∗ (X ) → H∗ (X \ Z)],

is usually called the filtration by coniveau (or filtration by codimension of support). These conjectures assert that this
mysterious filtration is equal to (or at least contained in) another filtration which can «actually be computed». The
filtration by coniveau is the filtration of a natural spectral sequence, whoseE1-page was written down by Grothendieck,
and one has

Ep,q1 =
⊕
x∈X (p)

Hq−p (κ(x)).

While the Weil conjectures have been proven by Deligne in 1974, the Hodge and Tate conjectures are still far from
being solved, unless we consider specific dimensions or families of varieties. In [BO74], Bloch and Ogus showed by
mimicking Quillen’s proof of the Gersten conjecture in algebraicK -theory that whenH∗ (X ) is étale cohomology with
torsion coefficients, then the coniveau spectral sequence on X computes, as its E2-page, the cohomology of the Zariski
sheaf H∗ given by the sheafification of the presheaf that sends an open subset U ⊂ X to H∗ (U ). It was soon realised
that this approach could provide an interesting point of view on a stable birational invariant of smooth and projective
varieties called unramified cohomology, which was introduced by Colliot-Thélène and Ojanguren in [CTO89]. The
unramified cohomology of a smooth and connected variety over a field may indeed be alternatively defined, thanks to
the results of Bloch-Ogus, as the subgroup of the cohomology of the generic point given by all classes that have trivial
residues at all codimension one points.

Over the complex numbers, unramified cohomology with torsion coefficients proved to be highly useful in the
study of the Lüroth problem, that is the study of unirational varieties which are not rational. In fact, an invariant
used by Artin-Mumford in this regard, which is the torsion in the Betti cohomology group H3

B (X,Z), is equal for
rationally connected varieties to the unramified Brauer group Brnr (X ) := H2

nr (X,Q/Z). In [CTO89], the authors
exhibited unirational sixfolds with trivial unramified Brauer group but non vanishing groupH3

nr (X,Q/Z). A particular
instance where this notion has been extremely successful is Saltman’s paper [Sal84], where the author showed that some
function fields (invariant fields of a linear action of a finite groupG) are not purely transcendental over the ground field,
thus settling Noether’s problem over an algebraically closed field in the negative, and providing a new perspective on
the inverse Galois problem. Saltman used the unramified Brauer group Brnr (k(X )/k) of the quotient variety X =

SLn,k/G (for n ≥ 1 sufficiently large), which may be shown to be equal to the Brauer-Grothendieck group Br(X̃ ) :=
H2

ét (X̃ ,Gm) of a smooth and projective compactification X̃ . In concrete cases, it is quite unclear how to construct such
a model for a given function field. A key aspect of Saltman’s paper is that the unramified point of view enables one to
dispense with the construction of an explicit model, and even with the existence of such a model.

Nowadays essentially all deep conjectures in the theory of algebraic cycles on smooth complex projective varieties
are formulated rationally. For instance, Hodge originally formulated his famous conjecture integrally, but when Atiyah
and Hirzebruch showed that it fails for torsion cycles, it became clear that one should phrase it rationally. Nonetheless,
investigating instances where the Hodge conjecture may hold integrally remained an active field of research. Similarly,
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it is natural to investigate to which extent other cycle conjectures (such as the Tate conjecture) may hold integrally, or
on torsion cycles. It is well-known that the finiteness of the Brauer group (which coincides for smooth, proper and
connected varieties with its unramified counterpart) implies the (rational) Tate conjecture for codimension 1 cycles on
surfaces over finite fields. On the other hand, Bloch-Ogus showed in [BO74] that over the complex numbers, unram-
ified cohomology in degree 3 is related to the Griffiths group of codimension 2 cycles, that is, the kernel of the cycle
class map CH2 (X )/alg→ H4

B (X,Z(2)). Colliot-Thélène and Voisin computed in [CTV12] the failure of the integral
Hodge conjecture for codimension 2 cycles on smooth complex projective varieties in terms of unramified cohomology
in degree 3 ; a similar statement holds for the integral Tate conjecture thanks to Kahn in [Kah12]. These observations
suggest together that unramified cohomology in higher degree might play a critical role in these various conjectures.
This thesis is organised as follows :

• Chapter I is devoted to the prerequisites. We provide a rather long survey on algebraic cycles and their various
relations to (co)homology theories. More precisely, we discuss generalities on Chow rings (§I.1) such as locali-
sation, intersection products and homotopy invariance, as well as cycle classes (§I.2) (in the ℓ -adic and complex
case). We also discuss some more specific declinations (equivariant intersection theory and decompositions of
the diagonal à la Bloch-Srinivas). We provide a detailed account on K -theory (§1.3) in the sense of Quillen (K -
theory of schemes and Gersten’s conjecture) and Milnor’s K -theory (tame and Galois symbols, the Bloch-Kato
conjecture) ; we dedicate a whole section (§I.4) to the proof of Gersten’s conjecture in étale cohomology, due
to Bloch-Ogus. We finish with some applications to unramified cohomology (§I.5), together with some general
properties (stable-birational invariance, codimension one purity, etc.).

• Chapter II provides a detailed treatment of the proof of the main result of the paper [Pey07] by Peyre, which
quite precisely describes the unramified cohomology groupH3

nr (C(W )G/C,Q/Z(2)) attached to a finite group
G endowed with a faithful complex representation W .

• Chapter III deals with the main results of the paper [CTV12] by Colliot-Thélène and Voisin. In particular, we ex-
plain (§§III.2.1–2.2) how the authors -using the Bloch-Kato conjecture and arguments related to the decomposi-
tion of the diagonal- derived an isomorphism between the groupsH3

nr (X,Q/Z) andZ4 (X ) = Hdg4 (X,Z)/Im[cℓ2 :
CH2 (X ) → H4

B (X,Z)] (thus measuring the failure of the integral Hodge conjecture in terms of unramified co-
homology) for codimension 2 cycles on a smooth and projective connected complex variety X such that the
group CH0 (X ) is supported on a surface. We also describe how the authors used this identification to obtain
some new results for 0-cycles on varieties over a field of cohomological dimension at most 1.

• Chapter IV explains the main ideas of a recent paper [Sca21] by Scavia, which determines the non-vanishing of
some motivic classes of classifying stacks in the Grothendieck ring of stacks K0 (StckC) over the complex num-
bers. We first provide a small account on the general theory of algebraic stacks (§IV.1.1) and the basic properties of
K0 (StckC) (§IV.1.2), and then explain how a general result due to the author (§IV.2.1) allows one, building upon
the results of Peyre and Colliot-Thélène-Voisin (that are discussed in the previous chapters), to give an example
of a finite groupG whose classifying stack has a non-trivial class in the Grothendieck ring, despite the vanishing
of Brnr (C(W )G/C) for any faithful complex representation W of G.
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Notation

Algebra and arithmetic

— IfE is a set, we denote by #E its cardinality. IfM is a (left)G-set for an arbitrary groupG, we write the corresponding
action by M × G ∋ (m, g) ↦→ g.m. If G is a group and n ∈ Z≥1, then Gn denotes (unless explicitely stated) the set
of elements of the form ng form g ∈ G, and Z (G) denotes the center of G. If A is an abelian group, and if n and ℓ
are respectively a non negative integer and a prime integer, then A[n] denotes the subgroup of n-torsion elements of
A and A{ℓ} denotes the subgroup of ℓ -primary torsion elements of A.

The characteristic of a field k is denoted by char(k). A field k ⊂ L is denoted by L/k. We write ks and k for a
separable and algebraic closure of k, respectively.

The absolute Galois group Gal(ks/k) of k is denoted byΓk. IfM is a set together with aΓk-action, we usually denote
it by M × Γk ∋ (m, σ) ↦→ σm. If k is a global field, then Ωk denotes the set of its places, Ω∞ ⊂ Ωk its archimedean
places and Ωf ⊂ Ωk its finite places. The maximal unramified extension of a global (or local) field k is denoted knr. The
completion of k at a place ν ∈ Ωk is denoted by kν. We denote by cd(k) the cohomological dimension of Γk.

We denote bySets the category of sets and maps of sets,Ab the category of abelian groups and morphims of groups.
IfR is a commutative ring, thenAlgR denotes the category ofR-algebras and morphism of algebras, andModR denotes
the category of R-modules and morphisms of modules.

If G is an arbitrary group, then ModG denotes the category of G-modules, that is, the category of abelian groups
together with a (left) G-action compatible with their Z-module structure, and the morphisms of G-modules are the
morphisms of abelian groups that are G-equivariants. If H is a subgroup of G and A is an H -module, we denote by
MG

H (A) := HomModH (Z[G], A) the induced G-module.

Algebraic geometry

— IfX is a scheme and x ∈ X , then OX is the structure sheaf onX and OX,x is the stalk of OX at x, which is a local ring.
We denote its maximal ideal by 𝔪x and its residue field by κ(x). If c ≥ 1, then X (c) is the set of codimension c points of
X . In particular,X (1) can alternatively denote the set of irreducible prime divisors ofX . IfX is integral, we write k(X )
for its function field and kX for the associated constant sheaf.

If k is a field and X is a k-scheme, and if L/k is a field extension, then we denote by XL the fibre product X ×k L =

X ×Spec k SpecL. In particular, X := X ×k k and X s := X ×k ks. A k-variety is a separated k-scheme of finite type.
If X, Y are two k-varieties where X is quasi-projective and Y is projective, then we denote by Mor(X, Y ) the (locally
noetherian) scheme that parametrizes morphisms from X to Y in the sense of [Deb01, Chap. 2, §2.2].

We say that X satisfies a property geometrically if it is satisfied over X , e.g. X is geometrically irreducible, integral,
etc. A schemeX is purely of dimension d if each of its irreducible components has dimension d. IfU is an open subset
of a scheme X , the Zariski closure of U in X is denoted by ClZar (U ).

If f : X → Y is a morphism of S-schemes, we call f an X -point of Y , and Y (X ) is the set HomS (X, Y ) of all
the morphisms of S-schemes X → Y . In the particular case where X = SpecR is the spectrum of a ring R, we write
Y (R) := Y (SpecR).

The formal completion of a local ringR is denoted by R̂. A noetherian ringR is a G-ring («G» stands for Grothendieck)
if for every prime ideal 𝔭 ⊂ R, the fibres of the morphism Spec R̂𝔭 → SpecR𝔭 induced by the inclusion R𝔭 ↩→ R̂𝔭

are geometrically regular. Such a ring R is said to be excellent if it is also universally catenary [Mat89, §5] and such
that for every R-algebra A of finite type, the set of regular point of SpecA is dense in the latter. Every finite type ring
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extension of either a field, Z, a complete noetherian local ring or a Dedekind ring of characteristic zero is an excellent
ring. A scheme is said to be excellent if it admits a covering by spectra of excellent rings.

If X is a scheme and n ≥ 1, then PnX := PnZ ×Z X and AnX := AnZ ×Z X where PnZ := Proj(Z[x0, . . . , xn]) and
AnZ := Spec(Z[x1, . . . , xn]).

We denote by Sch the category of schemes and morphisms of schemes. If k is a field, we denote byVark the category
of k-varieties and morphisms of varieties and by Smk the category of smooth k-varieties and morphisms of k-varieties.
If S is a scheme, then SchS denotes the category of S-schemes and morphims of S-schemes.

IfX is a scheme, we denote byXét the small étale site ofX ,XÉt the big étale site ofX andXZar the big Zariski site of
X . If XE is any site on X , we denote by Sh(XE) the category of sheaves of abelian groups on XE . If X is a scheme over a
field k and n ≥ 1 is an integer that is invertible on k, then for j ∈ Z, we put

Z/n(j) :=


µ⊗(j−1)n ⊗ µn if j ≥ 1,
Z/n if j = 0,
HomSh(Xét ) (µ

⊗(−j)
n ,Z/n) if j < 0,

where µn = µn,X is the étale sheaf of nth roots of unity on X .
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Chapter I

Preliminaries

I.1. Chow rings
— We review the necessary background material about intersection theory that we will use extensively in the rest of
this text. This includes Chow groups and correspondences, as well as the decomposition of the diagonal (which proved
to be a very powerful tool from a birational point of view, for instance in papers of Bloch-Srinivas, Voisin, or Colliot-
Thélène), and their equivariant counterpart.

1.1. Recollection on Chow groups
— LetX be a scheme over a field k and Zi (X ) the group of i-dimensional algebraic cycles onX , that is, the free abelian
group formally generated by the reduced and irreducible closed i-dimensional k-subvarieties ofX . If Y ⊂ X is a closed
subscheme of dimension ≤ i, then one can associate a cycle c(Y ) ∈ Zi (X ) :

c(Y ) :=
∑︁
W

nW [W ]

where the sum is taken over the i-dimensional reduced irreducible components of Y and the integer nW is the length
of the local ring OY,ηW (which is Artinian).

If ϕ : Y → X is a proper morphism between quasi-projective schemes, then one has a pushforward map

ϕ∗ : Zi (Y ) → Zi (X )

by sending the class of any irreducible closed subschemeZ ⊂ Y to the cycle [k(Z) : k(Z′)] · [Z′] whereZ′ := ϕ(Z) if
ϕ : Z → Z′ is generically finite and to 0 otherwise (by the properness of ϕ, the subschemeZ′ is guaranted to be closed
in X ).

SupposeW is a normal algebraic k-variety. Then the local rings at points of codimension one are discrete valuation
rings, hence one can define the divisor div(ϕ) of any nonzero rational function ϕ ∈ k(W )× by setting

div(ϕ) :=
∑︁

D∈W (1)

νD (ϕ) [D]

where νD is the normalised valuation of the local ring at the generic point ofD. This gives a cycle of dimension dimW−
1. If we now suppose that W ⊂ X is a closed subvariety and τ : W̃ → X is the normalisation morphism of W , then
one has a natural pushforward map

τ∗ : Zi (W̃ ) −→ Zi (X )

for any i ≥ 0.

13
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Definition 1.1.1. For i ≥ 0 we define the subgroup Zi (X )rat of i-dimensional cycles rationally equivalent to 0 as the
subgroup of Zi (X ) generated by the cycles of the form

τ∗div(ϕ), dimW = i + 1, ϕ ∈ k(W )×

where τ : W̃ → W ↩→ X is the normalisation of the closed subvariety W of X . The Chow group of i-dimensional
cycles is the quotient

CHi (X ) := Zi (X )/Zi (X )rat.

When X has pure dimension n, we can define the Chow group CHi (X ) := CHn−i (X ) of i-codimensional cycles.

If X is n-dimensional, reduced and irreducible, then one has a natural morphism

Pic(X ) −→ CHn−1 (X )

that sends an invertible sheaf L to the cycle τ∗div(σ) where τ : X̃ → X is the normalisation morphism and σ is a
nonzero meromorphic section of the pullback invertible sheaf τ∗L .

If X is now smooth over k, or more generally locally factorial, then Zn−1 (X ) is nothing more than the group of
Cartier divisors, and we have an isomorphism

Pic(X ) ∼−−→ CHn−1 (X ),

see for instance [Voi14, Chap. 2, §2.1.1].

1.2. Some intersection theory
1.2.1. Localisation on Chow groups

— LetX be a quasi-projective scheme and ι : Z ↩→ X be the inclusion of a closed subscheme. Let j : U := X \Z ↩→ X
be the inclusion of the complement. The morphism ι is finite hence proper. By restricting cycles to the open subset
U , on defines a pullback morphism j∗ on Chow groups. It is clear that j∗ ◦ ι∗ = 0 since any cycle with support on Z
cannot meet U . Actually, we can say something better about these morphisms :

Lemma 1.1.2. For any i ≥ 0, there exists a localisation exact sequence :

CHi (Z)
ι∗−→ CHi (X )

j∗
−→ CHi (U ) −→ 0.

Proof. If Z′ ⊂ U is any i-dimensional subvariety, then its Zariski closure is an i-dimensional subvariety whose inter-
section with U is exactly Z, so the surjectivity on the right follows. If Z′ ∈ Zi (X ) is such that j∗ (Z′) ∈ Zi (U )rat, then
there exist subvarieties Wl ⊂ U with dimWl = i + 1 and ϕl ∈ k(Wl)× and some integers nl such that

Z′ ∩ U =
∑︁
l
nl (τl)∗ (div(ϕl))

where τl : W̃l → U denotes the normalisation of Wl. If we write Wl for the Zariski closure of Wl in X and τl for its
normalisation (in X ), then one has ϕl ∈ k(Wl)× and the decomposition of Z′ ∩ U gives

Z′′ := Z′ −
∑︁
l
nl (τl)∗ (div(ϕl)) ∈ Zi (Z),

so this implies the exactness of the sequence in the middle (the cycle Z′′ being rationally equivalent to Z′ in X ). □
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1.2.2. Intersection products

1.2.2.1. Naive intersection products. In [Ful98], Fulton defines an intersection theory on Chow groups

CHi (X ) × CHl (X ) −→ CHi+l−n (X )

for any smooth n-dimensional variety X . If Z, Z′ are two irreducible and reduced subschemes of X of respective di-
mensions i and l which intersect properly and generically transversally, i.e. such that

dimZ ∩ Z′ = i + l − n,

and generically alongZ∩Z′,Z andZ′ are smooth and have transverse intersection, then one definesZ ·Z′ as the cycle
associated to the scheme Z ∩ Z′ (note that this scheme has its components of multiplicity 1 given the assumptions).
Extending this definition bilinearly, one defines the intersection Z · Z′ for any pair of cycles whose supports intersect
properly and generically transversally. For more details, see [Ful98, Chap. 6].

If we now suppose thatZ andZ′ do not intersect properly, then the classical (and now obsolete) theory replacesZ
by a cycle Z̃ that is rationally equivalent to Z and intersects Z′ properly. Such a cycle exists when X is quasi-projective
by the so called Chow moving lemma, and the idea would then be to defineZ ·Z′ as the class of Z̃ ∩Z in CHi+l−n (X ).
There are several drawbacks to this method: the moving lemma is problematic in the sense that it does not allow to
choose cycles that meet generically transversally, so this leads to some issues with respect to the well-definedness of
intersection products (it requires a substantial amount of work to check that this product is well-defined). Moreover,
it has the bad property of not respecting supports (it would be reasonable to expect that the intersection product of
two cycles should be a cycle supported on the set-theoretic intersection of the support of those two cycles). This leads
us to Fulton’s approach.

1.2.2.2. Refined intersection products. Let Z be any i-dimensional cycle and Z′ be an l-dimensional cycle. Ful-
ton bypasses the issues of Chow’s moving lemma by using the deformation to the normal cone [Ful98, Chap. 5], and
defines a «refined» intersection product as a cycle

Z · Z′ ∈ CHi+l−n ( |Z | ∩ |Z′ |),

where |Z | and |Z′ | denote the support of Z and Z′ respectively. This product has the nice property that it naturally
maps to the classical intersection product Z · Z′ in CHi+l−n (X ), but it provides the «right» intersection product
that deals with the problems of excess, that is, when Z and Z′ do not intersect properly. For more details about this
construction, see [Ful98, Chap. 6, §6.3].

We can therefore endow the direct sum

CH∗ (X ) :=
⊕
l≥0

CHl (X )

with the structure of a commutative graded ring with unit given by the class [X ] ∈ CHdimX (X ) of X . Actually, one
can show that Fulton’s intersection theory gives a contravariant graded ring structure on CH∗ (X ) that agrees with flat
pullbacks, intersection with Cartier divisors, and admits a projection formula, and that it is unique for these properties,
see [Gil05, Thm. 23].

1.3. Functoriality

1.3.1. Homotopy invariance, projection formulæ

— In this section, we discuss a few cases where certain morphisms of schemes induce pushforwards that descend to
Chow groups.
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1.3.1.1. Proper pushforwards. Let f : Y → X be a proper morphism between quasi-projective schemes and
f∗ : Zi (Y ) → Zi (X ) the induced pushforward.

Lemma 1.1.3. The morphism f∗ sends Zi (Y )rat to Zi (X )rat, and thus descends to a morphism

f∗ : CHi (Y ) −→ CHi (X ).

Proof. Fix a subvarietyW of Y of dimension i+ 1 and let τ : W̃ →W be the normalisation morphism such that f ◦ τ
is generically finite. Let ϕ ∈ k(W )× , W ′ := (f ◦ τ) (W̃ ) and τ′ : W̃ ′ → W ′ the normalisation, so that we have a
commutative diagram :

W̃ Y

⟲

W̃ ′ X

τ

ff̃

τ′

.

We thus obtain that f∗ ◦ τ∗ = τ′∗ ◦ f̃∗ : Zi (W̃ ) → Zi (X ). On the other hand, one can assume that the field extension
k(W̃ )/k(W̃ ′) is algebraic (see the proof of [Ful98, Prop. 1.4]), so that we have a norm morphism N : k(W̃ )× →
k(W̃ ′)× , and if ϕ ∈ k(W̃ )× we have f̃∗ (div(ϕ)) = div(N (ϕ)). Hence, f∗ sends cycles rationally equivalent Y to 0 to
cycles rationally equivalent to 0 on X , as desired. □

1.3.1.2. Flat pullbacks. Let now f : Y → X be flat of relative dimension d, and Z a reduced and irreducible i-
dimensional subscheme ofX . Then f −1 (Z) is a subscheme ofY of dimension i+d ; we therefore obtain pullback cycle
f ∗Z ∈ Zi+d (Y ), and extending linearly, this defines a pullback morphism f ∗ : Zi (X ) → Zi+d (Y ). Once again, this
pullback commutes with rational equivalence :

Lemma 1.1.4 ([Ful98, Thm. 1.7]). The morphism f ∗ sends Zi (X )rat to Zi+d (Y )rat, and thus descends to a morphism

f ∗ : CHi (X ) −→ CHi+d (Y ).

In particular, if X is irreducible, then flat pullback sends CHi (X ) to CHi (Y ).

1.3.1.3. Extending to the smooth case. One can easily see why flatness is a much too restrictive condition when
one wants to define a pullback morphism. But with flat pullbacks at our disposal, we can bypass this issue, at least in a
smooth setting. Suppose indeed that f : Y → X is a morphism of varieties where X is smooth over k. Since the latter
is in particular flat over the base (a k-algebra is always flat), then by base change the projection pr2 : Y ×k X → X is
flat as well, so it induces well-defined pullbacks on Chow groups. On the other hand, the smoothness of X shows that
the image of jf = (Id, f ) : Y → Y ×k X is a local complete intersection, see e.g. [Liu02, Chap. 6, §6.3, Prop. 3.20].
As shown in [Ful98, Chap. 6, §6.6], one can define a restriction map on Chow groups for local complete intersections
morphisms, so in our case a map j∗f : CHk (Y ×k X ) → CHk (Y ). This yields a well-defined pullback morphism
f ∗ : CHk (X ) → CHk (Y ) given by the composition

CHk (X )
pr∗2−→ CHk (Y ×k X )

j∗f
−→ CHk (Y ).

1.3.1.4. Projection formulæ. We would now like to highlight how these pullback and pushforward morphisms
behave we dealing with intersection products. Suppose indeed that f : Y → X is a morphism of smooth k-varieties.
We have the following results :
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Proposition 1.1.5 ([Ful98, Prop. 1.7]).

(i) For Z, Z′ ∈ CH∗ (X ), we have :

f ∗ (Z · Z′) = f ∗Z · f ∗Z′ ∈ CH∗ (Y ).

(ii) If f is moreover proper, then for any Z ∈ CH∗ (Y ) and Z′ ∈ CH∗ (X ), we have :

f∗ (f ∗Z · Z′) = Z · f∗Z′ ∈ CH∗ (X ).

Corollary 1.1.6. If f : Y → X is a proper morphism between smooth k-varieties of the same dimension, then for each
Z ∈ CH∗ (X ), we have :

f∗f ∗Z = deg f · Z.

Proof. By the projection formula, if we put Z′ := [Y ] ∈ CHdimY (Y ), then by definition of the proper pushforward,
we have f∗Z′ = deg f · [X ] ∈ CH∗ (X ). Thus,

f∗f ∗Z = f∗ (f ∗Z · [Y ]) = Z · (deg f · [X ]) = deg f · Z.

□

1.3.2. Correspondences

Definition 1.1.7. A correspondence of dimension i between two smooth k-varieties X and Y is a cycle Γ ∈ CHi (X ×k
Y )[1]. A 0-correspondence between X and Y is a cycle Γ ∈ CHdimX (X ×k Y ).

Under adequate assumptions, correspondences act naturally on Chow rings. Indeed, if the variety X is proper,
then in particular pr2 : X ×k Y → Y is proper by base change, so a correspondence Γ ∈ CHi (X ×k Y ) yields a natural
morphism

Γ∗ : CHl (X ) −→ CHl+i−dimX (Y )
given by

Z ↦−→ pr2∗ (pr∗1 (Z) · Γ).
If in particular Γ is a 0-correspondence, then the induced morphism preserves degrees, that is, Γ∗ : CHl (X ) →
CHl (Y ). If Y is also projective, then one can also consider a pullback morphism

Γ∗ : CHl (Y ) −→ CHl (X )

given by
Z −→ pr1∗ (pr∗2 (Z) · Γ).

1.3.2.1. Composition of correspondences. Assume now that X, Y and W are smooth varieties where X and Y
are proper. Let Γ ∈ CHl (X ×k Y ) and Γ′ ∈ CHl′ (Y ×k W ) be correspondences. We can define their composition
Γ ◦ Γ′ ∈ CHl+l′−dimY (X ×k W ) as follows :

Γ ◦ Γ′ := pr1,3∗ (pr∗1,2 (Γ) · pr∗2,3 (Γ′)),

where pri,j denotes the projection from X ×k Y ×k W onto the product of the ith and jth factors for 1 ≤ i < j ≤ 3. It
is quite straightforward to show that the composition of correspondences is an associative operation. In particular, it
endows CH∗ (X ×k X ) :=

⊕
l≥0 CH

l (X ×k X ) with the structure of a (non-necessarily commutative) ring.
An important remark is that the action of correspondences on Chow groups commutes with composition, thanks

to the projection formula :
[1]Sometimes, one may write X ⊢ Y in order to denote a correspondence from X to Y (this notation is for instance used extensively in [Ful98,

Chap. 16], where it becomes more relevant when one refers to a correspondence of a given degree, as the dimension of the first variety plays a role
here).



18 Chapter I : Preliminaries

Proposition 1.1.8 ([Voi03, Prop. 9.17]). Let Γ, Γ′ be as above, and

Γ∗ : CH∗ (X ) −→ CH∗ (Y ) and Γ′∗ : CH
∗ (Y ) −→ CH∗ (W )

their associated morphisms. Then we have :

(Γ′ ◦ Γ)∗ = Γ′∗ ◦ Γ∗ : CH∗ (X ) −→ CH∗ (W ).

1.4. Decomposition of the diagonal
— The following notion was first introduced by Bloch (based on an idea of Colliot-Thélène) and Bloch-Srinivas in
[BS83]. Here we mainly follow the expositions provided in [Voi14, Chap. 3] and [Sch21, §7].

Definition 1.1.9. A variety X of pure dimension n over a field k admits a decomposition of the diagonal if

[ΔX ] = [X × z] + [ZX ] ∈ CHn (X ×k X ),

where ΔX ⊂ X ×k X is the diagonal, z ∈ Z0 (X ) is a 0-cycle onX andZX is a cycle onX ×k X which does not dominate
any component of the first factor.

Examples 1.1.10.

• X = Pnk admits a decomposition of the diagonal because CHn (X ×k X ) is generated by [Pnk × {x}] for some k-rational
point x ∈ Pnk , together with cycles that do not dominate the first factor, namely any Y n−i × Y i for i ∈ ⟦1, n⟧ where
Y i ⊂ Pnk denotes any linear i-dimensional subspace.

• The glueing X = Pnk ∪H P
n
k along a hypersurface H ⊂ Pnk admits a decomposition of the diagonal if H admits a

k-rational point. Indeed, if we write X = X1 ∪ X2 where X1, X2 are the irreducible components of X , then X ×k X has
4 irreducible components Xi ×k Xj for i, j ∈ {1, 2}. We can write

[ΔX ] = [ΔX1 ] + [ΔX2 ] ∈ CHn (X ×k X )

where ΔXi ⊂ Xi ×k Xi is the diagonal for i = 1, 2. By proper pushforward, we have two maps

CHn (Xi ×k Xi) −→ CHn (X ×k X ), i = 1, 2.

As in the previous example, we have a decomposition of the diagonal for X1 and X2, so we obtain the following :

[ΔX ] = [X1 × {x1}] + [X2 × {x2}] + [ZX ] ∈ CHn (X ×k X )

where x1 ∈ X1 (k), x2 ∈ X2 (k) andZX is a cycle onX ×kX which does not dominate any component of the first factor.
Now sinceH contains a k-rational point, then any two k-rational points ofX are rationally equivalent (e.g. they can be
joined by a chain of two lines), so [X2 × {x1}] = [X2 × {x2}] ∈ CHn (X ×k X ). Hence,

[ΔX ] = [X × {x1}] + [ZX ] ∈ CHn (X ×k X ),

and we have a decomposition of the diagonal.

1.4.1. Decomposition of the diagonal and zero-cycles

Lemma 1.1.11. Let X be a proper variety of pure dimension n over a field k. If X admits a decomposition of the diagonal,
then :

(i) the 0-cycle z in Definition (1.1.9) has degree 1 ;

(ii) X is geometrically connected.
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Proof. By the properness of X , the projection pr1 : X ×k X → X gives a pushforward

pr1∗ : CHn (X ×k X ) −→ CHn (X ).
If [ΔX ] admits a decomposition, then we have

pr1∗ ( [ΔX ]) = pr1∗ ( [X × z]) + pr1∗ ( [ZX ]) = deg(z) [X ] ∈ CHn (X )
since ZX does not dominate any component of the first factor. On the other hand, pr1∗ ( [ΔX ]) = [X ], and since this
class is torsion-free, then we must have deg(z) = 1, hence the first claim.

Now since any field extension L/k is flat over k, then by flat pullback we obtain a decomposition of the diagonal
for X ×k L as well. It thus suffices to show that X is connected if it admits a decomposition of the diagonal. Suppose
by contradiction that

X =

r⊔
i=1

Xi

is a disjoint union of finitely many varietiesXi with r ≥ 2. Write the 0-cycle z as z =
∑r
i=1 zi where each zi is supported

on Xi respectively. Since the Xi ×k Xj for i ≠ j are open subschemes of X ×k X and open immersions are flat, then we
can pull back the decomposition of the diagonal to each Xi ×k Xj . We obtain that each

[Xi × zj] ∈ CHn (Xi ×k Xj)
is rationally equivalent to a cycle that does not dominate Xi via the projection onto the first factor. Now, pushing the
identity forward to the first factor, we obtain that zj has degree 0. This holds for all j since r ≥ 2, so actually z has
degree 0, which contradicts the first claim, as desired. □

If we further assume the variety X to be integral, then the following result holds :

Proposition 1.1.12. An integral variety X of dimension n over a field k admits a decomposition of the diagonal if and
only if there is a 0-cycle z ∈ Z0 (X ) on X such that

[δX ] = [zk(X ) ] ∈ CH0 (Xk(X ) ),

where δX denotes the 0-cycle on Xk(X ) induced by flat pullback by the diagonal ΔX .

Proof. The universal property of the generic point provides an isomorphism

lim
−→
U⊂X

CHn (X ×k U ) = lim
−→
U⊂X

CHn (X ×k U )
∼−−→ CH0 (Xk(X ) )

where U ranges among the non-empty open subsets of X . Indeed, X (n)
k(X ) = lim

←−
U⊂X

(X ×k U ) (n) and

CHn (Xk(X ) ) = coker
[ ⊕
x∈X (n−1)

k(X )

κ(x)× ⊕div−→
⊕

x∈X (n)
k(X )

Z

]
and

CHn (X ×k U ) = coker
[ ⊕
x∈ (X×kU ) (n−1)

κ(x)× ⊕div−→
⊕

x∈ (X×kU ) (n)
Z

]
.

If we therefore suppose that X admits a decomposition of the diagonal, then the above isomorphism yields the de-
sired identity of the proposition. Conversely, if we are provided with this identity, then applying the localisation exact
sequence and passing to the limit we obtain an exact sequence :

lim
−→
U⊂X

CHn ((X ×k X ) \ (X ×k U )) −→ CHn (X ×k X ) −→ CH0 (Xk(X ) ) −→ 0.

SinceX has only one irreducible component, then the identity from the proposition must come from a decomposition
of the diagonal via the second map. □
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1.4.2. The Bloch-Srinivas principle

1.4.2.1. A general principle. Here we state a quite general statement relating the torsion of algebraic cycles to the
generic 0-cycle on a connected variety. This is part of a series of arguments due to Bloch-Srinivas in [BS83, Thm. 1] (see
also [Blo10, Appendix to Lecture 1] and [Voi03, Thm. 10.19]) :

Proposition 1.1.13 (Bloch-Srinivas Principle [Voi19, Thm. 3.1]). Let ϕ : Y → B be a flat morphism of varieties
over a field k where B is smooth and connected, and let Z be a cycle on Y . Suppose that Ω ⊃ k is a universal domain[2]

and that for any point b ∈ B(Ω), the restricted cycle Z |Yb is rationally equivalent to 0. Then there exists an integer
N > 0 and a dense Zariski open subset U ⊂ B such that NY |ϕ−1 (U ) = 0 ∈ CH∗ (ϕ−1 (U )).

Remark 1.1.14. The flatness condition ensures that the restricted cycles Z |Yb are well-defined. Note also that the
smoothness assumption on B is not too restrictive since the conclusion only concerns a dense open subset.

Keeping the notations of the above proposition, let us first prove the following intermediary result :

Lemma 1.1.15. Let k ⊂ L ⊂ Ω be field extensions. Then for each i ≥ 0, the kernel of the natural map CHi (YL) →
CHi (YΩ) is torsion.

Proof. If the degree [Ω : L] is finite, then one always has a norm map CHi (YL) → CHi (YΩ), so one can do a
restriction-corestriction argument (by projection formula) and the lemma immediately follows. If Ω is an arbitrary al-
gebraic extension of L, then one restricts to the finite subextensions and passes to the limit. Otherwise, up to enlarging
L and Ω, one can assume that L is algebraically closed, so in this case CHi (YΩ) is a limit of Chow groups of the form
CHi (Y ×LU ), whereU is anL-variety. As the latter is in particular of finite type, up to shrinkingU and fixing a closed
immersion intoAdL one can find a closed point on U , which provides a section of CHi (Y ) → CHi (Y ×L U ), hence
the claim in the general case (for further details, see Appendix C, §C.2). □

Proof of Proposition (1.1.13). Fix an embedding k(B) ⊂ Ω. We may apply the assumptions to the generic point ηB of B,
which is therefore defined over Ω, so that we get a cartesian diagram

(YηB )Ω YηB

SpecΩ Spec k(B)

.

SinceZ vanishes inCH∗ ((YηB )Ω) (as it vanishes in every fibre), then we can apply the previous lemma to k ⊂ k(B) ⊂ Ω,
which shows thatZ must be torsion inCH∗ (YηB ). By genericity, there must exist a dense open subsetU ⊂ B such that
Z actually is torsion in CH∗ (ϕ−1 (U )), as desired. □

One can also derive these arguments to obtain the following auxiliary statement :

Proposition 1.1.16 ([Voi19, Thm. 3.2]). Under the same assumptions as in the above theorem, there exists a dense
Zariski open subset U ⊂ Breg of the regular locus of B and a finite cover U ′ → U such that ZU ′ = 0 ∈ CH∗ (U ′ ×U
ϕ−1 (U )), and ZU ′ is the pullback of the cycle Z |ϕ−1 (U ) to U ′ ×U ϕ−1 (U ).

1.4.2.2. The complex case. If we specialise to complex varieties, then the situation is even more comfortable. In-
deed, ifX is a variety overC, then it is also defined over a field k of finite transcendence degree overQ, andC is a universal
domain with respect to k. We therefore get :

[2]That is, an algebraically closed field of infinite transcendence degree over k. This condition ensures that Ω contains any finitely generated
extension of k (this allows us to package generic information of k-varieties universally).
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Theorem 1.1.17. Let ϕ : Y → B be a morphism of complex varieties where B is smooth and connected and Z a cycle
on Y such that for any b ∈ B(C), the cycle Z |Yb is rationally equivalent to 0. Then there exists an integer N > 0 and a
dense Zariski open subset U ⊂ B such that NZ |ϕ−1 (U ) = 0 ∈ CH∗ (ϕ−1 (U )).

This theorem naturally leads to the famous classical Bloch-Srinivas decomposition of the diagonal :

Theorem 1.1.18 (Bloch-Srinivas [BS83, Prop. 1]). Let X be a smooth and connected complex variety of dimension
n, V ⊂ X a subvariety (possibly reducible) such that the proper pushforward CH0 (V ) → CH0 (X ) is surjective.
Then there exists an integer N > 0, a divisor D on X and two correspondences Γ1, Γ2 ∈ CHn (X ×C X ) such that
Supp(Γ1) ⊂ D ×C X, Supp(Γ2) ⊂ X ×C V and

N [ΔX ] = Γ1 + Γ2 ∈ CHn (X ×C X ).

Proof. Applying the localisation exact sequence for Chow groups

CH0 (V )
j∗−→ CH0 (X ) −→ CH0 (X \ V ) −→ 0,

we see as before that the assumption is equivalent to the vanishing of CH0 (X \ V ). By the previous theorem, we thus
know that there exists a dense open subset U ⊂ X and an integer N > 0 such that

N [ΔX ] |U×C (X\V ) = 0 ∈ CH∗ (U ×C (X \ V )).

In particular, without loss of generality we can let D := X \ U , and the localisation exact sequence shows that the
equality above is equivalent to the decomposition in the theorem. □

Remark 1.1.19. Suppose that X is a rationally connected variety over a field k. Then its Chow group of 0-cycles is
trivial when passing to an algebraically closed field, as all points are rationally equivalent. We thus see that in the above
Bloch-Srinivas decomposition of the diagonal (that is, overC), we can takeV = {x} where x is aC-point ofX , and the
theorem provides a decomposition of the diagonal in the sense of Definition (1.1.9) up to a rational factor.

This is in particular true if X is smooth, projective and unirational : let indeed V ⊂ X be a dense open subset and
φ : U → V a surjective morphism where U is an open subscheme of some affine space. If x, y ∈ V (C), then there
exist p, q ∈ U (C) mapping to x and y under φ respectively. As p and q are rationally connected and X is proper, then
we find a morphism P1

C
→ X whose image contains both x and y, so any two 0-cycles of degree 1 on V are rationally

equivalent. Now if x ∈ X (C), a moving lemma shows that this point is rationally equivalent to a 0-cycle supported on
U , see [CT05, Complément, p. 599], so we fall in the previous case.

1.5. Equivariant Chow groups
— The Chow ring of the classifying space of an algebraic group was originally defined independently by Morel and
Voevodsky. Edidin and Graham later generalized their approach to define the equivariant Chow ring and (more gener-
ally) equivariant motivic cohomology. Here, we follow the approach of Totaro [Tot14] and Edidin and Graham [EG98,
§2.2]. Let X be a k-algebraic space of dimension n and G a k-algebraic group of dimension g. Fix an m-dimensional
representation V of G over k and an open subset U of V on which G acts freely and such that codimV (V \ U ) ≥ m.
The diagonal action ofG onX ×kU is free, so there exists a quotient objectX ×kU → (X ×kU )/G = [(X ×kU )/G]
in the category of k-algebraic spaces[3] which is a principalG-bundle, see e.g. [EG98, Prop. 22] for a proof of this claim.
We denote this quotient object by XG . We also have some (rather mild) conditions for XG to be a scheme :

[3]See Chapter IV, §1.1.2.1 for the definition of an algebraic space.
[4]Here we mean that if we denote this action by σ : G×kX → X , then given any line bundleπ : L → X , there exists an extension σ̃ : G×kL → L

that commutes with σ via π.
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Theorem 1.1.20 ([EG98, Prop. 23]). Let G be a k-algebraic group, U a k-scheme on which G acts freely and suppose
that a principal bundle quotient U → U/G exists. Let X be a k-scheme equipped with a G-action, and assume that
one of the following conditions holds :

(i) X is quasi-projective with a linearised G-action[4] ;

(ii) G is connected and X is equivariantly embedded as a closed subscheme of a proper k-variety ;

(iii) every principal G-bundle is locally trivial for the Zariski topology.

Then a principal bundle quotient XG exists in Schk.

From now on we will assume that XG is a scheme. When X is a k-scheme endowed with an action of a k-algebraic
groupG, Totaro showed in [Tot14, Thm. 2.5] that the so calledG-equivariant (or simply equivariant) Chow groups of
X are well defined objects if we are provided with some conditions on the representation category ofG. More precisely,
we have the following statement :

Proposition 1.1.21. Let G be an affine group scheme of finite type over a field k, i ≥ 0 an integer, V a representation
of G defined over k, S a G-invariant closed subset of V such that :

(i) G acts freely on U := V \ S ;

(ii) the quotient U/G exists in Vark ;

(iii) codimV (S) ≥ i.

Then the Chow groups CHj (U/G) do not depend on the choice of V and S for j ≤ i.

Proof. We first show that the choice of S is superfluous given the codimension condition. Let S′ be an a priori larger
G-invariant closed subset ofV of codimension≥ i. Since the action ofG onU is free, then codimU/G ((S′\S)/G) ≥ i,
so applying the localisation exact sequence for Chow groups to U/G and (S′ \ S)/G we obtain

CH∗ ((S′ \ S)/G) −→ CH∗ (U/G) −→ CH∗ ((V \ S′)/G) −→ 0.

Since CHj ((S′ \ S)/G) vanishes for j > dim(U/G) − i, we obtain that the groups for U/G and (V \ S′)/G are
isomorphic for j < i.

We now prove the claim about the independence of V . Suppose that W is another representation of G over k
satisfying the same conditions as V and let S′, U ′ be the corresponding closed subset and complement in W . The
quotient (U ×k W )/G exists in Vark since it is an algebraic vector bundle over U/G[5] By the same argument the
quotient (U ′ ×k V )/G exists as a k-variety. Now we use the independence of S for the representation V ⊕W : this
yields that the respective total spaces of the two vector bundles defined above have isomorphic Chow groups in degree
≤ i. Since these vector bundles are affine and pure dimensional, then by Lemma (1.1.4) the homotopy invariance
property for Chow groups by flat pullbacks shows that we have isomorphisms

CHj ((U ×k W )/G)
∼−−→ CHj (U/G)

for j ≤ i (and similarly for (U ′ ×k V )/G and U ′/G), hence we obtain isomorphisms CHj (U/G) ∼−−→ CHj (U ′/G)

[5]Indeed, by faithfully flat descent and Grothendieck’s version of Hilbert 90, and sinceU → U/G is a principalG-bundle, we have an equivalence
between the category of G-equivariant vector bundles on U and the category of vector bundles on U/G induced by the functor Y ↦→ Y /G, see e.g.
[Wat12, §17.2] and [Tot14, §2.2]. Given the assumption on W , we know that U ×W is a G-equivariant vector bundle on U , hence the claim.
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in degree at most i as given by :

CHj ((U ×k W )/G) CHj ((U ′ ×k V )/G)

⟲

CHj (U/G) CHj (U ′/G)

∼

∼∼

∼

.

□

Remark 1.1.22. Suppose G is a finite group. Then for every representation V of G over k, the quotient V/G exists as
an affine k-variety. In particular, for every closed subset S of V such that G acts freely on U := V \ S, the quotient
U/G is a quasi-projective variety over k. We claim that the Chow groups of U/G are all independent of the choice of
V and S.

Indeed, if G is an affine group scheme over k, and i ≥ 0 is an integer, then there always exists a representation V
of G over k together with a closed subset S of codimension ≥ i in V such that G acts freely on V \ S and U/G is a
quasi-projective variety over k. Indeed, if we fix a faithful representation W of G of dimension n ≥ 1, then for any
N ≥ 1 we have a representation V := Hom(An+Nk ,W ) ≃W ⊕(N+n) . If we take S to be the closed subset of V given
by non-surjective linear mapsAn+Nk →W , then codimV (S) = N + 1, and taking N arbitrary large yields the result.

Definition 1.1.23. Let X be a smooth and geometrically integral k-variety together with a G-action defined over k. If
i ≥ 0 is an integer and V,U are given as before (with codimV (V \ U ) ≥ i), the ith G-equivariant Chow group of X is
the group

CHi
G (X ) := CHi ((X ×k U )/G).

If in particular X = Spec k, then we write CHi
G (k) := CHi (U/G).

I.2. Cycle classes
— Although Chow groups satisfy a few nice functorial properties, they are usually not enough when one deals with
more «concrete» computations (for instance, we can extend the localisation sequence which stops too abruptly by
means of «higher Chow groups», a construction due to Bloch, but despite the fact that these groups form a good
cohomology theory with supports in the sense of [CTHK97, Def. 5.1.1 a)] and enjoy a motivic cohomological interpre-
tation thanks to loc. cit., Thm. 7.5.2, they are not easy to describe in practice). But there exist several homomorphisms
(known as cycle maps) from Chow groups to more computable (co)homology theories. In this section, we describe the
construction of two well-known cycle classes, the étale ℓ -adic cycle class map on the one hand (defined by Grothendieck
with a view towards SGA5 and written down by Deligne in SGA4 1/2) and the Betti cycle class on the other hand, with
values in singular cohomology for varieties over the complex numbers.

2.1. Étale cycle classes
— Here we mainly follow the construction of the ℓ -adic étale cycle class map as in [Del77, Cycle] and [Mil80, Chap.
VI, §5–§9]. As in the notes of Deligne, we assume for simplicity that all schemes are noetherian and separated.

2.1.1. The class associated to a divisor

— It is quite easy to define the cycle map attached a Cartier divisor. Let indeed X be a scheme and D be a Cartier
divisor on X . Outside of D, the associated invertible sheaf OX (D) is trivialised by the unit section.

We have a canonical associatedGm-torsor given by Isom(OX ,OX (D)) (whereGm acts by (λ, f ) ↦→ f ◦ (λ·)). The
class cℓ (D) ofD inH1

ét,D (X,Gm) is defined as the class of thisGm-torsor, which is trivialised onX \D. By construction
of étale cohomology with support, we have for each i ≥ 0 a connecting morphism

𝜕D : Hi
ét (X \D,Gm) → Hi+1

ét,D (X,Gm),
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see [Del77, Cycle, §1.1.4]. IfD admits a global equation f , then multiplication by f yields an isomorphism from OX (D)
which is trivialised by the unit section onX \D to OX which is trivialised by f onX \D. This implies that cℓ (D) = 𝜕f
(the class of the trivial torsorGm trivialised on X \D by f ).

Let n ∈ Z≥1 be an integer that is invertible on X . The Kummer sequence on Xét yields a long exact cohomology
sequence ; for i ≥ 0, let 𝜕i : Hi

ét,D (X,Gm) → Hi+1
ét,D (X,Z/n(1)) be the connecting morphism.

Definition 1.2.24. The cycle class cℓn (D) of D in H2
ét,D (X,Z/n(1)) is defined as 𝜕1 (cℓ (D)).

Proposition 1.2.25. Let ι : D ↩→ X be the inclusion. If both D and X are regular, then the cohomology sheaves with
support R iι!Z/n(1) are zero for i ≠ 2, and R 2ι!Z/n(1) = Z/n.

Proof. Without loss of generality we can assume thatX is strictly local and thatD is defined by a global regular parameter
f . By Gabber’s absolute purity theorem (see [ILO14, Exposé XVI, Thm. 3.1.1]), to prove the first claim we just have to
show that for i = 0, 1 we have R iι!Z/n(1) = 0. We have isomorphisms

H̃i−1
ét (X \D,Z/n(1))

∼−−→ Hi
ét,D (X,Z/n(1)),

where H̃ denotes reduced cohomology. The claim for i = 0, 1 becomes equivalent to the fact that H̃0
ét (X \D,Z/n(1)) =

0, that is, X is not disconnected by D, which is precisely the case here. For i = 2, as X and D are regular, Abhyankar’s
lemma [GR71, Exposé XIII, Prop. 5.2] applies, so that H2

ét,D (X,Z/n(1) is cyclic of order n generated by cℓn (D). □

2.1.2. The class associated to a cycle of higher codimension

— Let ι : Y ↩→ X be an immersion of schemes of local complete intersection and of codimension c. We want to define
a local fundamental class cℓn (Y ) which is a global section of R 2cι!Z/n(c) on Y .

Since Y is locally given by the intersection of c divisors D1, . . . , Dc in X , one can naturally define cℓ (Y ) as the cup-
product of the cℓ (Di)’s. Since each cℓ (Di) is supported onDi , we therefore obtain that cℓ (Y ) is supported onY . It can
be checked that cℓ (Y ) is well-defined in the sense that this cup-product does not depend locally of the choice of theDi’s,
see [Del77, Cycle, §2.2.3]. One can also generalise this construction to any Y that is locally definable by c equations. If
X comes with some good purity properties with respect to Y , then one can actually see this local fundamental class as
a global one, namely, an element of H2c

ét,Y (X,Z/n(c)):

Proposition 1.2.26 ([Del77, Cycle, Prop. 2.2.6]). (i) If R iι!Z/n = 0 for every i < 2c, then we have

H2c
ét,Y (X,Z/n(c))

∼−−→ H0 (Y,R 2cι!Z/n(c)).

(ii) (Excision.) Let j : Z ↩→ Y be a closed subset, V := Y \ Z and k : Z ↩→ X the inclusion. If R ij!Z/n = 0 for
every i ≤ 2c, then we have an injection

H2c
ét,Y (X,Z/n(c)) ↩→ H2c

ét,V (X \ Z,Z/n(c)).

If we further assume that R ij!Z/n = 0 for every i ≤ 2c + 1, then this arrow is an isomorphism.

2.1.2.1. A reduction step. We now discuss some sufficient conditions for X and Y to satisfy the semi-purity hy-
potheses of Proposition (1.2.26). Let S be a scheme and f : Y → X be a separated morphism of S-schemes of finite
type with g : X → S smooth of pure relative dimension N and Y → S of relative dimension ≤ d and let c := N − d :

Y X

S

f

gh
⟲ .
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Proposition 1.2.27. (i) For any abelian torsion étale sheafFonS, we haveR if !g∗F = 0 for i < 2c ; in particular,
this holds for g∗F = Z/n.

(ii) If moreover the fibres of Y over a dense open subsetU of S have dimension strictly less than d, thenR 2cf !Z/n = 0.
If in addition Z := S \ U does not disconnect S locally, then R 2c+1f !Z/n = 0.

Proof. We have R g!F = g∗F(N ) [2N ] by Poincaré duality, see [Del77, Arcata, IV, §4], so the commutativity of the
above diagram and the Grothendieck spectral sequence of composed functors for f ! and g! yield the transition formula
R f !R g! = R h!. Therefore, we have that R 2c+if ! (g∗F) = 0 if and only if R −2d+if !F = 0, so we can suppose
without loss of generality that X = S and f = g. As f is separated of finite type and our schemes are assumed to be
noetherian, Nagata’s compactification theorem applies, so f is compactifiable. In particular, it satisfies the conditions
of [DA73, Exposé XVIII, Prop. 3.1.7], which proves (i).

Now let Y ′ be the inverse image of Z in Y , so that we have a commutative diagram

Y Y ′

S Z

v

f f

u

⟲

By (i), the sheaves R if !Z/n have support in Y ′ for i ≤ −2d + 1. The Grothendieck spectral sequence

R pv!R qf ! ⇒ R p+q (fv)!

shows that they actually coincide with the sheaves R i (fv)!Z/n = R i (uf )!Z/n. Applying (i) to Y ′ → Z and the
spectral sequence R pf !R qu! ⇒ R p+q (uf )! shows that R iu!Z/n = 0 for i = 0 (or i ∈ {0, 1} in the second assump-
tion). This implies (ii). □

2.1.2.2. Cycle classes. One can therefore define the class attached to any cycle of codimension c ≥ 0 on a smooth
schemeX over a field (this is a particular case of the situation described at the beginning of §2.1.2.1). Indeed, if we write

Y :=
n∑︁
i=1

di [Yi] ∈ CHc (X )

where the Yi’s are reduced and irreducible, then for each i = 1, . . . , n, one can choose some open subset Ui ⊂ Yi such
that codimX (X \ Ui) > c in X . In particular, Ui is of local complete intersection in X (it is regular since X is smooth
over k, and a morphism of finite type between regular noetherian schemes is always locally of complete intersection, see
[Liu02, Chap. 6, §6.3.2, Ex. 3.18]), so it admits a local fundamental class. By the codimension assumption and applying
successively Proposition (1.2.27) and Proposition (1.2.26, (ii) and (i)), we obtain that this class comes from a unique
class cℓ (Yi) ∈ H2c

ét,Yi (X,Z/n(c)).
Definition 1.2.28. With Y as above, the cycle class of Y is defined as

cℓ (Y ) :=
n∑︁
i=1

di · cℓ (Yi) ∈ H2c
ét,Y (X,Z/n(c)).

It is actually possible to descend the cycle class to rational equivalence. More precisely :

Proposition 1.2.29 ([Del77, Cycle, Rmq. 2.3.10]). If two cycles of codimension c on a smooth k-scheme X are al-
gebraically equivalent[6], then they have the same class in H2c

ét (X,Z/n(c)). In particular, we have a well defined cycle
class

cℓ : CHc (X ) −→ CHc (X )/alg −→ H2c
ét (X,Z/n(c)).

[6]Recall that the algebraic equivalence relation is generated by the deformation relation : two closed algebraic subsets of X of codimension c are
deformation equivalent if they are the fibers, over two points, of a codimension c closed algebraic subset Z ⊂ C ×k X , parameterized by a smooth
connected curve C over k.
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2.2. The Betti cycle class
— Let X be a complex algebraic variety. We consider the site Xcl given by local isomorphisms f : U → X (C), that is,
the continuous maps of topological spaces (where X (C) is endowed with its usual topology) such that for any x ∈ U ,
there exists an open neighborhood Ux of x such that f |Ux is a homeomorphism onto an open neighborhood of f (x)
(for more details, see [DA73, Exposé XI, (4.0)]). There is a natural morphism of sites δ : Xcl → X (C)[7], and their
associated topoï are equivalent [DA73, Exposé XI, (4.1)]. Moreover, there is a commutative diagram of morphisms of
sites :

Xcl X (C)

⟲

Xét XZar

δ

f

g

h

(where g and h are induced by the identity on X and f is obtained by remarking that an étale morphism Y → X
induces a local isomorphism Y (C) → X (C) by the Jacobian criterion and the implicit functions theorem). We let
π = h ◦ δ = g ◦ f : Xcl → XZar be the obtained morphism of sites.

Let us restrict ourselves to the case of a smooth and quasi-projective variety X . For a given abelian group A, we
denote by

H∗,B (X,Z) := H∗ (X (C), A)
and

H∗B (X, A) := H∗ (X (C), A) ≃ H∗ (Xcl, A)
the Betti homology and cohomology groups ofX with coefficients inA respectively, that is, the singular (co)homology
groups of the topological space X (C) with coefficients in A (or in the second case, the cohomology groups of Xcl with
coefficients in the constant sheaf A, equivalently). Let ι : Z ↩→ X be a reduced and irreducible subvariety of codimen-
sion i in X . By Hironaka’s theorem, we have a resolution of singularities

ι̃ : Z̃ −→ Z

for Z, and therefore one can consider the composition of natural maps

H2n−2i,B (Z̃,Z)
∼−−→ Z ι̃−→ H2n−2i,B (X,Z)

∼−−→ H2i
B (X,Z),

where the first isomorphism comes the fact that Z̃(C) is a connected compact complex manifold (so it admits a canon-
ical orientation) and the last isomorphism comes from Poincaré duality for singular cohomology. The image of 1 ∈
H2n−2i,B (Z̃,Z) under this composite map gives a class

cℓ (Z) ∈ H2i
B (X,Z)

called the integral Betti cycle class of Z. One can also consider rational coefficients instead. Extending this cycle class
bilinearly defines a cycle class for any cycle of codimension i inX . Actually, this yields a well defined cycle class on Chow
groups :

Lemma 1.2.30 ([Voi03, Lem. 9.18]). If Z is rationally equivalent to 0, then cℓ (Z) = 0 in H2i
B (X,Z). In particular, this

yields a cycle class map
cℓ : CHi (X ) −→ H2n−2i

B (X,Z).

Remark 1.2.31. Although the Betti cycle class resembles the étale cycle class, they should not be mistaken, as the former
is constructed almost purely by topological means. On the other hand, one could be tempted to consider a Betti cycle
class with finite coefficients, but this would not be so relevant : indeed, for any locally constant torsion sheaf F on Xcl

with finite fibres, there is a canonical isomorphism Hi
ét (X,F)

∼−−→ Hi (Xcl,F), see [DA73, Exposé XI, Thm. 4.4].
[7]An open immersion is a local isomorphism, so we get an inclusion of the category of open subsets of X (C) into Xcl, hence a reverse morphism

between sites.
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This cycle class map is naturally compatible with intersection products on the side of cycles, and the cup-product
on the cohomological side :

Proposition 1.2.32 ([Voi03, Prop. 9.20]). For k, l ≥ 0 and Z ∈ CHl (X ), Z′ ∈ CHk (X ), we have :

cℓ (Z · Z′) = cℓ (Z) ⌣ cℓ (Z′) ∈ Hk+l
B (X,Z).

Moreover, it is compatible with pullbacks and proper pushforwards in the smooth setting :

Proposition 1.2.33 ([Voi03, Prop. 9.21]). Let f : Y → X be a morphism of smooth varieties. Then :

(i) If Z ∈ CHk (X ), then
f ∗cℓ (Z) = cℓ (f ∗Z) ∈ H2k

B (Y,Z).

(ii) If f is moreover proper and Z ∈ CHk (Y ), then

cℓ (f∗Z) = f∗cℓ (Z) ∈ H2k−2 dimY+2 dimX
B (X,Z).

Remark 1.2.34. In particular, the formation of the Betti cycle class commutes with the action of correspondences.
More precisely, if X, Y are smooth and proper varieties and Γ ∈ CHl (X ×C Y ), then for every cycle Z ∈ CHk (X ), we
have

cℓ (Γ∗ (Z)) = [Γ]∗cℓ (Z),

where [Γ]∗ : H2k
B (X,Z) → H2(l+k−dimX )

B (Y,Z) is given by

α ↦−→ pr2∗ (pr∗1 α ⌣ [Γ]).

I.3. K-theoretic methods
— Algebraic K -theory has its origins in Grothendieck’s formulation (and proof) of the celebrated Riemann-Roch
Theorem in the mid-1950’s. While K -theory now plays a significant role in many diverse branches of mathematics,
Grothendieck’s original focus on the interplay of algebraic vector bundles and algebraic cycles on algebraic varieties is
much reflected in current research. In this section, we would like to present the classical (yet fruitful) approaches to
higher K -theory, due to Quillen on the one hand and to Milnor on the other hand.

3.1. Generalities on K-theories
3.1.1. Quillen’s K-theory

— In the early 1970’s, Quillen provided the now accepted definition of higher algebraic K -theory and established re-
markable properties of «Quillen’s K -groups», thereby advancing the formalism of the algebraic side of K -theory and
enabling various computations. An important application of Quillen’s theory has been the identification by Merkurjev
and Suslin, for a field k, ofK2 (k) ⊗ZZ/nwith then-torsion in the Brauer groupH2 (k,Z/n(2)) (whenn is invertible on
k). Others soon recognized that many of Quillen’s techniques could be applied to rings with additional structure. Con-
jectures by Bloch and Beilinson concerning algebraicK -theory and arithmetic algebraic geometry were also formulated
during the 1970’s; these conjectures prepared the way for many current developments.

3.1.1.1. K0 of an exact category, the Q-Construction. In this section, we very briefly describe the construction
of (higher) algebraic K -theory in the sense of Quillen. The main reference is [Qui73], see also [Sri96] for an updated
treatment. For further details and omitted definitions, see Appendix B.

Definition 1.3.35. An exact category is an additive category C which can be embedded as a full subcategory of an
abelian category A in such a way that it is closed under extensions in A, that is, for any exact sequence

0 −→ A′ −→ A −→ A′′ −→ 0
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in A, where A′ and A′′ are isomorphic to objects of C, then A is isomorphic to an object of C.

Example 1.3.36. If R is a commutative ring with unit, consider the category P(R) of finitely generated projective R-
modules. It is a full subcategory of the abelian categoryModR, and closed under extensions. The short exact sequences
in P(R) are the split exact sequences in ModR :

0 −→ P −→ P ⊕ Q −→ Q −→ 0.

Definition 1.3.37. Suppose that C is moreover skeletally small, that is, its isomorphism classes of objects form a set.
The groupK0 ( C) is the abelian group freely generated by the isomorphism classes of objects of C modulo the relations
[M] − [M′] − [M′′] = 0 for any

0→M′ →M →M′′ → 0
exact in C.

Remark 1.3.38. The example one should have in mind is where C = P(X ) is the category of locally free OX -modules
of finite rank over a scheme X (in other words, vector bundles) ; the group K0 (X ) := K0 (P(X )) is the famous
Grothendieck group of X .

Given a diagram

0 −→M′ i−→M
j
−→M′′ −→ 0

that is exact in A, Quillen refers to i as an admissible monomorphism and j as an admissible epimorphism (see Appendix
B for details). A functor F : C→ C′ between exact categories is exact if it preserves exact sequences.

An exact category admits a zero object, so its classifying space B C = |N ( C) | is contractible (here N ( C) denotes
the nerve of C and | · | is the geometric realisation functor). The idea of Quillen is to build from C a new categoryQC
in a functorial way and such that

πtop
1 (BQC, 0) ≃ K0 ( C),

where 0 ∈ Ob( C) is a zero object. Roughly explained, the objects of QC are the same as the ones of C, but the
morphisms are different. A morphism M1 → M2 in QC is defined as an isomorphism (in C) of M1 with a subquo-
tient of M2, that is a filtration M′ ⊂ M′′ ⊂ M′′ by subobjects with M2/M′′, M2/M′ and M′′/M′ in C and an
isomorphism M1 ≃M′′/M′. In other words, a morphism in QC is a diagram

M1 M′′ M2
j i ,

where i is an admissible monomorphism and j is an admissible epimorphism. Quillen then naturally defines the higher
K -groups of C as follows :

Definition 1.3.39. For n ≥ 0, the nth algebraic K-theory group of the category C is defined as

Kn ( C) := πtop
n+1 (BQC, 0)

where 0 ∈ Ob( C) is a zero object.

Remark 1.3.40. One can also find another (slightly modified) definition ofKn ( C) in the literature : ifΩBQC denotes
the loop space of BQC, then the usual loop-suspension adjunction in homotopy theory (see e.g. [Hat02, Thm. 4J.1])
provides a canonical isomorphism πtop

n+1 (BQC, 0) � πtop
n (ΩBQC, 0), so one can define Kn ( C) := πtop

n (ΩBQC, 0)
(which is more convenient for tracking indexes).

The point of this construction should now appear more clearly. Indeed, we know a lot about functorial properties
of homotopy groups of topological spaces, especially in the case of CW-complexes[8] : for example, we know how
to relate homotopy groups of pairs of CW-complexes through homotopy fibrations. Quillen’s definition of higher
algebraic K -theory should therefore allow a finer understanding of K0 and its higher analogues. We now list some of
the main results proved by Quillen in this regard.

[8]Actually, it was quickly realized that although Quillen’s theory initially revolved around a functor K from the category of rings (or schemes) to
the category of topological spaces, K in fact takes its values in the category of infinite loop spaces and infinite loop maps. More, K is best thought of
as a functor not to topological spaces, but to the category of spectra (recall that a spectrum is a family of based topological spaces {Xi }i≥0, together
with bonding maps σi : Xi → ΩXi+1, which can be taken to be homeomorphisms). There is a great deal of value to this refinement of the functor
K , see e.g. [Car05] for a more detailed account.
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3.1.1.2. The main K-theoretic results of Quillen’s paper. Let S be the category of short exact sequences in C.
For a given sequence S ∈ Ob(S), write it as

0 −→ sS −→ tS −→ qS −→ 0

where s, t, q are viewed as functors S → C. Since C is an exact category, then it is clear that S is exact as well (a
sequence 0 −→ S′ −→ S −→ S′′ −→ 0 is exact if and only if the diagrams obtained in C after applying s, t, q are
exact).

Theorem 1.3.41 (Characteristic sequence theorem [Sri96, Thm. 4.1]). The functor

(s, q) : QS −→ QC × QC

is a homotopy equivalence of categories and therefore induces a homotopy equivalence BQS −→ BQC × BQC.

Corollary 1.3.42. Let F, F ′, F ′′ : C1 → C2 be three exact functors between exact categories and suppose that there
exist natural transformations F ′ → F and F → F ′′ such that for any M ∈ Ob( C1), the sequence

0 −→ F ′ (M) −→ F (M) −→ F ′′ (M) −→ 0

is exact. Then for any n ≥ 0 we have an equality of pushforwards :

F∗ = F ′∗ + F ′′∗ : Kn ( C1) −→ Kn ( C2).

Proof. The data given above amounts to giving a functor G : C1 → S2 where S2 is the category of exact sequences in
C2. By the previous theorem, we have an induced homotopy equivalence between classifying spaces, which therefore
yields an equality of pushforwards on homotopy groups. □

The two following results are the so-called resolution and dévissage theorems, which allow us (in various situations)
to replace an exact category by another, without changing the K -groups.

Theorem 1.3.43 (Resolution theorem [Sri96, Thm. 4.6]). Let P be a full subcategory of an exact category C
which is closed under extensions and such that :

(i) for any extension 0 −→M′ −→M −→M′′ −→ 0 in C, if M,M′′ ∈ Ob(P) then M′ ∈ Ob(P) ;

(ii) for any M ∈ C, there exists a finite resolution 0 −→ Pn −→ · · · −→ P0 −→M −→ 0
in C where Pi ∈ Ob(P) for each i ∈ ⟦0, n⟧.

Then the natural map BQP→ BQC is a homotopy equivalence.

An important particular case of application of this theorem is the following :

Corollary 1.3.44. Let R be a regular ring, Coh(R) the category of coherent (or equivalently here, finitely generated)
R-modules and P(R) the full subcategory of finitely generated projective R-modules. Then for each n ≥ 1, we have
an isomorphism

Kn (P(R))
∼−−→ Kn (Coh(R)).

Proof. The condition (ii) is satisfied sinceR is regular, see e.g. [Mat89, Thm. 19.2]. On the other hand, consider an exact
sequence

0 −→M′ −→M −→M′′ −→ 0

where M and M′′ are projective. Since M′′ is projective, we obtain that this sequence splits, so that M ≃M′ ⊕M′′.
But M is projective, so M′ must be projective as well (a direct sum of modules is projective if and only if each of its
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summands is projective). This shows that (i) holds as well. □

Let now A be an abelian category and B a full abelian subcategory of A that is closed under taking subobjects,
quotient objects and finite products. Denote by A/B the quotient category (which is abelian, given the hypotheses
on B ; for details about the construction of a quotient category, we refer to [Sri96, Appendix B, §B.2]). If we further
assume that B is stable under extensions in A, then we call it a Serre subcategory. Quillen then provided two ways of
relating the K -groups of an exact category with those of a subcategory, by considering a suitable filtration on the one
hand, or by means of theK -theory of the quotient category when the considered subcategory is a Serre subcategory on
the other hand :

Theorem 1.3.45 (Devissage theorem [Sri96, Thm. 4.8]). Suppose that every objectA of A admits a finite filtration

0 = A0 ⊂ A1 ⊂ . . . ⊂ Ar = A

such that Aj/Aj−1 ∈ Ob(B) for all j ≥ 1. Then for each n ≥ 0, there exists an isomorphism

Kn (B)
∼−−→ Kn (A).

Theorem 1.3.46 (Localisation theorem [Sri96, Thm. 4.9]). Suppose that B is a Serre subcategory of A. Then
the natural exact functors B ↩→ A → A/B induce a homotopy fibration on classifying spaces

BQB −→ BQA −→ BQA/B,

hence a long exact sequence in algebraic K-theory :

· · · −→ Kn (B) −→ Kn (A) −→ Kn (A/B) −→ Kn−1 (B) −→ · · ·

3.1.2. Milnor’s K-theory

— A few years before Quillen, in 1970, another definition of higher algebraicK -theory was suggested by Milnor, at least
in the case of fields. Milnor’s definition was originally motivated by Matsumoto’s presentation ofK2 of a field k. While
he stressed that his definition is purely ad hoc, and although Quillen’s approach has been almost unanimously recog-
nised as the right way to define higher K -theory in the algebraic setting, Milnor’s K -groups are actually fundamental
objects which enjoy very deep connections with Galois cohomology. Let us first define these groups :

Definition 1.3.47. If k is a field and n ≥ 0, the nth Milnor K-group is defined as

KM
n (k) :=

(k×)⊗n
⟨a1 ⊗ · · · ⊗ an | ai + aj = 1 for some 1 ≤ i < j ≤ n⟩ .

Remark 1.3.48. One can also extend this definition to an arbitrary commutative ring A with unit : for n ≥ 0, we put
KM
n (A) := (A×)⊗n/⟨a1 ⊗ · · · ⊗ an | ai + aj = 1 for some 1 ≤ i < j ≤ n⟩.

The relation ai + aj = 1 above is often referred to as the Steinberg relation. We write {a1, . . . , an} for the image of
a1 ⊗ . . . ⊗ an in KM

n (k). When n ∈ {0, 1, 2}, the K -groups in the sense of Quillen coincide with those in the sense
of Milnor (the statement for n = 0, 1 is clear, for n = 2 see e.g. [Sri96, Cor. 2.6]). Milnor’s K -groups are easily seen
to be functorial with respect to field extensions : if ϕ : k ↩→ L is any inclusion of fields, then there are natural maps
iL/k : KM

n (k) → KM
n (L) for n ≥ 0 induced by ϕ. The tensor product pairing (k×)⊗n × (k×)⊗m → (k×)⊗n+m

preserves the Steinberg relation, so it induces a natural product structure :

KM
n (k) × KM

m (k) −→ KM
n+m (k).

In particular, the direct sum
KM
∗ (k) =

⊕
n≥0

KM
n (k)

admits a graded ring structure, which is graded commutative, see [GS17, Prop. 7.1.1].
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3.1.2.1. The Tame symbol. There is an analogue of residue maps in Galois cohomology in a K -theoretic setting.
Suppose indeed that k is a discretely valued field, with valuation ν : k× → Z, and let R be its valuation ring and κ its
residue field. Fixing a uniformiser π ∈ R, we know that each x ∈ k× can be uniquely written as a product uπi where
u ∈ R× and i ∈ Z. It follows that for eachn ≥ 0, the groupKM

n (k) is generated by elements of the form {π, u2, . . . , un}
and {u1, . . . , un} where the ui’s are units in R. With this description of KM

n (k) in our hands, it is possible to construct
a residue map KM

n (k) → KM
n−1 (κ) called the Tame symbol :

Proposition 1.3.49 ([GS17, Prop. 7.1.4]). For each n ≥ 1, there exists a unique homomorphism

𝜕Mn : KM
n (k) −→ KM

n−1 (κ)

satisfying
𝜕Mn ({π, u2, . . . , un}) ↦−→ {u2, . . . , un},

where π ∈ R is a uniformiser, u2, . . . , un ∈ R× and ui denotes the image of ui in κ for i = 2, . . . , n.

Example 1.3.50. The tame symbol 𝜕M1 : K1 (k) → K0 (κ) is just the valuation map ν : k× → Z. The tame symbol
𝜕M2 : K2 (k) → K1 (κ) is given by the formula

𝜕M2 ({a, b}) = (−1)ν(a)ν(b)a−ν(b)bν(a) ,

see e.g. [GS17, Lem. 7.1.2] for a proof (this easily follows from the Kummer sequence).

3.1.2.2. The Galois symbol. For any integer n ≥ 1 that is invertible on k, there is a natural map fromKM
∗ (k)/n to

the Galois cohomology of k. Indeed, the Kummer sequence

1 −→ µn −→ k×s
x ↦→xn−→ k×s −→ 1

provides an exact portion

k× x ↦→xn−→ k× −→ H1 (k,Z/n(1)) −→ H1 (k, k×s ),

and the right term vanishes by Hilbert 90, which yields an isomorphism k×/k×n ≃ H1 (k,Z/n(1)). Taking cup-
products, we obtain for i ≥ 0 a map

(k×/k×n)⊗i −→ Hi (k,Z/n(i)),

which, as remarked by Tate, descends to a map (see [GS17, Prop. 4.6.1]) :

KM
i (k)/n

hik,n−→ Hi (k,Z/n(i))

called the Galois symbol. Suppose now that k is a discretely valued field, so that the tame symbols are well-defined. A
non-trivial verification involving K -theoretic reciprocity laws (see [GS17, Chap. 7, §7.4]) shows that the tame symbols
and the residue maps in Galois cohomology agree via the Galois symbol :

Proposition 1.3.51 ([GS17, Prop. 7.5.1]). Let k be a discretely valued field with residue field κ, and n ≥ 1 an integer
that is invertible on k. Then for each i ≥ 1, if 𝜕nν : Hi (k,Z/n(i)) → Hi−1 (k,Z/n(i − 1)) denotes the residue in Galois
cohomology, then the following natural diagram commutes:

KM
i (k)/n KM

i−1 (κ)/n

Hi (k,Z/n(i)) Hi−1 (k,Z/n(i − 1))

hik,n

𝜕Mi

hi−1κ,n

𝜕nν

.
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3.1.2.3. The Bloch-Kato conjecture. The famous Bloch-Kato conjecture asks whether the Galois symbol is an
isomorphism. The general case has recently been proved by Rost and Voevodsky. It would be impossible to sketch
their proof or even provide an idea of it, as it relies on very deep results in motivic cohomology. We simply state their
main theorem :

Theorem 1.3.52 (Rost-Voevodsky [Voe11, Thm. 6.1]). For any field k, for any i ≥ 1 and any integer n ≥ 1 that is
invertible on k, the Galois symbol yields an isomorphism :

KM
i (k)/n

∼−−→ Hi (k,Z/n(i)).

As announced at the beginning of this section, the special case where i = 2 has been treated in 1982 by Merkurjev
and Suslin. It has the virtue that the arguments involved in its proof are far less sophisticated : they rely on a version of
Hilbert 90 forK2, and an observation due to Bloch on the homology of certain Gersten complexes, which we are going
to investigate in §3.2. We refer to [GS17, Chap. 8] for a complete treatment :

Theorem 1.3.53 (Merkurjev-Suslin [GS17, Thm. 8.6.1]). For any field k and any integer n ≥ 1 that is invertible
on k, the Galois symbol induces an isomorphism :

KM
2 (k)/n

∼−−→ H2 (k,Z/n(2)).

3.2. K-theory of schemes
3.2.1. Filtration by coniveau

— LetX be a noetherian scheme of finite dimension. There are two natural abelian categories that one can associate to
X , namely, the category Coh(X ) of coherent sheaves of OX -modules, and the full subcategoryP(X ) of locally free OX -
modules of finite rank (or vector bundles onX , equivalently). For p ≥ 0, we let Tp

X be the full subcategory of Coh(X )
whose objects are sheaves with support in codimension ≥ p. Note that these categories are stable under flat pullbacks,
that is, if f : X → Y is a flat morphism, then the induced pullback functor f ∗ : Coh(Y ) → Coh(X ) descends
to functors f ∗p : T

p
Y → T

p
X (this is a statement about local rings, on which flat morphisms preserve dimensions, see

[Qui73, §7, (2.1)]).

3.2.1.1. A dévissage. It is quite straightforward to check that for each p ≥ 0, the category T
p+1
X is a Serre subcate-

gory of T
p
X , see [Sri96, §5.19], and by the commutativity of homotopy groups with direct limits of filtered systems (cf.

[Sri96, Lem. 3.8, Prop. 5.14]), we obtain that for each n ≥ 0 we have :

Kn (T
p
X ) ≃ lim

−→
Z⊂X

Kn (Coh(Z)),

where Z runs over the closed subschemes of X of codimension ≥ p. We also have an equivalence of categories :

T
p
X/T

p+1
X

∼−−→
∐
x∈X (p)

⋃
r≥0

Coh(OX,x/𝔪r
X,x).

This is actually quite non-trivial. We provide a rather detailed explanation of this decomposition. First remark that the
category of finite length modules on a noetherian local ring (R,𝔪) is equivalent to the direct limit of the categories of
finitely generated modules on R/𝔪r for r ≥ 1 (any finite length module is noetherian, so it is annihilated by a power
of the maximal ideal). We can rephrase this as an equivalence of categories (when R is artinian) :

Coh(R) ∼−−→
⋃
r≥0

Coh(R/𝔪r).

We first show the above statement in the case where X is irreducible and p = 0. Let η ∈ X be the generic point ; since
OX,η is artinian, the natural restriction map

T0
X/T

1
X = Coh(X )/T1

X −→ Coh(OX,η)
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is an equivalence of categories. To see this, we first use genericity and spreading out (see e.g. [Gro67, III, §8]), and we
obtain an equivalence :

lim
−→
∅≠U⊂X

Coh(U ) ∼−−→ Coh(OX,η).

We are thus reduced to showing that the faithful natural functor

Coh(X )/T1
X −→ lim

−→
∅≠U⊂X

Coh(U )

is an equivalence[9]. Fix some non-empty open subsetU ⊂ X and letZ := X \U . The restriction functorCoh(X ) →
Coh(U ) is exact with kernel equal to the Serre subcategory MZ (X ) of coherent sheaves supported onZ. Actually, the
induced faithful functor

Coh(X )/MZ (X ) −→ Coh(U )

is an equivalence. Indeed, it is essentially surjective by [DJ+22, Tag 01PF] : for any quasi-coherent sheaf F on X and
any quasi-coherent subsheaf G of F|U , there exists a quasi-coherent subsheaf G̃ of F which restricts to G on U . If G
is actually coherent on U , let j : U ↩→ X be the open immersion and take F := j∗ G, so that F|U = G. We get that
any coherent sheaf on U is the restriction of a coherent sheaf on X .

Now, to see that this functor is full, let φ : G1 → G2 be any morphism of sheaves and G̃1 ⊂ j∗ G1 as above. We have
an induced morphism j∗φ| G̃1

: G̃1 → j∗ G2, whose image is a coherent subsheaf H of j∗ G2. Applying the previous
argument to j∗ G2/H, we obtain a coherent subsheaf G̃2 of j∗ G2 that contains H and such that G̃2 |U = G2. Hence
j∗φ restricts to a morphism φ̃ : G̃1 → G̃2, which itself restricts to φ, hence the claim about fullness. This allows us to
reduce ourselves to showing that the natural faithful functor

Coh(X )/T1
X −→ lim

−→
∅≠U⊂X

Coh(X )/MX\U (X ),

(which comes from the identity functor on Coh(X ) by the compatibility of restrictions) is an equivalence. (Remark
that T1

X =
⋃
∅≠U⊂MX\U (X ) is the full Serre subcategory of Coh(X ) consisting of sheaves supported on X \ U for

some non-empty open subset U ⊂ X .) If A is an arbitrary abelian category and (Bi)i∈I is a direct system of full Serre
subcategories, then the natural functor

A/(∪i∈IBi) −→ lim
−→
i∈I

A/Bi

induced by the identity on A is an equivalence, see e.g. [Sri96, Appendix B, §B.11] (this essentially follows from the con-
struction of quotient categories as localisations). This proves the desired equivalence in the case where X is irreducible
and p = 1.

We now treat the general case. If Z ⊂ X is an irreducible closed subset of codimension p ≥ 0 with generic point
ηZ ∈ Z, let M1

Z (X ) := MZ (X ) ∩T
p+1
X be the subcategory of coherent sheaves on X supported on a proper closed

subset of Z. The restriction morphisms induces a faithful exact functor MZ (X )/M1
Z (X ) → Coh(OX,ηZ ). Let ιn :

Zred,n ↩→ X be the nth-infinitesimal neighborhood ofZred inX , that is, the closed subscheme ofX defined by the exact
sequence of sheaves

0 −→ InZred
−→ OX −→ ιn∗OZred,n −→ 0

(where IZred is the ideal sheaf of Zred). By construction we have that Zred,n has a unique generic point, and OZred,n ,ηZ =

OX,ηZ/𝔪n
X,ηZ . Applying the case p = 0 (treated earlier) to each Zred,n, we obtain an equivalence of categories :

lim
−→
n≥1

Coh(Zred,n)/T1
Zred,n

∼−−→ lim
−→
n≥1

Coh(OZred,n ,ηZ ) = Coh(OX,ηZ ).

[9]Note that the coherent sheaves sent to zero under the functor Coh(X ) → lim
−→
∅≠U⊂X

Coh(U ) are precisely those that vanish on some non-empty

open subset, hence the well-definedness (X is irreducible, so any proper open subset has codimension at least 1).
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On the other hand, the inclusion functors Coh(Zred,n) →MZ (X ) induce a natural functor :

Coh(OX,ηZ ) −→MZ (X )/M1
Z (X ),

which we readily conclude to be the a quasi-inverse functor to the one constructed above, and vice versa. Finally, since
MZ (X ) ∩T

p+1
X = M1

Z (X ), we have a faithful exact functor MZ (X )/M1
Z (X ) → T

p
X/T

p+1
X (induced by the obvious

inclusion MZ (X ) ⊂ T
p
X ). Varying the closed subschemes Z ⊂ X and taking direct sums of coherent sheaves, we thus

define a functor ∐
x∈X (p)

Coh(OX,x) −→T
p
X/T

p+1
X

which is quasi-inverse to the natural restrictionT
p
X/T

p+1
X →∐

x∈X (p) Coh(OX,x) (indeed, if F =
⊕n

i=1 Fi is a coherent
sheaf onX where each Fi is supported on the closure {xi} of some point xi ∈ X (p) , then Fxi ≃ (Fi)xi for j = 1, . . . , n).

Now that we identified the successive quotients in the coniveau filtration more precisely, remark that for any x ∈
X (p) , any OX,x/𝔪r

X,x-module admits a finite filtration whose successive quotients are OX,x/𝔪X,x = κ(x)-modules.
Applying devissage as in Theorem (1.3.45) (note that for a ring R and for all n ≥ 0, we have a canonical isomorphism
Kn (R) ≃ Kn (P(R))), we obtain isomorphisms :

Kn (κ(x)) ≃ Kn

(⋃
r≥0

Coh(OX,x/𝔪r
X,x)

)
.

3.2.1.2. Coniveau exact couples. With this decomposition at our disposal, we may apply Theorem (1.3.46), so that
we obtain exact sequences :

· · · −→ Kn (T
p+1
X ) −→ Kn (T

p
X ) −→

∐
x∈X (p)

Kn (κ(x)) −→ Kn−1 (T
p+1
X ) −→ · · · ,

and up to re-indexing (this is more or less a technical convenience here), we get diagrams of the form :

· · · K−p−q (T
p+1
X ) K−p−q (T

p
X )

∐
x∈X (p)

K−p−q (κ(x)) K−p−q−1 (T
p+1
X ) · · ·

· · · K−p−q−1 (T
p+2
X ) K−p−q−1 (T

p+1
X )

∐
x∈X (p+1)

K−p−q−1 (κ(x)) · · ·

ip+1,q−1 jp,q kp,q

ip+2,q−1 jp+1,q

∼

Following e.g. [Sri96, Appendix C, §C.2], we define an exact couple C (D, E, i, j, k) as the datum of the objects
Dp,q := K−p−q (T

p
X ) and Ep,q :=

∐
x∈X (p) K−p−q (κ(x)), so that we have exact triangles :

Dp+1,q−1 Dp,q

Ep,q

ip+1,q−1

kp,q jp,q
⟲ .

Note here that we make the convention thatTp
X = Coh(X ) andX (p) = X (0) for p < 0 andKn (T

p
X ) = 0 for n < 0 and

p arbitrary.
It is a well known fact that exact couples provide spectral sequences, see e.g. [Sri96, Appendix C, §C.1] or [Wei94,

Prop. 5.9.2] for a detailed explanation (note that in the latter, the statement is of homological type). Since Dp,q = 0 for
p + q > 0 and Dp,q = Dp−1,q+1 = K−p−q (Coh(X )) for p < 0 and q arbitrary, we see that the abutment terms of the
obtained spectral sequence are the K−n (Coh(X )) for n ∈ Z, and the associated (topological) filtration is

F p := Im
[
K−n (T

p
X ) → K−n (Coh(X ))

]
,
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where the terms on the first page are the Ep,q1 = Ep,q and the differentials dp,q1 : Ep,q → Ep+1,q are the composites∐
x∈X (p)

K−p−q (κ(x))
k−→ K−p−q−1 (T

p+1
X )

j
−→

∐
x∈X (p+1)

K−p−q−1 (κ(x)).

We thus have shown that :

Theorem 1.3.54 (Brown-Gersten-Quillen, [Qui73, §7, Thm. 5.4]). There is a convergent spectral sequence of
cohomological type :

Ep,q1 =
∐
x∈X (p)

K−p−q (κ(x)) ⇒ K−p−q (Coh(X )),

whose associated coniveau filtration is given by :

F pK−p−q (Coh(X )) = Im
[
K−p−q (T

p
X ) → K−p−q (Coh(X ))

]
.

This spectral sequence is often referred to as the Brown-Gersten-Quillen spectral sequence (or more simply Gersten-
Quillen spectral sequence), also abreviated as BGQ spectral sequence.

Remarks 1.3.55.

• The formation of the BGQ spectral sequence is functorially contravariant with respect to flat morphisms. If we
consider a filtered inverse system of noetherian schemes (Xi)i∈I with affine and flat transition morphisms whose
limit X is noetherian, then the BGQ spectral sequence for X is the direct limit of the spectral sequences for the
Xi’s, see e.g. [Qui73, §7, (5.2), (5.3)] for details.

• For n ≥ 0, let Gn be the sheafification of the presheaf U ↦→ Kn (Coh(U )) on XZar. The datum of the BGQ
spectral sequences with respect to the open subsets of X thus yields a spectral sequence of sheaves :

E
p,q
1 =

∐
x∈X (p)

ιx∗K−p−q (κ(x)) ⇒ G−p−q,

where ιx : Spec κ(x) ↩→ X denotes the inclusion of the point x ∈ X and K−p−q (κ(x)) is viewed as a constant
sheaf on Spec κ(x).

3.2.2. Gersten’s conjecture

3.2.2.1. Gersten’s conjecture for Quillen’s K-theory.

Lemma 1.3.56. The following conditions are equivalent :

(i) for all p ≥ 0, the natural functor T
p+1
X →T

p
X induces the zero map on K-groups ;

(ii) for all q ≤ 0, we have Ep,q2 = 0 for p ≠ 0, otherwise the edge map K−q (Coh(X )) → E0,q
2 is an isomorphism ;

(iii) For all q ≥ 0, the associated Cousin complex yields an exact sequence

0 −→ Kq (Coh(X )) e−→
∐

x∈X (0)
Kq (κ(x))

d0,q1−→
∐
x∈X (1)

Kq−1 (κ(x))
d1,q1−→ · · ·

wheredi,q1 denotes the differentialEi,q1 → Ei+1,q1 and e is induced by functoriality for the flat morphisms Spec OX,x →
X for x ∈ X (0) and the isomorphisms Kq (Coh(OX,x)) ≃ Kq (Coh(κ(x))) ≃ Kq (κ(x)).
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Proof. For p ≥ 0 and q ≥ 1, if (i) holds then the localisation exact sequences break up into short exact sequences :

0 −→ Kq (T
p
X ) −→

∐
x∈X (p)

Kq (κ(x)) −→ Kq−1 (T
p+1
X ) −→ 0.

Glueing them together, we obtain the exact sequence in (iii). On the other hand, since the sequences in (iii) are con-
structed from the complexes given by theE1-terms, whose cohomology groups are theE2-terms, then (ii) follows. Thus
we have shown that (i)⇒ (iii)⇔ (ii).

For the implication (iii)⇒ (i), we proceed by induction on p ≥ 0. First note that the injection

e : Kq (Coh(X )) ↩→
∐

x∈X (0)
Kq (κ(x))

fit into the localisation exact sequence

· · · −→ Kq (T1
X ) −→ Kq (Coh(X )) e−→

∐
x∈X (0)

Kq (κ(x)) −→ Kq−1 (T1
X ) −→ · · · ,

so that this sequence breaks up into short exact sequences

0 −→ Kq (T1
X ) −→ Kq (Coh(X )) e−→

∐
x∈X (0)

Kq (κ(x)) −→ Kq−1 (T1
X ) −→ 0

so that Kq (T1
X ) → Kq (Coh(X )) is zero.

Now let p ≥ 2. If we suppose that for all p′ ∈ ⟦0, p⟧, the localisation sequence for the pair (Tp′+1
X ,Tp′

X ) splits into
short exact sequences

0 −→ Kq (T
p′
X ) −→

∐
x∈X (p′ )

Kq (κ(x)) −→ Kq−1 (T
p′+1
X ) −→ 0,

then the map Kq (T
p′+1
X ) → Kq (T

p′
X ) is zero. Hence the differential

dp−2,q1 :
∐

x∈X (p−2)
Kq+1 (κ(x)) −→

∐
x∈X (p−1)

Kq (κ(x))

factors as a composite map ∐
x∈X (p−2)

Kq+1 (κ(x)) ↠ Kq (T
p−1
X ) ↩→

∐
x∈X (p−1)

Kq (κ(x))

whose cokernel is precisely ∐
x∈X (p−1)

Kq (κ(x)) −→ Kq−1 (T
p
X ).

As a consequence, in the factorisation of dp−1,q1 we see by the exactness of the sequence in (iii) that the map

Kq−1 (T
p
X ) −→

∐
x∈X (p)

Kq−1 (κ(x))

must be injective for all q. Therefore, the localisation sequence for the pair (Tp+1
X ,Tp

X ) breaks into short exact sequences
which show that the maps Kq (T

p+1
X ) → Kq (T

p
X ) must be zero for all q (the argument for p = 0 is similar). This estab-

lishes the desired induction, from which the claim follows. □
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Proposition 1.3.57. If for each x ∈ X, the stalk OX,x satisfies one of the equivalent conditions of the previous lemma,
then the E2-terms of the Brown-Gersten-Quillen spectral sequence are

Ep,q2 = Hp
Zar (X, G−q).

Proof. For each n ≥ 0, the data of the complexes in Lemma (1.3.56), (iii) with respect to all the open subsets of X is
equivalent to the datum of a complex of Zariski sheaves :

0 −→ Gn −→
∐

x∈X (0)
ιx∗Kn (κ(x)) −→

∐
x∈X (1)

ιx∗Kn−1 (κ(x)) −→ · · ·

To a given point x ∈ X , taking stalks yields a corresponding complex for OX,x (we have an isomorphismKn (Coh(OX,x)) ≃
lim
−→

Kn (Coh(U )) where U ⊂ X runs over the open subsets containing x, and as stated in Remark (1.3.55) the BGQ
spectral sequence commutes with filtered inverse limits of schemes with flat and affine transition maps). Since these
local complexes are exact by assumption, then actually the complex of sheaves given above is itself exact, and therefore
provides a flasque resolution of Gn. Since flasque sheaves are Zariski-acyclic, then taking global sections gives a complex
of E1-terms which computes the cohomology groups Hi

Zar (X, Gn). On the other hand, the cohomology groups of the
E1-terms are by definition the E2-terms of the spectral sequence, hence the claim. □

One can therefore wonder under which sufficient conditions the stalks OX,x on a noetherian scheme X of finite
dimension all satisfy the conditions of the previous lemma. In 1973, Gersten formulated the following conjecture :

Conjecture 1.3.58 (Gersten’s Conjecture for Quillen’s K -theory). The equivalent conditions of Lemma (1.3.56) hold
whenever X is the spectrum of a regular local ring R.

3.2.2.2. Quillen’s main result in the semi-local case. This conjecture is still far from being known in the general
case. However, Quillen managed to prove it in the case of semi-local rings of varieties over a field :

Theorem 1.3.59 (Quillen [Qui73, §7, Thm. 5.11]). Let R be a regular semi-local ring which is a localisation of a
finitely generated algebra over a field k. Then the equivalent conditions of Lemma (1.3.56) hold for R.

Let us first give a slightly strengthened version of Noether’s normalisation lemma, which is a crucial step in the
proof of Quillen’s result (in the modern terminology, the following result is called a presentation lemma):

Lemma 1.3.60 (Quillen’s presentation lemma). Let R be a smooth algebra of finite type and of finite Krull dimension d
over a field k. Let t be a regular element of R and S a finite set of points of SpecR. Then there exist elements x1, . . . , xd−1 ∈
R algebraically independent over k such that B := k[x1, . . . , xd−1] ⊂ R and :

(i) R/tR is finite over B, and

(ii) R is smooth over B at every point of S.

Proof. Up to choosing for each prime in S a maximal ideal containing it, we can assume that S consists only of closed
points. Given the assumptions on R, we know that the R-module Ω1

R/k of Kähler differentials is projective of rank d,
see [Liu02, Chap. 6, §6.2, Cor. 2.6], and R is smooth over B = k[x1, . . . , xd−1] at the points of S if and only if the
dxi ∈ Ω1

R/k are independent at these points. Let 𝔐 be the intersection of the ideals in S. For each n ≥ 1, we have that
R/𝔐n ≃ ∏

𝔪∈S R/𝔪n ; since this is a finite dimensional k-vector space, one can find a k-vector subspace V of R such
that for each 𝔪 ∈ S, there exist v1, . . . , vd ∈ V such that (dv1, . . . , dvd) is a basis for Ω1

R𝔪/κ(𝔪) and vanishing at the
other points of S. Without loss of generality one can also assume that V generates R as a k-algebra.

We now define an increasing filtration (Fn (R/tR))n≥0 of R/tR by letting Fn (R/tR) be the subspace spanned by
the monomials in the elements of V of degree ≤ n. The induced graded ring

gr(R/tR) =
⊕
n≥0

Fn (R/tR)
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has dimension d − 1 : indeed, Proj(gr(R/tR)) is the part at infinity of the projective closure of Spec(R/tR) (which
has dimension d − 1 since t is regular) seen as a subscheme of Spec(Sym(V )), so it has dimension d − 2.

If we let z1, . . . , zd−1 be a system of parameters for gr(R/tR) such that each zi is homogeneous of degree ≥ 2, then
the latter is finite over k[z1, . . . , zd−1] ; lifting the zi’s to some elements x′1, . . . , x

′
d−1 ∈ R, we obtain that R/tR is finite

over k[x′1, . . . , x′d−1].
Now given our choice of V , we can take v1, . . . , vd−1 ∈ V such that xi = x′i + vi for i = 1, . . . , d − 1, and the xi’s

have independent differentials at the points of S, as desired. Since each xi has leading term zi in gr(R/tR), we obtain
that R/tR must be finite over k[x1, . . . , xd−1]. This finishes the proof. □

Remark 1.3.61. In the case where the field k is infinite, one can actually deduce this lemma more directly using Bertini’s
theorem (such as in [Har77, Chap. III, Cor. 10.9]), see e.g. [Sri96, Lem. 5.25].

Proof of Theorem (1.3.59). Let us first restrict ourselves to the case where the algebra from which R is a localisation, is
smooth over an infinite field k. AsR is of finite type, there exists a subfield k′ of k that is finitely generated over its prime
subfield, a k’-algebraR’ of finite type and a finite subset S′ of SpecR′ such thatR = k⊗k′ R′, and such that the primes
in S are obtained from the ones in S′ by base extension. If A′ is the semi-local ring of R′ at S′, then it is regular, and
A = A′ ⊗k′ k. If we let K run over the subfields of k containing k′ and finitely generated over the prime subfield, then
A = lim

−→
A′ ⊗k′ K and since field extensions are flat, thenKn (T

p
A) ≃ lim

−→
Kn (T

p
A′⊗kK ) for all n ≥ 0. This shows that we

can restrict ourselves to the case where k is finitely generated over its prime subfield. We then have thatA is a localisation
of a finitely generated algebra over the prime subfield, which shows that up to changing R, we can assume that k itself
is prime, hence perfect. Over a perfect field, regularity implies that R is smooth over k at the points of S, hence also in
a neighborhood, so we may choose a function f ∈ R not vanishing at the points of S such that Rf is smooth over k.
Therefore, up to replacing R again by Rf , we can suppose that R is smooth over k.

Once again, as localisations are flat, we know that for each n ≥ 0 we have :

Kn (T
p+1
A ) ≃ lim

−→
f ∈R

Kn (T
p+1
Rf
)

where f runs over the functions that do not vanish at S, so up to replacingR byRf , we are reduced to showing that the
functor T

p+1
R →T

p
A induces the zero map on K -groups. On the other hand,

Kn (T
p+1
R ) ≃ lim

−→
f ∈R

Kn (T
p
R/tR)

where t runs over the regular functions inR, so we only have to show that for some fixed t, there exists a function f not
vanishing at S such that the functor T

p
R/tR → T

p
R induced by localising at f induces zero on K -groups. We thus fall in

the right conditions for applying the above lemma. Let B′ := R/tR andR′ := R⊗B B′, so that there is a surjective map
of B′-algebras s : R′ ↠ B′ providing a commutative square

R′ R

B′ B

s u′ u

with finite horizontal arrows. Let S’ be the (finite) set of points of SpecR′ over S. Since u is smooth of relative dimen-
sion 1 at the points of S, we deduce by commutativity of the diagram that u′ is also smooth of relative dimension 1 at
S′. By [GR71, Exposé II, Thm 4.15], this implies that I := ker s is locally principal at the points of S′ (Srinivas provides
an alternative -more elementary- explanation in [Sri96, Proof of Thm. 5.24] by reducing to the complete local rings in
an appropriate neighborhood), so it is principal in a neighborhood. On the other hand, since R′ is finite over R, then
this neighborhood must contain the inverse image of a neighborhood of S in SpecR. One can thus find some f ∈ R
not vanishing at any point of S such that If ≃ R′f as an R′f -module and R′f is smooth (hence flat) over B′.

Now, for any B′-module M, consider the exact sequence

0 −→ If ⊗B′ M −→ R′f ⊗B′ M −→Mf −→ 0,
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and by the flatness of R′f , we get that if M ∈ Ob(Tp
B′ ), then R′f ⊗B′ M is an object of Tp

R′f
. This means that, viewed as

anR′f -module, we have thatR′f ⊗B′M ∈ Ob(Tp
Rf
). This gives an exact sequence of exact functorsTp

B′ →T
p
Rf

. Finally,
since If ≃ R′f , then M ↦→ M ⊗B′ If and M ↦→ M ⊗B′ R′f yield isomorphic functors, hence they induce the same
maps on K -groups. This shows that M ↦→Mf induces the zero map on K -groups, which concludes the proof. □

3.2.2.3. Bloch’s K-theoretic formula. A spectacular consequence of Quillen’s proof of the Gersten conjecture
is that one can obtain a cohomological formula for groups of cycles modulo rational equivalence (actually, one could
argue on the fact that this result is the starting point of the formalism of motivic cohomology à la Voevodsky-Suslin).
Let us first identify the image of the extremal differentials in the K -theoretic Cousin complexes :

Proposition 1.3.62 ([Sri96, Prop. 5.26]). If X is a scheme of finite type over a field k, then in the Cousin complex
associated to the E1-terms of the BGQ spectral sequence, the image of the differential

dp−1,−p1 :
⊕

x∈X (p−1)
K1 (κ(x)) −→

⊕
x∈X (p)

K0 (κ(x))

is precisely the group of cycles of codimension p in X that are rationally equivalent to zero.

We only give some idea of the proof (due to Quillen) of this statement. We also refer to [Qui73, §7, Prop. 5.14] for
details. The point is to rewrite this differential as :⊕

x∈X (p−1)
κ(x)×

dp−1,−p1−→
⊕
x∈X (p)

Z ≃ Z p (X ).

We thus want to show that dp−1,−p1 and the divisor map ⊕div :
⊕

x∈X (p−1) κ(x)× →
⊕

x∈X (p) Z have the same image.
Let y ∈ X (p−1) , x ∈ X (p) , Y := {y} and (dp−1,p1 )x,y be the (x, y)-component of dp−1,p1 . The closed immersion Y ↩→ X
defines an exact functor Coh(Y ) → Coh(X ) such that T i

Y ⊂ T
p−1+i
Y (X ) for all i ≥ 0. We thus obtain a natural map

of BGQ spectral sequences :
Ei,jr (Y ) −→ Ei+p−1,j+1−pr (X )

which increases the filtration degree by p − 1. In particular, we get a commutative diagram :

Ep−1,−p1 (X ) Ep,−p1 (X ) ∐
x∈X (p) Z

K1 (κ(y)) E0,−1
1 (X ) E1,−1

1 (X ) ∐
x∈Y (p) Z

⟲

so that (dp−1,p1 )x,y = 0 unless x ∈ Y . If we fix x0 ∈ Y , then the flat morphism Spec OY,x0 → Y induces a contravariant
morphism of spectral sequences by the previous discussion, so that we get a diagram of the form :

K1 (κ(y)) E0,−1
1 (Y ) E1,−1

1 (Y ) ∐
x∈Y (1) Z

K1 (κ(y)) E0,−1
1 (OY,x0 ) E1,−1

1 (OY,x0 ) Z

d1

d1

⟲ prx0

where prx0 is the projection onto the summand corresponding to x0. We are thus reduced to proving the following
result, which we will only state here :
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Lemma 1.3.63 ([Sri96, Lem. 5.28]). Let R be an equicharacteristic noetherian local domain of dimension 1, κ its residue
field, and let

· · · −→ K1 (Coh(R)) −→ K1 (P(FracR)) −→ K0 (P(κ)) −→ K0 (Coh(R))

be the localisation sequence attached to the closed immersion Spec κ ↩→ SpecR. Then K1 (P(FracR)) → K0 (P(κ))
coincides with the divisor map div : FracR× → Z.

Corollary 1.3.64 (Bloch’s formula[10] for Quillen’sK-theory). Let X be a regular scheme of finite type over a field
k. Then for every p ≥ 0, there is a canonical isomorphism :

Hp
Zar (X,Kp)

∼−−→ CHp (X ),

where Kp is the sheafification of the presheaf U ↦→ Kp (P(U )) on XZar. Moreover, we have a flasque resolution of
finite length :

0 −→ Kp −→
∐

x∈X (0)
ιx∗Kp (κ(x)) −→

∐
x∈X (1)

ιx∗Kp−1 (κ(x)) −→ · · · −→
∐
x∈X (p)

ιx∗K0 (κ(x)) −→ 0,

where ιx : Spec κ(x) ↩→ X denotes the inclusion of the point x ∈ X.

Proof. First note that since X is regular, then Corollary (1.3.44) applies to each open subset U ⊂ X , so that we have
an isomorphism Kp (P(U )) ≃ Kp (Coh(U )), hence an isomorphism of sheaves Gp ≃ Kp. Now, by Theorem (1.3.59)
and Proposition (1.3.57), we obtain isomorphisms

Ep,q2
∼−−→ Hp

Zar (X,K−q)

for each q. The proof of Proposition (1.3.57) then provides the desired flasque resolution. Finally, since the complex
given by the global sections of this resolution computes the cohomology groups of Kp, we obtain in particular by the
previous lemma that

Hp
Zar (X,Kp) ≃

⊕
x∈X (p) K0 (κ(x))

Im
[⊕

x∈X (p−1) K1 (κ(x)) →
⊕

x∈X (p) K0 (κ(x))
] ≃ Z p (X )/Z p (X )rat = CHp (X ).

□

3.2.2.4. Gersten’s conjecture for Milnor’sK-theory. One can also make sense of Gersten’s conjecture in the case
of Milnor’s K -theory. Indeed, for a given scheme X , one can similarly define a Zariski sheaf KM

i as the sheafification
of the presheafU ↦→ KM

i (Γ(U,OX )). Assuming thatX is noetherian of finite dimension, one can once again define a
coniveau spectral sequence and the associated Gersten complex (actually, to define the filtration by coniveau, it would
make more sense, for a fieldk, to identifyKM

i (k)with the Zariski motivic cohomology groupCHi (X, i) ≃ Hi (k,Z(i)),
see [Kah12, Thm. 2.3] and [Ker09, §7]). It has been shown by Kerz that under the same conditions as before, that is, if
X is smooth of finite type over an infinite field, then Gersten’s conjecture holds. More precisely :

Theorem 1.3.65 (Kerz [Ker09, Thm. 7.1]). Let X be a smooth and connected variety over an infinite field k. Then
for any integers i ≥ 1 and n ≥ 0, the Zariski sheaf KM

i /n admits a flasque resolution

0 −→ KM
i /n −→ ιηX ∗K

M
i (k(X ))/n −→

∐
x∈X (1)

ιx∗KM
i−1 (κ(x))/n −→ · · · −→

∐
x∈X (0)

ιx∗K0 (κ(x))/n −→ 0,

where ηX is the generic point of X and ιx : Spec κ(x) ↩→ X denotes the inclusion of the point x ∈ X.

[10]The famous special case p = 2 was also discovered by Bloch in [Blo74] by different methods, using notably the second universal Chern class.
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Actually, one can say a bit more. Indeed, Hoobler remarked that one can use the Gersten conjecture to prove a
generalisation of the Bloch-Kato conjecture for semi-local rings over an infinite field (also known as Levine’s Bloch-Kato
conjecture), without assuming any smoothness condition ; that is, if A is a semi-local ring that contains an infinite field
and n ≥ 1 is an integer invertible over k, then for each i ≥ 1 there is an isomorphism :

KM
i (A)/n

∼−−→ Hi
ét (A,Z/n(i)).

We give a very brief explanation of the proof (a complete treatment is given in [Ker09, §7, Thm. 7.8]). As Milnor’s
K -theory and étale cohomology are (almost by definition) locally of finite presentation, one can actually assume that
A is of geometric type over k. One can then find a surjective local morphism B → A of semi-local rings with kernel I
such that (B, I) is a henselian pair and B is ind-smooth over k. Under these conditions, Gabber proved an affine version
of the proper base change theorem in étale cohomology, so that the natural map Hi

ét (B,Z/n(i)) → Hi
ét (A,Z/n(i))

is an isomorphism (see e.g. [DJ+22, Tag 09ZE] for details). We thus reduce ourselves to the smooth case, where Kerz’s
proof of the Gersten conjecture provides the desired isomorphism thanks to the Bloch-Kato conjecture for fields.

I.4. Bloch-Ogus theory
— In this section, we give an overview of the theory initially developed by Bloch and Ogus in [BO74]. Roughly stated,
Bloch-Ogus theory arose from the study of the Gersten conjecture in algebraic K -theory. Their goal was to translate
Quillen’s arguments (a filtration by coniveau and a strengthened version of Noether’s normalisation lemma) to the
setting of étale cohomology. The main accomplishment of their paper is the so-called Bloch-Ogus theorem, which can
be described as follows. Given any smooth varietyX over a field k and a «suitable»[11] cohomology theoryH∗ onX (the
prototypical example being étale cohomology with torsion coefficients), the filtration by codimension of support on
X yields Cousin complexes which provide the E1-terms of a coniveau spectral sequence converging to H∗ (X ). On the
other hand, restricting these complexes to open subsets of X yields complexes of flasque sheaves on the big Zariski site
ofX . The Bloch-Ogus theorem then asserts that these complexes are acyclic except in degree 0 where their cohomology
is precisely the sheafification H∗ of the presheaf U ↦→ H∗ (U ) on XZar. In particular, this identifies the E2-terms of
the coniveau spectral sequence to H∗Zar (X,H∗) ; when H∗ is étale cohomology with torsion coefficients, this notably
allows a refined study of the Leray spectral sequence attached to Id : Xét → XZar.

4.1. Filtration by coniveau revisited
— Let X be an arbitrary scheme and F a sheaf of abelian groups on Xét. Consider a chain of closed subsets of X as
follows :

→
Z : ∅ ⊂ Zd ⊂ . . . ⊂ Z0 = X.

By convention we assume that Zi = ∅ for i > d and Zi = X for i < 0. For each pair (Zp+1, Zp), the long exact
cohomology sequence with support reads

· · · −→ Hp+q
ét,Zp+1 (X,F)

ip+1,q−1−→ Hp+q
ét,Zp (X,F)

jp,q
−→ Hp+q

ét,Zp\Zp+1 (X \ Zp+1,F)
kp,q−→ Hp+q+1

ét,Zp+1 (X,F) −→ · · ·

4.1.1. An exact couple

— Applying this process inductively, we thus obtain diagrams of the form :

· · · Hp+q
ét,Zp+1 (X,F) Hp+q

ét,Zp (X,F) Hp+q
ét,Zp\Zp+1 (X \ Zp+1,F) Hp+q+1

ét,Zp+1 (X,F) · · ·

· · · Hp+q+1
ét,Zp+2 (X,F) Hp+q+1

ét,Zp+1 (X,F) Hp+q+1
ét,Zp+1\Zp+2 (X \ Zp+2,F) · · ·

ip+1,q−1 jp,q kp,q

ip+2,q−1 jp+1,q
∼

[11]Actually, any «cohomology theory with supports» satisfies the right conditions for Bloch-Ogus theory to function ; for details about the axioms
defining such a cohomology theory, see [CTHK97, §§5.1–6.2].
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Following [CTHK97, §1.1], we define an exact coupleC→
Z
(D, E, i, j, k) as the datum of the objectsDp,q := Hp+q

ét,Zp (X,F)
and Ep,q := Hp+q

ét,Zp\Zp+1 (X \ Zp+1,F), so that we have exact triangles :

Dp+1,q−1 Dp,q

Ep,q

ip+1,q−1

kp,q jp,q
⟲ .

As explained in §3.2.1.1, such an exact couple provides a spectral sequence of cohomological type ; in our case, it
converges to D0,n = Hn

ét (X,F) with respect to the filtration

F p := Im
[
Hn

ét,Zp (X,F) → Hn
ét (X,F)

]
= ker

[
Hn

ét (X,F) → Hn
ét (X \ Zp,F)

]
,

where the terms on the first page are the Ep,q1 = Ep,q and the differentials dp,q1 : Ep,q → Ep+1,q are the composites

Hp+q
ét,Zp\Zp+1 (X \ Zp+1,F)

k−→ Hp+q+1
ét,Zp+1 (X,F)

j
−→ Hp+q+1

ét,Zp+1\Zp+1 (X \ Zp+2,F).

Suppose now that X is noetherian of pure dimension d and that for all p ≥ 0, codimX (Zp) ≥ p. One can define an

ordering on the set of (d + 1)-tuples
→
Z by setting

→
Z ≤

→
Z′ ⇐⇒ ∀p ≥ 0, Zp ⊆ Z′p.

The formation of the associated exact couple C→
Z

is covariant with respect to this ordering. Passing to the limit over
(d + 1)-tuples in X yields an exact couple C

→
satisfying

D
→
p,q = lim

−→
Hp+q

ét,Zp (X,F) =: H
p+q
X (p)
(X,F)

and
E
→
p,q = lim

−→
Hp+q

ét,Zp\Zp+1 (X \ Zp+1,F).

Together with some additional data on X , one can describe the second limit more easily :
Lemma 1.4.66. (i) If Y1, . . . , Yn are pairwise disjoint closed subsets of X, then for all p ≥ 0 we have

Hp
ét,∪iYi (X,F)

∼−−→
n⊕
i=1

Hp
ét,Yi (X,F).

(ii) We have
Ep,q ∼−−→

∐
x∈X (p)

Hp+q
ét,x (X,F),

where for x ∈ X (p) , Hp+q
ét,x (X,F) := lim

−→
Hp+q

ét,{x}∩U
(X,F)[12].

Proof. By an immediate induction onn ≥ 2, one can only consider two disjoint closed subsetsY andY ′ ofX . Applying
excision for étale cohomology [Mil80, Chap. III, Prop. 1.27] and the long exact cohomology sequences with support
for Y ′ ∪Y and Y on the one hand and Y ′ ∪Y and Y ′ on the other hand, we obtain a commutative diagram with exact
row and column

Hp
ét,Y (X,F)

Hp
ét,Y ′ (X,F) Hp

ét,Y ′∪Y (X,F) Hp
ét,Y (X \ Y

′,F)

Hp
ét,Y ′ (X \ Y,F)

∼

∼

,

[12]If x ∈ X (p) is a closed point, then Hp+q
ét,x (X,F) = Hp+q

ét,{x} (X,F) .
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so the claim (i) follows. Now writing the irreducible components of codimension p of Zp as Y1, . . . , Yr , then if Zp+1
contains the intersections Yi ∩ Yj for i, j ∈ ⟦1, r⟧ and the higher codimensional components of Zp, we have

Zp \ Zp+1 =
r∐
i=1
(Yi \ Zp+1).

Applying (i) to the obtained partition of Zp \ Zp+1 and passing to the limit, we obtain (ii). □

4.1.2. Coniveau spectral sequence

Definition 1.4.67. The spectral sequence associated to the exact couple C
→

converges to H∗ét (X,F), and it is called the
coniveau spectral sequence associated to X and F :

Ep,q1 =
∐
x∈X (p)

Hp+q
ét,x (X,F) ⇒ Hp+q

ét (X,F).

The associated filtration
F pHn

ét (X,F) = Im
[
Hn

ét,X (p) (X,F) → Hn
ét (X,F)

]
is called the coniveau filtration. Its E1-terms yield Cousin complexes :

0 −→
∐

x∈X (0)
Hq

ét,x (X,F)
d0,q1−→

∐
x∈X (1)

H1+q
ét,x (X,F)

d1,q1−→ · · ·
dp,q1−→

∐
x∈X (p)

Hp+q
ét,x (X,F)

dp,q1−→ · · · (I.1)

Lemma 1.4.68. For n, p ≥ 0, the presheaf

U ↦−→
∐
x∈X (p)

Hn
ét,x (U,F)

is a flasque sheaf on XZar which can be identified with the constant sheaf∐
x∈X (p)

ιx∗Hn
ét,x (X,F),

where ιx : x ↩→ X is the inclusion and Hn
ét,x (X,F) is considered as a constant sheaf on {x} for the Zariski topology.

Proof. For x ∈ X (p) , let Fx be the Zariski sheaf on X given by

U ↦−→
{
Hn

ét,x (X,F) if x ∈ U
0 if x ∉ U

.

By definition of Hn
ét,x (X,F) and the universal property of the direct limit, we have Fx (U ) = Fx (X ) if x ∈ U , so that

Fx coincides with ιx∗Hn
ét,x (X,F), which is flasque as the pushforward of a constant sheaf on the irreducible space {x}.

This proves the claim. □

4.1.2.1. Purity in Cousin complexes. Now for convenience let us assume that X is a smooth and irreducible va-
riety over a field k, that n ≥ 1 is an integer that is invertible on k, and that F is locally constant and constructible (see
e.g. [Del77, Arcata, §IV.3] for the definition of a constructible sheaf) with n-torsion stalks. For i ∈ Z, let

F(i) := F ⊗ Z/n(i).
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Let Z ⊂ X be a smooth irreducible closed subvariety of codimension p. By Gabber’s absolute purity theorem[13], for
every n ≥ 2p we have canonical isomorphisms

Hn
ét,Z (X,F)

∼←−− Hn−2p
ét (Z,F(−p)).

If Z is an arbitrary closed subvariety of X and k is perfect, then Z ∩ U is a smooth subvariety for U ⊂ X open small
enough, so this yields smooth pairs Z ∩ U ⊂ U . We therefore fall in the previous case, which provides isomorphisms

Hp+q
ét,x (X,F)

∼←−− Hq−p
ét (κ(x),F(−p))

for each x ∈ X (p) . If k is imperfect, then the isomorphisms still hold after passing to the perfect closure. Since étale
cohomology is invariant under purely inseparable extensions, then the isomorphisms given above hold in full generality.
Taking these identifications into account, the Cousin complexes become

0 −→ Hq (k(X ),F) −→
∐
x∈X (1)

Hq−1 (κ(x),F(−1)) −→ · · · −→
∐
x∈X (p)

Hq−p (κ(x),F(−q)) −→ · · ·

In particular, we obtain that the nontrivial E1-terms of the coniveau spectral sequence are concentrated in the subdiag-
onal {Ep,q1 | 0 ≤ p ≤ q}.

4.2. Effaceable sheaves
Definition 1.4.69. Let X be a k-variety and t1, . . . , tr ∈ X be finitely many points contained in an affine open subset
of X . An étale sheaf F on X is said to be effaceable at t1, . . . , tr if for any p ≥ 0, for any suitable (small enough) open
subset W of X containing t1, . . . , tr and any closed subset Z ⊆ W of codimension larger than p + 1, there exists a
smaller open neighborhood U ⊆W of t1, . . . , tr and a closed subset Z′ ⊂ U containing Z ∩ U such that :

(i) codimU (Z′) ≥ p ;

(ii) the composite morphism Hn
ét,Z (W,F) → Hn

ét,Z∩U (U,F) → Hn
ét,Z′∩U (U,F) is zero for each n ≥ 0.

The sheaf F is said to be effaceable if it is effaceable at any set of points t1, . . . , tr contained in an affine open subset of
X .

Proposition 1.4.70 (Compare Lemma (1.3.56)). Let t1, . . . , tr be as above and R := OX,(t1 ,...,tr ) be the semi-local ring
of X at (t1, . . . , tr) andY := SpecR. Suppose F is effaceable at t1, . . . , tr . Then, in the exact couple defining the coniveau
spectral sequence for Y and F, the map ip,q is zero for every p > 0. In particular, we have that

Ep,q2 =

{
Hq

ét (Y,F) if p = 0
0 if p ≠ 0

.

Moreover the associated Cousin complex yields an exact sequence

0 −→ Hq
ét (Y,F)

e−→
∐

x∈Y (0)
Hq

ét,x (Y,F)
d0,q1−→

∐
x∈Y (1)

Hq+1
ét,x (Y,F)

d1,q1−→ · · ·

Proof. Consider the natural diagram :

Hn
ét,Z (W,F) Hn

ét,Z∩U (U,F) Hn
ét,Z′∩U (U,F)

Hn
ét,W (p+1) (W,F) Hn

ét,U (p+1)
(U,F) Hn

ét,U (p)
(U,F)

Hn
ét,Y (p+1)

(Y,F) Hn
ét,Y (p)

(Y,F)

.

[13]This actually follows from a weaker relative purity result proved in [Del77, Arcata, §V.3, Thm. 3.4].
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Since F is effaceable at t1, . . . , tr , then the composition of the arrows on the first row is zero for any n ≥ 0. Thus the
compositions Hn

ét,Z (W,F) → Hn
ét,Y (p+1)

(Y,F) → Hn
ét,Y (p)

(Y,F) are also zero. Taking the direct limit over Z, we
obtain together with the assumptions on W that the compositions

Hn
ét,W (p+1) (W,F) → Hn

ét,Y (p+1) (Y,F) → Hn
ét,Y (p) (Y,F)

are zero for every n ≥ 0. Now passing to the limit over W , we deduce that the map

Hn
ét,Y (p+1) (Y,F)

ip+1,n−p−1−→ Hn
ét,Y (p) (Y,F)

is zero as desired. □

Corollary 1.4.71 (The Bloch-Ogus theorem, compare Proposition (1.3.57)). If F is an effaceable sheaf on X,
then the E2-terms of the coniveau spectral sequence associated with X and F are

Ep,q2 = Hp
Zar (X,H

q (F)),

where H
q
ét (F) = R qId∗F is the sheafification of the presheaf U ↦→ Hq

ét (U,F) on XZar.

Proof. Consider the complex of flasque Zariski sheaves given by the Cousin complexes :

0 −→
∐

x∈X (0)
ιx∗H

q
ét,x (X,F) −→

∐
x∈X (1)

ιx∗H
1+q
ét,x (X,F) −→ · · · −→

∐
x∈X (p)

ιx∗H
p+q
ét,x (X,F) −→ · · ·

By Proposition (1.4.70), this complex is a flasque resolution of H
q
ét (F) with global sections (I.1). □

4.2.1. The effacement theorem

— In this section, we present an effacement theorem due to Gabber, which allows the Bloch-Ogus theorem to hold
for étale cohomology with finite coefficients over an arbitrary field (Bloch and Ogus’ original proof only works when
the base field is infinite). Actually, Gabber’s paper [Gab94] not only allows us to improve their result, but even allows
Bloch-Ogus theory to work for a large set of usual cohomology theories with support that are defined by «substrata»,
such as Betti cohomology, de Rham cohomology, algebraic K -theory, de Rham-Witt cohomology or Voevodsky’s ver-
sion of motivic cohomology. Our focus is on étale cohomology with torsion coefficients, so we will state a simple form
of Gabber’s theorem for convenience :

Theorem 1.4.72 (Gabber’s effacement theorem, [Gab94]). If π : X → Spec k is a smooth morphism, then any
étale torsion sheaf on X of the form π∗F0 is effaceable.

As promised, specialising to torsion sheaves such as Tate twists, we obtain the following result :

Corollary 1.4.73 (Bloch-Ogus). Let X be smooth and irreducible over k, R and Y as in Proposition (1.4.70) and
n ≥ 1 an integer invertible on k. Then for every i ∈ Z and any q ≥ 0, on has an exact sequence :

0 −→ Hq
ét (Y,Z/n(i)) −→ Hq (k(Y ),Z/n(i)) −→

∐
x∈Y (1)

Hq−1 (κ(x),Z/n(i − 1)) −→ · · ·

Remark 1.4.74. A slightly modified version of the above result was also proved in the case of a Dedekind ring A (or
more generally an integral Dedekind scheme) by Soulé in [Sou79, Prop. I] using a different method involving the
Leray spectral sequence Ep,q2 = Hp

ét (A,R qf∗Z/n(j)) ⇒ Hp+q (k,Z/n(j)) with f : Spec k → SpecA the morphism
induced by the inclusion A ⊂ k = Frac(A).
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4.2.1.1. Pushforwards of effaceable sheaves. Before presenting the proof of the effacement theorem, we mention
another way to produce effaceable sheaves by pushing forward effaceable sheaves along finite morphisms :

Proposition 1.4.75. Let f : Y → X be a finite morphism between schemes of pure dimension d with Y smooth and
F an étale sheaf on Y . If t1, . . . , tn ∈ X are such that F is effaceable at f −1 ({t1, . . . , tn}), then f∗F is effaceable at
t1, . . . , tn.

Proof. LetT := {t1, . . . , tn},Z be as in Definition (1.4.69),T ′ := f −1 (T ) andZ′ := f −1 (Z). If we apply the effacement
theorem to (Y, T ′, Z′,F), we obtain a pair (U ′, Z′′) such that T ′ ⊂ U ′ and the composite map

Hn
ét,Z′ (Y,F) −→ Hn

ét,Z′∩U ′ (U
′,F) −→ Hn

ét,Z′′∩U ′ (U
′,F)

is zero for every n ≥ 0. If we now let U := X \ f (Y \ U ′) and V := f (Z′′), then T ⊂ U , Z ⊂ V , codimX (V ) ≥ p
and f −1 (U ) ⊆ U ′, Z′′ ⊆ f −1 (V ). We therefore obtain a commutative diagram

Hn
ét,Z (X, f∗F) Hn

ét,Z∩U (U, f∗F) Hn
ét,V∩U (U, f∗F)

Hn
ét,f −1 (V )∩f −1 (U ) (f

−1 (U ),F)

Hn
ét,Z′ (Y,F) Hn

ét,Z′∩U ′ (U ′,F) Hn
ét,Z′′∩U ′ (U ′,F) Hn

ét,f −1 (V )∩U ′ (U
′,F)

∼

0

∼

⟲

where the left vertical map and the top right vertical map are isomorphisms (the direct image functor f∗ : Sh(Yét) →
Sh(Xét) associated to a finite morphism being exact, see e.g. [Mil80, Chap. II, Cor. 3.6]), hence the desired result. □

A natural consequence of this, together with the Bloch-Ogus theorem, is a version of Shapiro’s lemma for Zariski
cohomology :

Corollary 1.4.76. Let f : Y → X be a finite flat morphism of smooth varieties over a field k and F an effacable
étale sheaf on Y . Then the natural map

Hn
Zar (X, f∗H

q
ét (F)) −→ Hn

Zar (Y,H
q
ét (F))

is an isomorphism.

Proof. Since f is finite, then f∗ : Sh(Yét) → Sh(Xét) is exact. Specialising to cohomology with support, we obtain
that for q ≥ 0, for any closed subset Z ⊂ X and for Z′ := f −1 (Z), we have an isomorphism Hq

ét,Z (X, f∗F)
∼−−→

Hq
ét,Z′ (Y,F). By construction, these isomorphisms induce an isomorphism (taking direct limits) on the E1-terms of

the coniveau spectral sequences respectively attached to F on Y and f∗F on X :∐
x∈X (p)

Hp+q
ét,x (X, f∗F)

∼−−→
∐
y∈Y (p)

Hp+q
ét,y (Y,F).

In particular, we get an isomorphism between the associated Cousin complexes (the diagrams commute naturally). This
implies that their homology groups are isomorphic. On the other hand, f∗F is effaceable by the previous proposition,
so the Bloch-Ogus theorem for semi-local rings applies here. Thus we recover an isomorphism

Hp
Zar (X,H

q
ét (f∗F))

∼−−→ Hp
Zar (Y,H

q
ét (F)).

Finally, we have an isomorphism of sheaves H
q
ét (f∗F)

∼−−→ f∗H
q
ét (F) since they are isomorphic at each stalk (once

again by the finiteness of f ). The claim follows. □
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4.2.2. Sketch of proof

— In this paragraph we present a slightly modified version of Gabber’s proof for the effacement theorem, due to
Colliot-Thélène, Hoobler and Kahn. Quite a few intermediate steps are required to reach its full statement, so we refer
to their paper [CTHK97, §§2–4] for a full exposition (and a vast generalisation to other cohomology theories in loc.
cit., §§5–8). Let us first restate the effacement theorem in a stronger but simpler manner :

Theorem 1.4.77 (Effacement theorem, compare Theorem (1.3.59)). Let X be a smooth and affine variety over a
field k, t1, . . . , tn finitely many points in X, p ≥ 0 an integer and a closed subvariety Z such that codimX (Z) ≥ p + 1.
Let π : X → Spec k be the structural morphism and F a torsion sheaf of abelian groups on Xét that is a pullback
F = π∗F0 of a Γk-module F0. If k is infinite, then there exists an open subset U ⊆ X that contains t1, . . . , tn and a
closed subvariety Z′ ⊆ X such that

(i) codimX (Z′) ≥ p ;

(ii) the map Hn
ét,Z∩U (U,F) → Hn

ét,Z′∩U (U,F) is zero for each n ≥ 0.

Otherwise if k is finite, then there exist U and Z′ as above such that the composite morphism

Hn
ét,Z (X,F) → Hn

ét,Z∩U (U,F) → Hn
ét,Z′∩U (U,F)

is zero for each n ≥ 0.

Remarks 1.4.78.

• When k is finite, the map Hn
ét,Z∩U (U,F) → Hn

ét,Z′∩U (U,F) can also be zero for each n ≥ 0. The theorem
states that at least the composite Hn

ét,Z (X,F) → Hn
ét,Z∩U (U,F) → Hn

ét,Z′∩U (U,F) is always zero.

• Note that despite what its presentation suggests, the above statement is not local. We will indeed see in the proof
that we can’t simply replace U by a smaller open to obtain the same result (the crucial point being (ii) here). See
[CTHK97, Rmk. 2.2.8] for a more detailed remark on this phenomenon.

4.2.2.1. A result of Gabber. The proof of this version of the effacement theorem requires a geometric presentation
result in the same vein as Quillen’s presentation Lemma (1.3.60), however the latter needs to be slightly stronger. We
only state it below, as its proof is not so difficult (the only non-strictly elementary algebraic geometry involved being
Chevalley’s theorem on constructible schemes) but rather long and technical, and not so relevant for the purposes of
this text. We refer to [CTHK97, §3] for a complete exposition.

Theorem 1.4.79 (Geometric presentation theorem [CTHK97, Thm. 3.1.1], compare Lemma (1.3.60)). Let
X be a smooth, affine and irreducible variety over an infinite field k, t1, . . . , tr ∈ X finitely many points and Z a
closed subvariety of positive codimension. Then there exists a morphism φ = (ψ, v) : X → Ad−1k ×k A1

k, an open set
V ⊂ Ad−1k and an open set U ⊂ ψ−1 (V ) containing t1, . . . , tr such that :

(i) Z ∩ U = Z ∩ ψ−1 (V ) ;

(ii) ψ |Z is finite ;

(iii) φ|U is étale and yields a closed immersion Z ∩ U ↩→ A1
V ;

(iv) φ(ti) ∉ φ(Z) if ti ∉ Z, i = 1, . . . , r ;

(v) φ−1 (φ(Z ∩ U )) ∩ U = Z ∩ U.
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Corollary 1.4.80. With notations as above, ψ |Z∩U : Z ∩ U → V is a finite morphism, and one has a cartesian
square

Z ∩ U U

φ(Z ∩ U ) A1
V

∼ ϕ |U

where the horizontal arrows are closed immersions, the left vertical one is an isomorphism and the right vertical one is
étale.

Remark 1.4.81. The assumption that k is infinite is crucial in the proof, as it allows to choose a section on the base,
hence a finite morphism ψ satisfying the desired conditions (once one has reduced the theorem to the case where the
ti’s are closed points and Z is a principal divisor). See [CTHK97, Lem. 3.3.1].

Lemma 1.4.82 (Key lemma). Let V be a k-scheme and F as in the Effacement theorem. Let π : A1
V → V and

π̃ : P1V → V be the natural projections, j : A1
V ↩→ P1k the open inclusion and s∞ : V → P1V the section of π̃ at infinity.

Let F be a closed subset of V and assume that both V andV \F are quasi-compact and quasi-separated. Then the natural
diagram

Hn
ét,A1

F
(A1

V ,F)

Hn
ét,F (V,F)

Hn
ét,P1F
(P1V ,F)

j∗

s∗∞

π∗

⟲

commutes.

Proof. Without loss of generality we can assume that either

(1) F has torsion coprime with char(k), or

(2) F is a p-primary torsion sheaf, where p = char(k).

Let us consider the first case. Recall that in the case of divisors, the first étale Chern class agrees with the étale
cycle class, so that the étale first Chern class c (m) := c1 (OP1V (1)) ∈ H2

ét (P1V ,Z/m(j)) of OP1V
(1) modulo m ≥ 1 is

the image of the class [OP1V (1)] ∈ Pic(P1V ) ≃ H1
ét (P1V ,Gm) under the boundary map in the long exact sequence

associated to the Kummer sequence 1→ µm → Gm → Gm → 1 on the étale site of P1V . The quasi-compactness and
quasi-separatedness of V show together that the cup-products

Hi
ét (V,F[m])

π̃∗−→ Hi
ét (P1V ,F[m])

−⌣c (m)−→ Hi+2
ét (V,F[m] (1))

for m ≥ 1 yield a limit morphism (this is nothing more than commutativity of étale cohomology with filtered colimits
in this case, see e.g. [DJ+22, Tag 0EZT]) :

Hi
ét (V,F) Hi+2

ét (P1V ,F(1))
c1 (OP1V

(1) )
.

Now in case (1), we have for each i ≥ 0 an isomorphism

Hi
ét (V,F) ⊕ Hi−2

ét (V,F(−1)) Hi
ét (P1V ,F)

(π̃∗ ,c1 (OP1V
(1) ) )

,
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see [Ill77, Exposé VII, Cor. 2.2.4]. If we are now in the second case, then we already have an isomorphism

Hi
ét (V,F)

∼−−→ Hi
ét (P1V ,F)

for every i ≥ 0 by [Gab93, Lem. 3]. Note that the corresponding isomorphisms in both cases hold for V \ F as well.
Now applying the long exact sequence with support to the pair (P1V ,P

1
F ) and to F, we get a canonical isomorphism :

Hi
ét,P1F
(P1V ,F) �

{
Hi

ét,F (V,F) ⊕ Hi−2
ét,F (V,F(−1)) in case (1)

Hi
ét,F (V,F) in case (2)

.

This already shows the lemma for the case (2). On the other hand, remark that s∗∞ (OP1V (1)) = j∗ (OP1V (1)) = 0. Tak-
ing the cup-product with c1 (OP1

V
) yields a map Hn−2

ét,F (V,F(−1)) → Hn
ét,P1F
(P1V ,F), and therefore if we are in case

(1), then in the natural diagram of the lemma the restrictions of s∗∞ and j∗ to the factor Hn−2
ét,F (V,F(−1)) (modulo the

above isomorphism) must be zero. The desired commutativity result follows. □

Theorem 1.4.83. Let V be a k-scheme, F a closed subset of V and F ′ a closed subset of A1
F such that the projection

f : F ′ → F is a finite morphism. Then, for any torsion sheaf of abelian groups on Vét, the map

Hn
ét,F ′ (A

1
V , π

∗F) −→ Hn
ét,A1

F
(A1

V ,F)

is zero, where π : A1
V → V is the projection onto the second factor.

Proof. First note that we must have s∞ (V ) ∩F ′ = ∅, so that we have a factorisation s∞ = ι◦ s′ where ι : P1V \F
′ ↩→ P1V

is the open immersion. We thus obtain a commutative diagram :

Hn
ét,F ′ (A1

V , π
∗F) Hn

ét,A1
F
(A1

V , π
∗F)

Hn
ét,F (V,F)

Hn
ét,F ′ (P1V , π

′∗F) Hn
ét,P1F
(P1V , π

′∗F) Hn
ét,P1F \F ′

(P1V \ F
′, π′∗F)

α

ι∗

s∗∞

β

∼ j∗

π∗

s∗
⟲

where the left vertical arrow is an isomorphism by excision for étale cohomology and the bottom part is exact as a por-
tion of the long exact sequence with support. Now since ι∗ ◦ β = 0, we deduce that α = 0 as well, as wanted. □

4.2.2.2. Proof the effacement theorem. We now have all the tools we need to prove Gabber’s effacement theorem.

Proof of Theorem (1.4.77). We can assume that X is irreducible. If k is infinite then let us pick U,V, φ, ψ as in the
Geometric Presentation Theorem. Let Z′ := ψ−1 (ψ (Z)). We can thus apply the previous theorem to V := V ,
F := ψ (Z) and F ′ := φ(Z ∩ U ). Consider the commutative diagram

Hn
ét,Z∩U (U,F) Hn

ét,Z′∩U (U,F)

Hn
ét,F ′ (A1

V , π
∗F) Hn

ét,A1
F
(A1

V , π
∗F)

φ∗ φ∗⟲
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where the left vertical map is an isomorphism by Corollary (1.4.80) followed by excision for étale cohomology, and the
bottom one is zero by the above theorem. By commutativity, we thus obtain that Hn

ét,Z∩U (U,F) → Hn
ét,Z′∩U (U,F)

is the zero map, hence the desired result in this case.

Now assume that k is finite. Let p, ℓ be two distinct prime numbers and letL1, L2 denote theZp andZℓ -extensions of
k respectively[14]. Since these fields are infinite, let (ψ1, φ1, V1, U1) andZ′1, and (ψ2, φ2, V2, U2) andZ′2 be as above given
by the Geometric Presentation Theorem for (XL1 , ZL1 ) and (XL2 , ZL2 ) respectively. Consider two finite subextensions
k ⊆ k1 ⊂ L1 and k ⊆ k2 ⊂ L2 on which (ψ1, φ1, V1, U1, Z′1) and (ψ2, φ2, V2, U2, Z′2) are respectively defined.

Since the projectionsφi (Zi∩Ui) → ψi (Zi) are finite for i = 1, 2, then the previous theorem applies, and therefore
by the same procedure as above we obtain that the effacement theorem holds over k1 and k2 with these choices. Now, let
U := X \(pr1 (Xk1 \U1)∪pr2 (Xk2 \U2)) andZ′ := pr1 (Z′1)∪pr2 (Z′2)where pr1 : X×kk1 → X and pr2 : X×kk2 → X
are both the projection onto the first factor. First note that since we reduced to the case where the ti’s are closed points,
we obtain that U contains all of them, and we have Uki ⊆ Ui and Zi ⊆ Zki for i = 1, 2. Moreover for i = 1, 2 we have
a commutative diagram :

Hn
ét,(Z∩U )ki

(Uki ,F) Hn
ét,(Z′∩U )ki

(Uki ,F)

Hn
ét,Z∩Ui

(Ui , F ) Hn
ét,Z′∩Ui

(Ui , F )

Hn
ét,Z (X, F )

0

⟲

.

This shows that the composition

Hn
ét,Z (X,F) −→ Hn

ét,Zki
(Xki ,F) −→ Hn

ét,(Z∩U )ki
(Uki ,F) −→ Hn

ét,(Z′∩U )ki
(Uki ,F)

must be zero for i = 1, 2, or equivalently, the composite

Hn
ét,Z (X,F) −→ Hn

ét,Z∩U (U,F) −→ Hn
ét,Z′∩U (U,F) −→ Hn

ét,(Z′∩U )ki
(Uki ,F)

is zero. But by restriction-corestriction, the composition

Hn
ét,Z′∩U (U,F) −→ Hn

ét,(Z′∩U )ki
(Uki ,F) −→ Hn

ét,Z′∩U (U,F)

is the multiplication by [ki : k] (where the first map is induced by the projection and the second is the usual trans-
fer map). Since [k1 : k] and [k2 : k] are coprime, we obtain that any element in the image of Hn

ét,Z (X,F) −→
Hn

ét,Z∩U (U,F) −→ Hn
ét,Z′∩U (U,F) has order dividing their gcd, which is 1, therefore this map is zero. □

[14]Such extensions always exist, since the absolute Galois group of a finite field is Ẑ ≃∏
ℓ prime Zℓ .
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4.3. Bloch’s Method
— Let X be an integral k-variety and n ≥ 1 an integer invertible on k. Consider the following commutative diagram
of complexes :

(degrees) 2 1 0

C
⊕

x∈X (i−2)
K2 (κ(x))

⊕
x∈X (i−1)

κ(x)×
⊕

x∈X (i)
Z 0

C
⊕

x∈X (i−2)
K2 (κ(x))

⊕
x∈X (i−1)

κ(x)×
⊕

x∈X (i)
Z 0

D
⊕

x∈X (i−2)
H2 (κ(x), µ⊗2n )

⊕
x∈X (i−1)

H1 (κ(x), µn)
⊕

x∈X (i)
H0 (κ(x),Z/n) 0

0 0 0

⊕Tκ(x) ⊕div

·n
⊕Tκ(x) ⊕divx

·n·n

⊕Rn,κ(x)

un δn

⊕Kn,κ(x)

Here the maps Tκ(x) are the tame symbols in Milnor’s K -theory defined in §3.1.2.1, the maps divx are the divisor maps
(after normalisation), theRn,κ(x) are provided by the Merkurjev-Suslin theorem [GS17, Thm. 8.6.1] and theKn,κ(x) are
the boundary maps in the Kummer sequence. The maps un and δn are the (sums of the) residues in Galois cohomology.

Note that the vertical complexes are exact. Indeed, for the middle one, this comes from the Kummer sequence and
the fact that the Picard group of a field is trivial thanks to Hilbert 90 ; for the left one, this is ensured once again by the
Merkurjev-Suslin theorem.

A quick diagram chasing shows that the following sequence is exact :

0 −→ H1 (C)/n −→ H1 (D) −→ H0 (C) [n] −→ 0.

Indeed, if some function f0 ∈
⊕

x∈X (i−1) κ(x)× represents an element h0 of the kernel of δn, then its image is the class
inH0 (C) of the cycle z0 ∈

⊕
x∈X (i) Z defined by div(f0) = nz0. By Merkurjev-Suslin, the arrowsRn,κ(x) are surjective,

therefore the above map factors through the image of un. This defines a surjection H1 (D) ↠ H0 (C) [n] whose kernel
is H1 (C)/n. Now remark that the elements of H0 (C) are precisely the cycles of codimension i in X modulo rational
equivalence, i.e. H0 (C) = Z i (X )/Z i (X )rat = CHi (X ).

The subsidiary question is : how can we control the left and middle groups? By Quillen’s formalism of algebraic
K -theory, we can extend the complex C to a larger Gersten complex as in §3.2.2.1 :⊕

x∈X (0)
Ki (κ(x)) −→ · · · −→

⊕
x∈X (j)

Ki−j (κ(x)) −→ · · · −→
⊕

x∈X (i−1)
κ(x)× −→

⊕
x∈X (i)

Z −→ 0.

If we further assumeX to be smooth over k, then Quillen’s proof of Gersten’s conjecture (see Theorem (1.3.59)) shows
that this complex arises as the complex of global sections of a flasque resolution of the Zariski sheaf Ki given by the
sheafification of the preseheafU ↦→ Ki (Γ(U,OX )) onXZar. This implies (after re-indexing in a cohomological setting)
that

H1 (C) ≃ Hi−1
Zar (X,Ki).

Similarly, the complex D fits into a Cousin complex :⊕
x∈X (0)

Hi (κ(x),Z/n(i)) −→ · · · −→
⊕

x∈X (i−j)
Hi−j (κ(x),Z/n(i − j)) −→ · · · −→

⊕
x∈X (i)

H0 (κ(x),Z/n) −→ 0.

If we keep the assumption thatX is smooth over k, then as discussed before, Bloch-Ogus theory shows that this complex
coincides with the complex given by global sections of a flasque resolution of the Zariski sheaf Hi

ét (Z/n(i)). We thus
obtain that H1 (D) ≃ Hi−1

Zar (X,H
i
ét (Z/n(i))). Putting everything together, we have the following result :
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Proposition 1.4.84. If X is smooth over k, then for each i ≥ 1 and each integer n ≥ 1 that is invertible on k, there exists
a short exact sequence

0 −→ Hi−1
Zar (X,Ki)/n −→ Hi−1

Zar (X,H
i
ét (Z/n(i))) −→ CHi (X ) [n] −→ 0.

I.5. Unramified cohomology
5.1. Definition and main properties
— Here we give the original and standard definition of unramified cohomology. The ideas behind this notion stem
from a paper of Artin and Mumford in 1972, where they used the Brauer-Grothendieck group in order to disprove the
rationality of certain varieties. In [CTO89], Colliot-Thélène and Ojanguren extended the definition of the unramified
Brauer group to higher cohomological degrees and managed to produce examples of unirational varieties that are not
(stably) rational. LetX be a scheme andn ≥ 1 an integer invertible onX . The starting result is the following localisation
long exact sequence in étale cohomology :

Theorem 1.5.85 ([Sou79, Prop. 1]). LetRbe a Dedekind ring with fraction field k, n ≥ 1an integer that is invertible
on k and j ∈ Z. Then we have a long exact sequence :

0 −→ H1
ét (R,Z/n(j)) −→ H1 (k,Z/n(j)) −→

⊕
𝔭

H0 (κ(𝔭),Z/n(j − 1)) −→ H2
ét (R,Z/n(j)) −→ · · ·

that is functorial in R, where 𝔭 runs among the prime ideals of R of height 1.

An interesting case is whenX = SpecR is the spectrum of a discrete valuation ring. Suppose indeed thatR ⊂ A is
an extension of discrete valuation rings, k ⊂ L is the corresponding extension of fraction fields, and κR and κA are the
respective residue fields. Let πR be a uniformiser for R and eA/R := νA (πR) be the ramification index of A over R. By
the above exact sequence, for each integer n ≥ 1 invertible on R and for each j ≥ 1, we have a commutative diagram :

Hj (L, µ⊗in ) Hj−1 (κA, µ⊗(i−1)n )

Hj (k, µ⊗in ) Hj−1 (κR, µ⊗(i−1)n )

ResL/k

𝜕j,A

eA/R ·ResκA/κR

𝜕j,R

⟲

were the horizontal maps are the residues in Galois cohomology andResκA/κR is the usual restriction. It therefore makes
sense to define the following Galois cohomology groups :

Definition 1.5.86. Let k be a field, n, i ≥ 1 two integers with n invertible on k and j an arbitrary integer. Given any
function field L over k, we define the ith unramified cohomology group of L/k as

Hi
nr (L/k,Z/n(j)) := ker

[
Hi (L,Z/n(j))

⊕𝜕i,R−→
⊕

R∈P (L/k)
Hi−1 (κR,Z/n(j − 1))

]
⊂ Hi (L,Z/n(j)),

where P (L/k) denotes the set of rank one discrete valuation rings containing k with fraction field L. An element of
Hi

nr (L/k,Z/n(j)) is called an unramified class over k.

5.1.1. Comparison with residues in codimension one

— Since unramified cohomology is defined in terms of function fields, it may seem natural that such a notion only
appears in a purely birational context. However, Bloch-Ogus theory allows us to reconcile this point of view with the



§I.5. Unramified cohomology 53

scheme-theoretic one. The main result in this regard is codimension 1 purity property for étale cohomology which,
roughly stated, allows us to compute unramified cohomology by only looking at residues along codimension 1 points
on a smooth and proper model.

Lemma 1.5.87 (Injectivity property [CT95, Thm. 3.8.1]). Let k be a field, i, j two integers with i ≥ 0 and n ≥ 1 an
integer that is invertible over k. If X is an integral k-variety and A is a semi-local ring of X, then the natural map

Hi
ét (A,Z/n(j)) −→ Hi (k(X ),Z/n(j))

is injective.

Proof. First assume that k is infinite. As in the proof of [Ker09, Thm. 6.1], we may use Néron-Popescu desingularisation
[Swa95, Thm. 1.1] in order to assumeX to be smooth and affine. Let S = {t1, . . . , tr} be the finite set of points defining
A and α ∈ ker[Hi

ét (A,Z/n(j)) → Hi (k(X ),Z/n(j))]. Since étale cohomology commutes with direct systems with
flat and affine transition maps [DJ+22, Tag 03Q5], up to shrinking X we may assume that α comes from a class β ∈
Hi

ét (X,Z/n(j)) vanishing in Hi
ét (U,Z/n(j)) for some open subset U ⊂ X . Taking cohomology with supports yields

an exact sequence
Hi

ét,Z (X,Z/n(j)) −→ Hi
ét (X,Z/n(j)) −→ Hi

ét (U,Z/n(j))

where Z := X \ U . By exactness and the assumption on β, it must come from a class γ ∈ Hi
ét,Z (X,Z/n(j)). Now, the

effacement theorem (1.4.77) applied to A provides a closed subset Z′ of X containing Z and a nonempty open subset
V ⊂ X which contains S such that the composite map

Hi
ét,Z (X,Z/n(j)) −→ Hi

ét,Z′ (X,Z/n(j)) −→ Hi
ét,Z′∩V (V,Z/n(j))

is zero. By functoriality the images of γ and β in Hi
ét (V,Z/n(j)) must be zero, so α = 0 in this case.

Now if k is finite, then as in the proof of Theorem (1.4.77) we can find two finite extensions k1/k and k2/k with
coprime degrees such that α vanishes in both Hi

ét (A ⊗k k1,Z/n(j)) and Hi
ét (A ⊗k k2,Z/n(j)). Again by using transfer

maps and restriction-corestriction, we obtain that α = 0. □

Lemma 1.5.88 (Codimension one purity [CT95, Thm. 3.8.2]). Let k be a field, i, j two integers with i ≥ 0 and n ≥ 1
an integer that is invertible over k. Let X a smooth and integral k-variety and A a semi-local ring of X. If a class α ∈
Hi (k(X ),Z/n(j)) lies in the the image of Hi

ét (A𝔭,Z/n(j)) for each prime 𝔭 of height 1 of A, then it must come from a
unique class in Hi

ét (A,Z/n(j)).

Proof. By the above lemma, the class α comes from a unique class in Hi
ét (A,Z/n(j)). Once again we distinguish the

cases where k is infinite or not.
If k is infinite, let S be the set of points of X defining A. We claim that there exists an open subset U ⊂ X and a

lift β ∈ Hi
ét (U,Z/n(j)) of α such that U contains all the irreducible closed subvarieties of codimension 1 in X passing

through at least one point of X . Indeed, the universal property of the generic point provides an open subset U such
that α comes from a class β ∈ Hi

ét (U,Z/n(j)). Suppose that there exists a closed irreducible variety that contains a
point t ∈ S and whose generic point x is not contained in U . By assumption we know that α comes from a class
αx ∈ Hi

ét (At ,Z/n(j)) ; let V be an open subset containing x such that αx extends to a class γHi
ét (V,Z/n(j)). Since

Spec k(X ) = lim
x∈V
(U ∩V ) and β and γ agree at the generic point, then they have to agree on some intersectionU ∩V

withV adequate. Applying the Mayer-Vietoris sequence toU andV (this holds for any abelian sheaf, see [Mil80, Chap.
III, Prop. 2.24]) gives an exact sequence

Hi
ét (U ∪ V,Z/n(j)) −→ Hi

ét (U,Z/n(j)) ⊕ Hi
ét (V,Z/n(j)) −→ Hi

ét (U ∩ V,Z/n(j))

and since β and γ agree on U ∩ V then they must lift to a class in Hi
ét (U ∪ V,Z/n(j)), a fortiori α comes from this

class. Hence, we can inductively construct an open subset U satisfying our condition.
Up to shrinkingX around the points of S, we can assume thatZ := X \U has codimension≥ 2 inX . If i ≤ 2, then

Gabber’s purity theorem ensures that Hi
ét,Z (X,Z/n(j)) = 0 and thus the long exact sequence of the pair (X, Z) shows

that the restriction Hi
ét (X,Z/n(j)) → Hi

ét (U,Z/n(j)) is surjective, hence the desired result. Otherwise if i ≥ 3, then
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by the effacement theorem (1.4.77) there exists a closed subset F of codimension ≥ 1 containing Z and an open subset
V ⊂ X containing S such that in the following commutative diagram given by long exact sequences with support

Hi
ét (X,Z/n(j)) Hi

ét (U,Z/n(j)) Hi
ét,Z (X,Z/n(j))

Hi
ét (X,Z/n(j)) Hi

ét (X \ F,Z/n(j)) Hi
ét,F (X,Z/n(j))

Hi
ét (V,Z/n(j)) Hi

ét (V \ F,Z/n(j)) Hi
ét,F∩V (V,Z/n(j))

the right vertical composite map is zero. Therefore the image of β in Hi
ét (X \ F,Z/n(j)) must come from a class in

Hi
ét (V,Z/n(j)), which proves the lemma in this case. If k is finite, we may apply the same arguments as in the proof of

the previous lemma. □

Proposition 1.5.89 (Summing up). Let X be an integral variety over a field k and n ≥ 1 an integer that is invertible
on k. Let x be a point in the smooth locus of X. Then,

(i) The natural morphism Hi
ét (OX,x ,Z/n(j)) → Hi (k(X ),Z/n(j)) is injective ;

(ii) A class α ∈ Hi (k(X ),Z/n(j)) lies in the image of the above morphism if and only if it has trivial residue along
each prime divisor of X passing through it.

Corollary 1.5.90. Let X be a smooth and proper integral variety over a field k and n ≥ 1 an integer that is invertible
on k. Then a class α ∈ Hi (k(X ),Z/n(j)) is unramified if and only if it has trivial residue along any prime divisor of
X.

Proof. The direct implication is obvious since the local ring at the generic point of any irreducible prime divisor defines a
rank one discrete valuation ring containing kwith fraction field k(X ). Conversely, assume that α ∈ Hi (k(X ),Z/n(j))
vanishes along the residue at each prime divisor. LetY be a normal k-variety together with a birational mapϕ : Y d X .
We want to show that for any y ∈ Y (1) we have 𝜕y (α) = 0, or equivalently, that α lies in the image of the natural map

Hi (OY,y,Z/n(j)) −→ Hi (k(X ),Z/n(j)).

Fixing a y ∈ Y (1) and up to shrinking Y around y, we can assume that ϕ is a morphism (indeed Y is normal and X is
proper so ϕ is defined at all codimension 1 points by the valuative criterion for properness). Let x := ϕ(y) ∈ X . Since
ϕ is a morphism, we obtain a commutative diagram :

Hi
ét (OX,x ,Z/n(j))

Hi (k(X ),Z/n(j))

Hi
ét (OY,y,Z/n(j))

⟲

and by (i) from Proposition (1.5.89), the claim follows. □

In particular, with the same notations as above, we obtain that the natural morphism

Hi
ét (X,Z/n(j)) → Hi (k(X ),Z/n(j))

given by the inclusion of the generic point factors through a morphism Hi
ét (X,Z/n(j)) → Hi

nr (k(X )/k,Z/n(j)).
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Remarks 1.5.91. LetX be an integral k-variety that admits a smooth and proper model X̃ (e.g. by the Hironaka-Nagata
compactification theorem if X is smooth).

• The unramified cohomology group Hi
nr (k(X )/k,Z/n(j)) is precisely

Hi
nr (k(X )/k,Z/n(j)) = Hi

nr (k(X̃ )/k,Z/n(j)) = ker
[
Hi (k(X̃ ),Z/n(j)) ⊕𝜕x−→

⊕
x∈X̃ (1)

Hi−1 (κ(x),Z/n(j− 1))
]
.

• If in particular j = 1 and i = 2, then H2
nr (k(X̃ )/k, µn) = Br(X̃ ) [n] = Brnr (X ) [n] is the n-torsion of the

unramified Brauer group of X , see [CTS21, Thm. 3.7.2] (this follows from Gabber’s absolute purity theorem).
More generally,

H2
nr (k(X̃ )/k,Q/Z(1)) = lim

−→
n≥1

H2
nr (k(X̃ )/k, µn) ≃ lim

−→
n≥1

Brnr (X ) [n] = Brnr (X ).

5.1.2. Functorial properties

Proposition 1.5.92. Let X be a smooth and integral variety over a field k, n ≥ 1 an integer that is invertible on k and
α ∈ Hi

nr (k(X )/k,Z/n(j)). Then,

(i) For any x ∈ X, there is a well-defined restriction

α|{x} ∈ Hi (κ(x),Z/n(j)).

(ii) If furthermore X is proper over k, then the class α|{x} ∈ Hi
nr (κ(x)/k,Z/n(j)) is unramified over k.

Proof. Lemma (1.5.89) shows that the class α ∈ Hi
nr (k(X )/k,Z/n(j)) admits a unique lift α̃ ∈ Hi

ét (OX,x ,Z/n(j)). One
can therefore defined α|{x} as the image of α̃ under the natural morphism

Hi
ét (OX,x ,Z/n(j)) −→ Hi (κ(x),Z/n(j)).

In order to prove (ii), consider a normal k-variety Z such that k(Z) ≃ κ(x) and let z ∈ Z (1) . We have to prove that
the residue 𝜕z (α|{x}) at z is zero, i.e. that α|{x} lies in the image of Hi

ét (OZ,z,Z/n(j)) → Hi (κ(x),Z/n(j)). Since
X is proper, we can without loss of generality shrink the variety Z so that the isomorphism k(Z) ≃ κ(x) is induced
by a morphism of schemes f : Z → X which maps the generic point of Z to x. Since α is unramified over k, the
lemma implies that it lies in the imageHi

ét (OX,f (z) ,Z/n(j)) ofHi
ét (OZ,z,Z/n(j)) inHi (k(X ),Z/n(j)). By the universal

property of the generic point, there must exist an open neighborhood U ⊂ X of f (z) and some α̃ ∈ Hi (U,Z/n(j))
that restricts to α at the generic point ofX . But f (z) lies in the closure of {x} inX , soU contains x and α̃ has an image in
Hi

ét (OX,x ,Z/n(j)) which must coincide with α. Hence, the restriction α|{x} ∈ Hi (κ(x),Z/n(j)) must coincide with
the image of α̃ under the natural map

Hi
ét (U,Z/n(j)) −→ Hi (κ(x),Z/n(j)).

Finally, since f (z) ∈ U , we see that α|{x} must lie in the image ofHi
ét (OZ,z,Z/n(j)) → Hi (κ(x),Z/n(j)), as desired. □

Proposition 1.5.93. Let k be a field, f : X → Y a morphism between integral, smooth and proper k-varieties and
n ≥ 1 an integer that is invertible on k. Then there is well-defined pullback map

Hi
nr (k(Y )/k,Z/n(j)) −→ Hi

nr (k(X )/k,Z/n(j))

given by restricting a given unramified class α ∈ Hi
nr (k(Y )/k,Z/n(j)) to the generic point of the image of f and pulling

the resulting class to k(X ).

Proof. The above proposition shows that the restriction of such a class α to the generic point of f (X ) is necessarily un-
ramified over k, so we easily obtain that it pulls back to a class inHi

nr (k(X ),Z/n(j)) (see [Sch21, Prop. 4.7] for details). □
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5.1.3. Birational and stable birational invariance

— It is not very difficult to see that unramified cohomology is (almost by definition) a birational invariant of smooth
and projective varieties over a field. Actually, it is also a stable birational invariant. In order to prove the first claim, let
us recall a criterion for birational invariance :

Lemma 1.5.94 ([Voi19, Lem. 2.3]). Let F : Smk → Ab be a contravariant functor such that for any smooth variety X
over k, the following conditions hold :

(i) For any dense open subset U ⊂ X, the restriction morphism F(X ) → F(U ) is injective ;

(ii) If furthermore codimX (X \ U ) ≥ 2, then the restriction morphism F(X ) → F(U ) is an isomorphism.

Then F is a birational invariant of smooth and projective varieties over k.

5.1.3.1. Birational invariance. The invariance property of unramified cohomology under birational maps now
becomes immediate :

Proposition 1.5.95. For any pair of integers n, i ≥ 1 with n invertible on k and any integer j, the functor that sends a
smooth variety X to Hi

nr (k(X )/k,Z/n(j)) is a birational invariant of smooth and projective varieties over k.

Proof. Let us check the two conditions in the above lemma. Suppose U ⊂ X is a dense open subset. Then we have
a field isomorphism k(U ) ≃ k(X ), hence an isomorphism Hi (k(U ),Z/n(j)) ≃ Hi (k(X ),Z/n(j)). We have a well
defined pullback

Hi
nr (k(X )/k,Z/n(j)) −→ Hi

nr (k(U )/k,Z/n(j)).
Moreover sinceU (1) ⊂ X (1) , then comparing the exact sequences defining the corresponding unramified cohomology
groups shows that the former maps injectively into the latter, as desired (the right hand side in the exact sequence for
the former defines a smaller kernel). Now if codimX (X \U ) ≥ 2, then U (1) = X (1) , hence the exact sequences define
the same kernel, and we obtain an isomorphism Hi

nr (k(X )/k,Z/n(j)) ≃ Hi
nr (k(U )/k,Z/n(j)). □

5.1.3.2. Stable birational invariance. In [CTO89], the authors actually exhibited a stronger invariance property,
namely that unramified cohomology is a stable birational invariant of smooth and projective varieties over a field k (recall
that a k-variety X is stably rational if there exist two integers m, n ≥ 1 such that Pmk ×k X is birational to Pnk ).

Proposition 1.5.96. Let n, i ≥ 1 be two integers with n invertible on k and j an arbitrary integer. Let K := k(t) where
t is an indeterminate. Then the natural morphism Hi (k,Z/n(j)) → Hi (k(t),Z/n(j)) induces an isomorphism

Hi (k,Z/n(j)) ∼−−→ Hi
nr (k(t)/k,Z/n(j)).

Proof. Without loss of generality, one can assume that k is perfect (indeed, étale cohomology is invariant under purely
inseparable extensions). Let Z ⊂ A1

k be a proper closed subset. Taking the long exact cohomology sequence with
support in Z and using cohomological purity, we obtain an exact sequence

· · · −→ Hi
ét (A1

k,Z/n(j)) −→ Hi
ét (A1

k \ Z,Z/n(j)) −→
⊕
x∈Z

Hi−1 (κ(x),Z/n(j)) −→ · · ·

Now sinceZ/n(j) is torsion and constructible, thenHi (k,Z/n(j)) ≃ Hi (A1
k,Z/n(j)) for each i ≥ 0 by the homotopy

invariance of étale cohomology (see e.g. [Mil80, Chap. VI, Cor. 4.20]). Moreover, the maps Hi
ét (A1

k,Z/n(j)) →
Hi

ét (A1
k \ Z,Z/n(j)) are all injective (one can see this by specializing to a k-point or by using a 0-cycle of degree one

with a norm argument, depending on whether k is infinite or finite[15]). The long exact sequence thus yields short exact
sequences

0 −→ Hi (k,Z/n(j)) −→ Hi
ét (A1

k \ Z,Z/n(j)) −→
⊕
x∈Z

Hi−1 (κ(x),Z/n(j)) −→ 0,

[15]If k is finite, then it has cohomological dimension equal to 1, so the case i ≥ 2 follows immediately.
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and taking the direct limit over the proper closed subsets ofA1
k, we obtain short exact sequences

0 −→ Hi (k,Z/n(j)) −→ Hi (k(A1
k),Z/n(j)) −→

⊕
x∈A1

k
(1)

Hi−1 (κ(x),Z/n(j)) −→ 0,

which identify Hi (k,Z/n(j)) with Hi
nr (k(t)/k,Z/n(j)). □

Proposition 1.5.97. Let n, i ≥ 1 be two integers with n invertible on k and j ∈ Z. Let L be a function field over k and
K := L(t1, . . . , tm) a rational function field over L. Then the natural morphism Hi (L,Z/n(j)) → Hi (K,Z/n(j))
induces an isomorphism

Hi
nr (L/k,Z/n(k))

∼−−→ Hi
nr (K/k,Z/n(j)).

In particular, the natural morphism Hi (k,Z/n(j)) → Hi (k(t1, . . . , tm),Z/n(j)) induces an isomorphism

Hi (k,Z/n(j)) ∼−−→ Hi
nr (k(t1, . . . , tm)/k,Z/n(j)).

Proof. By an immediate induction it is sufficient to show the result when m = 1. The morphism Hi (L,Z/n(k)) →
Hi (L(t),Z/n(j)) is injective : indeed, if α ∈ Hi (L,Z/n(j)) vanishes in Hi (L(t),Z/n(j)), then the universal property
of the generic point shows that α vanishes in Hi (U,Z/n(j)) for some open subsetU ⊂ A1

L. The previous proposition
thus proves the claim. The functoriality of unramified cohomology yields an embedding

Hi
nr (L/k,Z/n(j)) ↩→ Hi

nr (L(t)/k,Z/n(j)).

Now fix a class β ∈ Hi
nr (L(t)/k,Z/n(j)). We want to show that it comes from a unique class in Hi

nr (L/k,Z/n(j)).
By the previous proposition, β comes from a unique class γ ∈ Hi (L,Z/n(j)). Let R ⊂ L be a discrete valuation ring
containing k such that Frac(R) = L, πR ∈ R a uniformiser and A ⊂ L(t) the discrete valuation ring given by the
localisation ofR[t] at the ideal generated by πR. It is easy to check that κA = κR (t), so the extension κA/κR is separable
and A/R is unramified, i.e. eA/R = 1. By functoriality of residues, we obtain a commutative diagram

Hi (L(t),Z/n(j)) Hi−1 (κR (t),Z/n(j − 1))

Hi (L,Z/n(j)) Hi−1 (κR,Z/n(j − 1))

ResL(t)/L

𝜕i,A

ResκA/κR

𝜕i,R

⟲

By the same argument as before (0-cycle and norm arugment), the right hand side vertical map is injective, so the com-
mutativity of the diagram shows that if 𝜕i,A (β) = 0, then 𝜕i,R (γ) = 0 as well. Since this holds for any R ∈ P (L/k), we
obtain that if β is an unramified class, then so is γ, as desired. □

An immediate consequence of this proposition is the following useful criterion for stable rationality :

Corollary 1.5.98. Let X be an integral variety over an algebraically closed field k and n ≥ 1 be an integer that is
invertible on k. If X is stably rational, then for all pair of integers i, j with i ≥ 1, we have Hi

nr (k(X )/k,Z/n(j)) = 0.

5.2. Some refinements
5.2.1. Pairings on zero-cycles and correspondences

5.2.1.1. Merkurjev’s pairing. Let X be a smooth and proper integral variety over a field k. In [Mer08, §2.4],
Merkurjev defined a pairing

Z0 (X ) ×Hi
nr (k(X )/k,Z/n(j)) −→ Hi (k,Z/n(j))
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by setting for any closed point z ∈ X with structure morphismπz : Spec κ(x) → Spec k and anyα ∈ Hi
nr (k(X )/k,Z/n(j)) :

⟨z, α⟩ := πz∗ (α|{z}),

and extending bilinearly to Z0 (X ). The key fact about this pairing is that it is compatible with rational equivalence,
that is, we have the following statement :

Proposition 1.5.99 ([Mer08, §2.4]). Let k be a field and n ≥ 1 an integer that is invertible on k. Let g : C → X be
a non-constant morphism of smooth and proper varieties where C is a curve. Then for any α ∈ Hi

nr (k(X )/k,Z/n(j))
and any ϕ ∈ k(C)× , we have

⟨g∗div(ϕ), α⟩ = 0.

In particular, the pairing defined above descends to a bilinear pairing

CH0 (X ) ×Hi
nr (k(X )/k,Z/n(j)) −→ Hi (k,Z/n(j)).

Actually, one can obtain a similar pairing on correspondences :

Corollary 1.5.100. Let X and Y be two smooth and proper integral varieties over a field k and n ≥ 1 an integer that
is invertible on k. Then there exists a bilinear pairing :

CHdimX (X ×k Y ) ×Hi
nr (k(Y )/k,Z/n(j)) −→ Hi

nr (k(X )/k,Z/n(j))
(Γ, α) ↦−→ Γ∗α

,

which is defined as follows : if Γ ⊂ X ×k Y is integral and does not dominate the first factor, then Γ∗α = 0 ; otherwise,
the first projection induces a finite morphism f : Spec k(Γ) → Spec k(X ) and we put Γ∗ := f∗ (pr2∗ (α|{ηΓ }) where
ηΓ denotes the generic point of Γ.

Proof. Suppose that Γ is an integral subvariety of X ×k Y of dimension dimX which dominates X through the
first projection. By Proposition (1.5.92), the class pr2∗ (α) |{ηΓ } ∈ Hi (k(Γ),Z/n(j)) is unramified over k, so that
f∗ pr2∗ (α) |{ηΓ } ∈ Hi

nr (k(X )/k,Z/n(j)) is unramified over k as well. This shows that the mapping (Γ, α) ↦→ Γ∗α
is well-defined and induces a bilinear pairing

ZdimX (X ×k Y ) ×Hi
nr (k(Y )/k,Z/n(j)) −→ Hi

nr (k(X )/k,Z/n(j)).

Now, to see that this pairing sends rationally trivial correspondences to 0, we proceed as the following. We have two
natural group homomorphisms

ZdimX (X ×k Y ) −→ Z0 (Yk(X ) )
and

Hi
nr (k(Y )/k,Z/n(j)) −→ Hi

nr (k(Yk(X ) )/k(X ),Z/n(j)).
Since by definition Hi

nr (k(X )/k,Z/n(j)) ⊂ Hi (k(X ),Z/n(j)), we obtain a commutative diagram

ZdimX (X ×k Y ) ×Hi
nr (Y /k,Z/n(j))

Hi (k(X ),Z/n(j))

Z0 (Yk(X ) ) ×Hi
nr ((Yk(X ) )/k(X ),Z/n(j))

⟲

On the other hand, the map ZdimX (X ×k Y ) → Z0 (Yk(X ) ) descends naturally to a map CHdimX (X ×k Y ) →
CH0 (Yk(X ) ), so the previous proposition shows that any correspondence Γ that is rationally equivalent to 0 verifies
Γ∗α = 0 for any α ∈ Hi

nr (k(Y )/k,Z/n(j)), hence the well-definedness of the pairing. □
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5.2.1.2. Unramified cohomology with simple normal crossings. If we deal with sufficiently «nice» varieties,
that is, varieties with simple normal crossing singularities, then one can make sense of a more intrinsic definition of
unramified cohomology (the idea one should have in mind lies in the smooth and proper case, where one just has to
look at residues along prime divisors).

Definition 1.5.101. A variety X of pure dimension over a field k with irreducible components {Xl}l∈I is said to have
simple normal crossings if for each non-empty subset J ⊂ I , the subscheme

XJ :=
⋂
l∈J

Xl

is smooth over k of pure codimension #J .

Definition 1.5.102. LetX be a proper variety of pure dimension over a field kwith simple normal crossings and n ≥ 1
be an integer that is invertible on k. For any integer i ≥ 1, we define the ith unramified cohomology groups of X with
coefficients in Z/n(j) (j an arbitrary integer) as the subgroup

Hi
nr (X,Z/n(j)) ⊂

⊕
l∈I

Hi
nr (k(Xl)/k,Z/n(j))

consisting of the collections α = (αl)l∈I of unramified classes αl ∈ Hi
nr (k(Xl)/k,Z/n(j)) which agree on intersections

of components, that is,
αl |Xl∩Xl′ = αl′ |Xl∩Xl′

for any l, l′ ∈ I .

Remark 1.5.103. If X is a smooth and proper integral variety, then Corollary (1.5.90) shows that this notion coincides
with the initial definition of unramified cohomology :

Hi
nr (X/k,Z/n(j)) ≃ Hi

nr (k(X )/k,Z/n(j)).

5.2.1.3. Merkurjev’s pairing revisited. Let now X be a proper variety of pure dimension with simple normal
crossings over a field k with irreducible components {Xl}l∈I . We have a natural bilinear pairing

Z0 (X ) ×Hi
nr (X/k,Z/n(j)) −→ Hi (k,Z/n(j) (I.2)

given by the mapping
(z, α) ↦−→ ⟨z, α⟩nr :=

∑︁
∅≠J⊂I

(−1)#J−1⟨z|XJ , α|XJ ⟩,

where z|XJ denotes the «naive» intersection of z with XJ , that is, we remove the prime cycles in z that do not have
support in XJ .

Lemma 1.5.104 ([Sch21, Lem. 6.3]). Let X be a proper variety of pure dimension over a field k with simple normal
crossings and n ≥ 1 an integer that is invertible on k. If z ∈ X is a closed point and πz : Spec κ(z) → Spec k is the
structure morphism, and if α ∈ Hi

nr (X/k,Z/n(j)), then for any component Xl of X containing z, we have

⟨z, α⟩nr = πz∗ (αl |{z}).

Proposition 1.5.105 ([Sch21, Prop. 6.4]). Let X be a proper variety of pure dimension over a field k with simple
normal crossings and n ≥ 1 an integer that is invertible on k. Let g : C → X be a morphism where C is a smooth and
proper curve. Then for any α ∈ Hi

nr (X/k,Z/n(j)) and any ϕ ∈ k(C)× , we have

⟨g∗div(ϕ), α⟩ = 0.

Proof. This is a direct consequence of the above lemma and Proposition (1.5.99). □

We can immediately derive this result to obtain that the pairing defined earlier is compatible with rational equiva-
lence in the following sense :
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Corollary 1.5.106. The pairing (I.2) descends to a bilinear pairing

CH0 (X ) ×Hi
nr (X/k,Z/n(j)) −→ Hi (k,Z/n(j)).

We would now like to extend this pairing to correspondences. Let X and Y be two proper and reduced varieties
over a field k, and assume that Y is pure dimensional with simple normal crossings. Let n ≥ 1 be an integer that is
invertible on k and let {Xl}l∈I be the set of irreducible components of X . The goal is to define a bilinear pairing :

ZdimX (X ×k Y ) ×Hi
nr (Y /k,Z/n(j)) −→

⊕
l∈I

Hi (k(Xl),Z/n(j))

(Γ, α) ↦−→ ((Γ∗α)l)l∈I
.

Fix some l ∈ I . By flat pullback, we have a natural map

ZdimX (X ×k Y ) −→ Z0 (Yk(Xl ) )

which sends cycles rationally equivalent to 0 on X ×k Y to cycles rationally equivalent to 0 on Y ×k k(Xl). Moreover
by functoriality of unramified cohomology we have a natural morphism

Hi
nr (Y /k,Z/n(j)) −→ Hi

nr ((Yk(Xl ) )/k(Xl),Z/n(j))).

We can therefore define the mapping (Γ, α) ↦→ (Γ∗α)l to be the only one that makes the following diagram commute :

ZdimX (X ×k Y ) ×Hi
nr (Y /k,Z/n(j))

⊕
l′∈I

Hi (k(Xl′ ),Z/n(j))

Z0 (Yk(Xl ) ) ×
⊕
l′∈I

Hi
nr ((Yk(Xl′ ) )/k(Xl′ ),Z/n(j))

, (I.3)

where the lower horizontal arrow is induced by the pairing on 0-cycles defined earlier. By asking this for any l ∈ I , we
define the global mapping (Γ, α) ↦→ ((Γ∗α)l)l∈I .

Corollary 1.5.107. let X and Y be two proper and reduced algebraic varieties over a field k and assume that Y is pure
dimensional with simple normal crossings. Let n ≥ 1 be an integer that is invertible on k and {Xl}l∈I be the set of
irreducible components of X. Then the pairing defined above descends to a well-defined bilinear pairing :

CHdimX (X ×k Y ) ×Hi
nr (Y /k,Z/n(j)) −→

⊕
l∈I

Hi (k(Xl),Z/n(j)).

Proof. Since this pairing makes the diagram (I.3) commute for any l ∈ I , then Corollary (1.5.106) implies that Γ∗α = 0
for any correspondence Γ ∈ ZdimX (X ×k Y ) that is rationally equivalent to 0, hence the well-definedness. □

5.2.2. A consequence of the decomposition of the diagonal

— The following theorem is due to Merkurjev and relates the decomposition of the diagonal with unramified coho-
mology in the particular case of smooth and proper varieties ; more precisely, it states that under these assumptions, a
decomposition of the diagonal on a variety highly constrains its unramified cohomology (a fortiori its birational equiv-
alence class) :
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Theorem 1.5.108 (Merkurjev, [Mer08, Thm. 2.11]). Let X be a proper scheme over a field k with simple normal
crossings (e.g. a smooth and proper variety) and n ≥ 1 an integer invertible on k. If X admits a decomposition of the
diagonal then for each pair of integers i, j with i ≥ 1, the natural morphism

Hi (k,Z/n(j)) −→ Hi
nr (X,Z/n(j))

is surjective. In particular, if k is algebraically closed, then Hi
nr (X,Z/n(j)) = 0 for each i ≥ 1.

Proof. Suppose that X admits a decomposition of the diagonal and let {Xl}l∈I be the set of irreducible components of
X . By Corollary (1.5.107), we have a well-defined pairing

CHdimX (X ×k X ) ×Hi
nr (X/k,Z/n(j)) −→

⊕
l∈I

Hi (k(Xl),Z/n(j)).

By definition of this pairing, we have [ΔX ]∗α = α for each α ∈ Hi
nr (X/k,Z/n(j)), and [ZX ]∗α = 0 since the cycle ZX

on X ×k X does not dominate any component of the first factor. The decomposition of the diagonal thus gives :

α = [ΔX ]∗α = [X × z]∗α.

Let us write z =
∑
s as [zs] where the as are integers and the zs are closed points of X . For each such xs, let πxs :

Spec κ(xs) → Spec k be the structure morphism. If we write φ : Hi (k,Z/n(j)) → Hi
nr (X/k,Z/n(j)) for the natural

morphism, we have that

[X × z]∗α = φ
(∑︁

s
asπxs∗ (α|{xs })

)
,

hence the desired result. □





Chapter II

Unramified cohomology of degree three
and Noether’s Problem

II.1. Setting and statement of the main theorem
— Let G be a finite group and W a faithful representation of G over a field k. The action of G induces an action on
the function field k(W ). A natural question raised by Noether and which is known today as Noether’s Problem, is to
determine whether the invariant subfield k(W )G is a purely transcendental extension of k. In 1984, Saltman provided
an example of a groupG such that the fieldC(W )G is not stably rational overC, by considering the unramified Brauer
group H2

nr (C(W )G ,Q/Z). Bogomolov later managed to give a general formula for this group in terms of the group
G, namely :

Brnr (C(W )G/C) = H2
nr (C(W )G ,Q/Z)

∼−−→
⋂
B∈BG

ker[H2 (G,Q/Z) → H2 (B,Q/Z)],

where BG denotes the set of bicyclic subgroups of G (that is, the subgroups of G that are isomorphic to a quotient of
Z2). More recently, Peyre provided in [Pey07, Thm. 3.1] a similar presentation for the unramified cohomology group
H3

nr (C(W )G/C,Q/Z(2)). Using the precise description of this group, he managed to construct [Pey07, Thm. 6.1],
for any odd prime number p, a central extension

0 −→ (Z/p)6 −→ G −→ (Z/p)6 −→ 0

such that H3
nr (C(W )G/C,Q/Z) ≠ 0. A fortiori, the stable birational invariance of unramified cohomology shows

that the invariant subfield C(W )G ⊂ C(W ) of any adequate faithful representation W of G cannot be purely tran-
scendental over C. The aim of this chapter is to explain the different steps and to emphasise the key ideas of the proof
of Peyre’s main result.

1.1. Negligible classes
Definition 2.1.1. IfG is a finite group,M is aG-module and k is a field, then a class λ ∈ Hi (G,M) is said to be totally
k-negligible if and only if for any field extension L/k and any morphism ρ : ΓL → G, the image of λ under

ρ∗ : Hi (G,M) → Hi (L,M)

is zero. If k = C, then we call such a λ a geometrically negligible class. When there is no confusion on the choice of k,
we denote by Hi

n (G,M) the subgroup of totally k-negligible classes in Hi (G,M).
Lemma 2.1.2 ([Sal95, Prop. 4.5]). The group of geometrically negligible classes in Hi (G,M) is precisely

Hi
n (G,M) = ker[Hi (G,M) → Hi (C(W )G ,M)]

where W is any faithful complex representation of G.

63
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Consider the tautological exact sequence of trivial G-modules

0 −→ Z −→ Q −→ Q/Z −→ 0.

Taking cohomology gives a long exact sequence

· · · −→ Hi (G,Q) −→ Hi (G,Q/Z) −→ Hi+1 (G,Z) −→ Hi+1 (G,Q) −→ · · ·

and sinceQ is uniquely divisible (divisible and torsion-free) then both side terms above are zero, so this yields isomor-
phisms

Hi (G,Q/Z) ∼−−→ Hi+1 (G,Z) ∀i ≥ 1.

We can therefore define a cup-product H∗ (G,Q/Z) ⊗Z H∗ (G,Q/Z) → H∗ (G,Q/Z) as given by the following com-
mutative diagrams :

Hi (G,Q/Z) ×Hj (G,Q/Z) Hi+1 (G,Z) ×Hj+1 (G,Z)

⟲

Hi+j+1 (G,Q/Z) Hi+j+2 (G,Z)

∼

∼

−⌣−−⌣−

for i, j ≥ 1.

Remark 2.1.3. Note that for simplicity we do not keep track of the twists in the coefficients here : indeed, the map
Q→ C, z ↦→ exp(2iπz) yields an isomorphismQ/Z ∼−−→ Q/Z(1) of trivial G-modules. However when we deal with
the Galois cohomology of a field k it is obviously important to specify these twists (unless k is separably closed) since
they yield pairwise non-necessarily isomorphic Galois modules.

Definition 2.1.4. The subgroup of permutation negligible classes in H3 (G,Q/Z) is the group

H3
p (G,Q/Z) :=

∑︁
H⊂G

CoresGH
(
Im[H1 (H,Q/Z)⊗2 −⌣−−→ H3 (H,Q/Z)]

)
where H runs among the subgroups of G.

1.2. Unramified classes
— Let H ⊂ G be a subgroup, ZG (H) the centraliser of H in G, and g ∈ ZG (H). Let I := ⟨g⟩ and m : H × I →
G, (h, i) ↦→ hi. Pulling back on cohomology gives a morphism m∗ : H3 (G,Q/Z) → H3 (H × I,Q/Z). On the other
hand, the projection pr2 : H × I → I induces a splitting of the map H3 (H × I,Q/Z) → H3 (I,Q/Z) defined by
i2 : I → H × I, i ↦→ (1, i). Therefore, we obtain a natural map

H3 (H × I,Q/Z)
𝜕H,I−→ ker

[
H3 (H × I,Q/Z) → H3 (I,Q/Z)

]
ξ ↦−→ ξ − (pr∗2 ◦i∗2) (ξ )

.

The Hochschild-Serre spectral sequence

Ep,q2 = Hp (H,Hq (I,Q/Z)) ⇒ Hp+q (H × I,Q/Z)

and the fact that H2 (I,Q/Z) = 0 (I is cyclic so it admits a cyclic resolution of order 2) provide a map

H3 (H × I,Q/Z) −→ ker
[
H3 (H × I,Q/Z) → H3 (I,Q/Z)

]
−→ H2 (H,H1 (I,Q/Z)).
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The evaluation at g gives an injection Hom(I,Q/Z) ↩→ Q/Z. Hence we obtain a composite morphism :

H3 (H × I,Q/Z) −→ H2 (H,H1 (I,Q/Z)) ∼−−→ H2 (H,Hom(I,Q/Z)) −→ H2 (H,Q/Z),

let us denote it by 𝜕. Precomposing with m∗ therefore gives a map

𝜕H,g := 𝜕 ◦m∗ : H3 (G,Q/Z) −→ H3 (H,Q/Z).

Definition 2.1.5. We define the third unramified cohomology group of G withQ/Z-coefficients to be the group

H3
nr (G,Q/Z) :=

⋂
H⊂G

g∈ZG (H )

ker 𝜕H,g .

We are now ready to state the main theorem proved in [Pey07] :

Theorem 2.1.6 ([Pey07, Thm. 3.1]). Let G be a finite group and W a faithful complex representation of G. Then
the inflation map induces a surjection

H3
nr (G,Q/Z)/H3

p (G,Q/Z) ↠ H3
nr (C(W )G/C,Q/Z)

whose kernel is killed by a power of 2.

II.2. Proof of the main theorem
2.1. Preliminary results
— Peyre’s stategy for the proof of the main theorem stated in the previous section boils down to relating residues at
the level of the cohomology of the function field C(W )G to the abstract residues at the level of the cohomology of G
that we defined in §1.2. To do so, we want to apply Bloch’s method (see Chapter I, §4.3) in this specific context and
describe the K2-cohomology and étale cohomology of the geometric quotient of W by G quite precisely in terms of
the latter. We will make extensive use of the following auxiliary results.

2.1.1. Excision for K-cohomology, equivariant étale cohomology

Lemma 2.2.7. Let X be a smooth variety over a field k and Y a subvariety of X of codimension at least c ≥ 0. Then for
any j ≥ 0 and any i ≤ c − 2, we have

Hi
Zar (X,Kj)

∼−−→ Hi
Zar (X \ Y,Kj).

Proof. By Theorem (1.3.59), the groups Hi
Zar (X,Kj) coincide with the homology groups of the Cousin complex

· · · −→
⊕

x∈X (i−1)
Kj−i+1 (κ(x))

di−1,−j1−→
⊕
x∈X (i)

Kj−i (κ(x))
di,−j1−→

⊕
x∈X (i+1)

Kj−i−1 (κ(x)) −→ · · ·

Since codimX (Y ) ≥ c, then for j ≤ c − 1 we have (X \ Y ) (j) = X (j) . By the same argument, for i ≤ c − 1 the residue
maps di,−j1 are the same for X and for X \ Y . This proves the claim. □

Proposition 2.2.8. Let G be a finite group and k be a separably closed field of exponential characteristic p and let n ≥ 1
be an integer coprime to p. Then for any integers i, j with 0 ≤ j < i, for any faithful complex representation W of G
such that there exists an open subset U of W on which G acts freely and such that codimW (W \ U ) ≥ i, we have

Hj (G,Z/n) ∼−−→ Hj
ét (U/G,Z/n).
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Proof. Consider the coniveau spectral sequence

Ep,q1 =
⊕
x∈U (p)

Hq−p (κ(x),Z/n) ⇒ Hp+q
ét (U,Z/n)

and the similar one for W . Since codim(W \ U ) ≥ i, then for j ≤ i − 1 we have U (j) = W (j) , so the coniveau
filtration in the respective spectral sequences identifies :

Hj
ét (U,Z/n)

∼←−− Hj
ét (W,Z/n).

The latter being an affine space, we have Hj
ét (W,Z/n) ≃ Hj (k,Z/n) by the homotopy invariance of étale cohomol-

ogy[16]. Moreover, we have

Hj (k,Z/n) ≃
{
0 if j ≠ 0
Z/n(k) if j = 0

,

so in the associated Hochschild-Serre spectral sequence

Ep,q2 = Hp (G,Hq
ét (U,Z/n) ⇒ Hp+q

ét (U/G,Z/n),

all of the Ep,q2 -terms are zero for q ≤ i − 1. For j ≤ i − 1, if we thus look at E0,j
2 = H0 (G,Hj (k,Z/n) = 0, then the

differentials coming to and from this term are both zero, so that E0,j
2 = E0,j

∞ = H j
ét (U/G,Z/n)/F 1 Hj

ét (U/G,Z/n),
and thus H j

ét (U/G,Z/n) = F 1 Hj
ét (U/G,Z/n). Applying the same argument inductively, we obtain that

Hj
ét (U/G,Z/n)

∼−−→ F j Hj
ét (U/G,Z/n)

∼−−→ Ej,0∞ = Ej,02 = Hj (G,Z/n),

which is precisely the desired isomorphism. □

2.1.2. No-name lemma, equivariant cycles and Chern classes

Proposition 2.2.9. If k is an algebraically closed field and G is a finite group, then CH2
G (k) is canonically isomorphic

to the group H3
n (G,Q/Z(2)) of totally k-negligible classes in H3 (G,Q/Z(2)).

Lemma 2.2.10 (No-name lemma). Let G be a finite étale group scheme over a field k of characteristic 0, let V,W be
two faithful representations of G over k, and let X := SLm,k/G and Y := SLn,k/G be the two corresponding geometric
quotients. Then k(X ) and k(Y ) are stably birational.

Proof. Let us choose two open subsets U and U ′ of SLm,k and SLn,k respectively, on which G acts freely. By making G
act diagonally on U ×k SLn,k, we obtain a cartesian diagram:

U ×k SLn,k (U ×k SLn,k)/G

U U/G

⟲
.

As in the proof of Proposition (1.1.21), we use the fact that U → U/G is faithfully flat of finite presentation, so that
U ×k SLn,k → U induces a vector bundle (U ×k SLn,k)/G→ U/G (since it is trivial for the flat topology, then it is also
Zariski-trivial by Grothendieck’s Hilbert 90). Therefore,U/G is stably birational to (U×kSLn,k)/G, and (U×kU ′)/G
is an open subset of the latter. Replacing U by U ′ and SLn,k by SLm,k and mimicking the arguments, we obtain the

[16]See e.g. [Mil80, Chap. VI, Cor. 4.20] ; one can alternatively consider the Kummer sequence on the étale site of W and the similar one for
Spec k and compare the long exact cohomology sequences.
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desired result. □

This result holds in particular whenG is an abstract group. An interesting consequence in this case is the following:
if L/k is a finite Galois extension such that Gal(L/k) = G and E is a k-vector space endowed with a semi-linear action
of G, then Speiser’s lemma [GS17, Lem. 2.3.8] shows that L ⊗k EG ≃ E. In particular, L(E)G/k is purely transcen-
dental. Indeed, the previous remark shows that without loss of generality, one can write L(E) = L(t1, · · · , tn) where
n := dimk (EG) and G acts trivially on the ti’s; we thus obtain that L(E)G = k(t1, . . . , tn).

Proof of Proposition (2.2.9). Choose a faithful complex representation W of G together with an open subset U on
which G acts freely and such that codimW (W \ U ) ≥ 4. Fix a field extension L/k and a morphism ρ : ΓL → G,
and assume it without loss of generality to be surjective. Let K be the field fixed by ker ρ, so that K (W )G is purely
transcendental (by the No-name lemma and Speiser’s lemma) and the natural map

H3 (ΓL,Q/Z(2)) −→ H3 (Gal(L(W )s/K (W )G),Q/Z(2))

is injective. We obtain a commutative diagram

H3 (G,Q/Z(2)) H3 (ΓL,Q/Z(2))

⟲

H3 (Gal(k(W )s/k(W )G),Q/Z(2)) H3 (Gal(L(W )s/K (W )G),Q/Z(2))

.

By [Pey99, Thm. 2.3.1], we have an exact sequence

(Pic(X ) ⊗ k)G −→ ker[H3 (G,Q/Z(2)) → H3 (k(W )G ,Q/Z(2))] −→ CH2
G (k)tors −→ H1 (G,Pic(X ) ⊗ k×).

On the other hand, both side terms are zero since X = U/G, and by restriction-corestriction, we get that CH2
G (k) =

CH2 (X ) is torsion annihilated by #G (for more detail about this argument see the proof of Proposition (2.2.13)). As a
consequence, we obtain the desired isomorphism. □

Lemma 2.2.11. LetX be a smooth variety over a field k. ThenCH2 (X ) is generated by the second Chern classes of algebraic
vector bundles over X of determinant 1. In particular, if G is a finite group, then the group CH2

G (C) is generated by the
Chern classes of complex representations of G.

Proof. For i ≥ 1, consider the composition

CHi (X ) Cli−→ FilicodK0 (X )
ci−→ CHi (X )

where Cli is the ith K -theoretic cycle class map, Fil•cod denotes the codimension filtration on K0 (X ) in the sense of
[BGI71] and ci is the ith Chern class with values in the Chow group. By Riemann-Roch without denominators (see
[Ful98, Thm. 15.3]), we have that

ci ◦ Cli = (−1)i−1 (i − 1)! · IdCHi (X ) ,

so that for i = 2, this composition is minus the identity. In order to obtain vector bundles of determinant 1, one
just has to replace a bundle E by E ⊕ det(E). The claim for an arbitrary X follows. Now if G is a finite group, fix a
faithful complex representation W of G and an open subset U ⊂ W on which G acts freely and whose complement
has sufficiently large codimension. As proved by Merkurjev in [Mer99, Cor. 6.5] (the argument is similar to the one
provided in the proof of Proposition (1.1.21) from Chapter I), one has a natural surjective morphism of groups

R(G) ↠ K0 (U/G)
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where R(G) denotes the representation ring of G[17]. Therefore we get that CH2
G (C) = CH2 (U/G) is generated by

the Chern classes of special complex representations of G, as desired. □

Remark 2.2.12. In 1990, Totaro provided a slightly modified version of this statement, see [Tot14, Thm. 5.1], and even
bounded in some cases the number of generators of the full equivariant Chow ring of G as in [Tot14, Chap. 5, §5.2]
(note that these results hold for any finite group scheme).

2.2. Proof of the main results
2.2.1. The main exact sequence

— The proof of Peyre’s main result revolves around the following short exact sequence (which was already discussed
in the proof of [Pey99, Thm. 2.3.1] and was initially discovered by Kahn in the more general context of Lichtenbaum’s
motivic complexes) :

Proposition 2.2.13. Let G be a finite group and W a faithful complex representation of G, U an open subset of W on
which G acts freely and such that codimW (W \ U ) ≥ 4. Then there is a canonical exact sequence

0 −→ CH2
G (C) −→ H3 (G,Q/Z) −→ H0 (U/G,H3

ét (Q/Z(2))) −→ 0.

Proof. WriteX := U/G. Consider the Leray spectral sequence attached to Id : Xét → XZar and the étale sheafQ/Z(2):

Ep,q2 = Hp
Zar (X,H

q
ét (Q/Z(2))) ⇒ Hp+q

ét (X,Q/Z(2)).

By Bloch-Ogus theory, and since X is smooth, the coniveau filtration shows that the Ep,q2 -terms vanish for p > q ; in
particular, any differential coming from a term in position (p − 1, p) is zero. Notably, the term in position (1, 2) also
has no incoming differential, so that E1,2

2 = E1,2
∞ which provides an injection E1,2

2 ↩→ H3
ét (X,Q/Z(2)). The spectral

sequence also provides an exact sequence of lower terms

0 −→ E0,3
∞ −→ E0,3

2 −→ E2,2
2 −→ E2,2

∞ −→ 0,

where E2,2
2 ≃ CH2 (X ) ⊗Z Q/Z by Bloch’s formula. Combining these two facts, we obtain an exact sequence :

0 H1
Zar (X,H

2
ét (Q/Z(2))) H3

ét (X,Q/Z(2)) H0 (X,H3
ét (Q/Z(2)))

CH2 (X ) ⊗Z Q/Z H4
ét (X,Q/Z(2)).

On the other hand, Proposition (1.4.84) shows that Bloch’s complex gives the short exact sequence (after taking
direct limits)

0 −→ H1
Zar (X,K2) ⊗Z Q/Z −→ H1

Zar (X,H
2
ét (Q/Z(2))) −→ CH2 (X )tors −→ 0.

Note that since X = U/G, then CH2 (X ) = CH2
G (C). Now the localisation exact sequence for Chow groups yields

CH2 (W \ U ) −→ CH2 (W ) −→ CH2 (U ) −→ 0,

and since we assumed codimW (W \ U ) ≥ 4, we obtain that CH2 (U ) = CH2 (W ) = 0 (W is an affine space, so we
have CHi (W ) = 0 for i ≠ 0, see e.g. [Ful98, Chap. 1, §1.9]). Moreover, Lemma (2.2.7) shows that

H1
Zar (U,K2) = H1

Zar (W,K2) = 0

[17]Indeed, the category RepC (G) of complex representations of G is abelian and monoidal, so it admits a Grothendieck ring R(G) =

K0 (RepC (G) ) .
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(the vanishing follows from the fact that W is affine of dimension ≥ 4 and a direct calculation with the BGQ spectral
sequence Ep,q1 =

⊕
x∈W (p) K−p−q (κ(x)) ⇒ K−p−q (W )). Now let π : U → X be the projection map and π∗ and π∗

be the induced restriction and the corestriction maps on cohomology and Chow groups respectively. We have that the
compositions

H1
Zar (X,K2)

π∗−→ H1
Zar (U,K2)

π∗−→ H1
Zar (X,K2)

and
CH2 (X ) π∗−→ CH2 (U ) π∗−→ CH2 (X )

coincide with the multiplication by #G, see e.g. [Ros96, p. 330] (indeed, the projection map U → X is finite étale, so
this is more or less a projection formula). On the other hand, the vanishing of H1

Zar (U,K2) and CH2 (U ) show that
the above composite maps are zero. This implies that CH2 (X ) and H1

Zar (X,K2) are torsion groups annihilated by #G.
In particular,

CH2 (X ) ⊗Z Q/Z = 0 and H1
Zar (X,K2) ⊗Z Q/Z = 0.

As a consequence, we respectively obtain a short exact sequence

0 −→ H1
Zar (X,H

2
ét (Q/Z(2))) −→ H3

ét (X,Q/Z(2)) −→ H0 (X,H3
ét (Q/Z(2))) −→ 0

and an isomorphism
H1

Zar (X,H
2
ét (Q/Z(2)))

∼−−→ CH2
G (C).

Finally, Proposition (2.2.8) shows that H3
ét (X,Q/Z(2)) ≃ H3 (G,Q/Z), hence the desired short exact sequence. □

2.2.2. Analysing image and inverse image of neglibible and unramified classes

— The goal from now on is to describe, in the exact sequence of Proposition (2.2.13), the image of the injective
map CH2

G (C) → H3 (G,Q/Z) and the inverse image of H3
nr (C(W )G/C,Q/Z(2)) ⊂ H0 (U/G,H3

ét (Q/Z(2)))
in H3 (G,Q/Z).

2.2.2.1. Almost every permutation abstract unramified class is permutation neglibible. We begin by deter-
mining the image of CH2

G (C) → H3 (G,Q/Z) : the main idea is to compare this map to the cycle class from a purely
scheme theoretic point of view, so that we can relate it to the Chern class and use some intersection theory.

Proposition 2.2.14. If G is a finite group, then the prime-to-2 part of H3
n (G,Q/Z) is contained in H3

p (G,Q/Z).

Proof. Let p be a prime factor of #G and Gp a p-Sylow subgroup of G. By definition, we have

CoresGGp
(H3

p (Gp,Q/Z)) ⊂ H3
p (G,Q/Z).

Moreover, we have a commutative diagram :

H3 (G,Q/Z) H3 (C(W )G ,Q/Z)

H3
p (Gp,Q/Z) H3 (Gp,Q/Z) H3 (C(W )Gp ,Q/Z)

H3
p (G,Q/Z) H3 (G,Q/Z) H3 (C(W )G ,Q/Z)

ResGGp ResGGp

CoresGGpCoresGGpCoresGGp

.

By [Pey07, Rmk. 6], the group H3
p (G,Q/Z) is contained in H3

n (G,Q/Z), so the middle and bottom rows are com-
plexes. Suppose that the middle row is exact. Since CoresGGp

◦ ResGGp
= (G : Gp) · Id, then a quick diagram chasing
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shows that the bottom row is exact on the p-primary torsion subgroups. Therefore, we only need to prove the claim
when G is a p-group.

We now claim that the map δ : CH2
G (C) → H3 (G,Q/Z) appearing in the exact sequence of the previous proposi-

tion coincides with the cycle class cℓ2 : CH2 (X ) → H3
ét (X,Q/Z(2)). Indeed, it is proved in [CTSS83, Cor. 1, p.772][18]

that we have a diagram that commutes up to sign

CH2 (X )tors H4
ét (X, Ẑ(2))

H1
Zar (X,H

2
ét (Q/Z(2))) H3

ét (X,Q/Z(2))

cℓ2

⟲

where the left vertical map is constructed using Bloch’s complex and the Merkurjev-Suslin theorem as in Chapter I,
§4.3, the bottom map comes from Bloch-Ogus theory applied to the Leray spectral sequence

Ep,q2 = Hp
Zar (X,H

q
ét (Q/Z(2))) ⇒ Hp+q

ét (X,Q/Z(2))

(as in the proof of the previous proposition), and the right vertical map is the limit of the Bockstein morphisms in the
long exact sequences attached to the exact sequences of étale sheaves

0→ Z/m(i) → Z/mn(i) → Z/n(i) → 0

for m, n ≥ 1 (direct limit on n and inverse limit on m). But it is a well known fact that the cycle class commutes with
the étale Chern class, i.e. in our case cℓ2 ◦ c2 = c2, see [Ful98, Prop. 19.1.2]. In particular, applying Proposition (2.2.9)
we obtain that the group

H3
n (G,Q/Z) = ker[H3 (G,Q/Z) → H3 (C(W )G ,Q/Z)] ≃ CH2

G (C)

must be generated by the second Chern classes of representations ofG. For convenience we may now identify (isomor-
phism classes of) representations of G with the vector bundles that they induce in K0 (X ). If x, y ∈ R(G), let us write
x + y for the class of the direct sum representation. The Whitney formula [Ful98, Thm. 3.2, (e)] for the induced exact
sequence of vector bundles yields

c2 (x + y) = c2 (x) + c1 (x) ⌣ c1 (y) + c2 (y) ∈ H3 (G,Q/Z).

But by definition, c1 (x) ⌣ c1 (y) is a permutation negligible class, so the second Chern class factors as a morphism of
groups

R(G) c2−→ H3 (G,Q/Z)/H3
p (G,Q/Z).

The aim of the proof from now on is to show that this map is zero. We know by Brauer’s main theorem that each
character of G is an integral combination of characters induced by subgroups, see e.g. [Ser71, §10.5, Thm. 20]. On the
other hand the representation category RepC (G) is semisimple and R(G) is generated as a group by the characters of
G ; in particular, it is therefore generated by induced characters of subgroups ofG, so we just need to show that for any
subgroup H of G and any character χ on H of dimension 1, we have c2 (IndGH (χ)) ∈ H3

p (G,Q/Z).
In [FM87, §I.3], Fulton and MacPherson constructed for any finite étale covering of k-schemes f : X → Y (here

we suppose for convenience that char(k) = 0) some higher transfer morphisms f (n)∗ : Hi
ét (X,Z) → Hin

ét (Y,Z) for
n ≥ 1, satisfying Newton formulæ, that is, for any z ∈ Hi

ét (X,Z), we have

f∗ (zn) − f (1)∗ (z) ⌣ f∗ (zn−1) + . . . + (−1)nnf (n)∗ (z) = 0.

[18]Altough this result is only stated here, we would like to point out that its verification is quite technical and far for being trivial.
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In our case, any subgroup H of G induces a finite étale covering f : U/H → U/G, and hence it yields transfer
morphisms

Cores(n) : Hi (H,Q/Z) → Hn(i+1)−1 (G,Q/Z)[19].

But by [FM87, Cor. 5.3], for any e-dimensional representation class x ∈ R(G), the first and second Chern classes
satisfy the following identity :

c2 (IndGH (x)) = c2 (f∗x) = f∗c2 (x) + f (2)∗ c1 (x) + ec1 (V ) ⌣ f∗c1 (x) + c2 (V ⊕e)
= Cores(c2 (x)) + Cores(2) (c1 (x)) + e · c1 (IndGH (1)) ⌣ Cores(c1 (x)) + c2 (IndGH (1)

⊕e)

where V is the trivial representation. In the particular case where x = χ is (the class of) a character, we obtain that

c2 (IndGH (χ)) = Cores(c2 (χ)) + Cores(2) (c1 (χ)) + c1 (IndGH (1)) ⌣ Cores(c1 (χ)) + c2 (IndGH (1)).

First note that since χ is a representation of dimension 1, then c2 (χ) = 0, a fortiori Cores(c2 (χ)) = 0. On the other
hand if p ≠ 2, then from the identity

Cores(c2 (χ)2) − Cores(c2 (χ))2 + 2Cores(2) (c2 (χ)) = 0

we get that Cores(2) (c2 (χ)) = (Cores(c2 (χ))2 − Cores(c2 (χ)2))/2. Hence,

c2 (IndGH (χ)) =
1
2
(Cores(c1 (χ))2 − Cores(c1 ((χ2))) + c1 (IndGH (1)) ⌣ Cores(c1 (χ)) + c2 (IndGH (1))

and it is clear that the first three cup-products in the right hand side are permutation negligible classes. Therefore we
only need to prove that c2 (IndGH (1)) is permutation negligible as well.

Now sinceG is a p-group, we shall proceed by induction on (G : H). The case (G : H) = 1 is direct since c2 (1) = 0.
If (G : H) ≥ 2, write (G : H) = pm for some m ≥ 1 and assume that the claim is true for any subgroup of G of index
stricly smaller than pm. One can always find a subgroup H1 of G such that H is normal in H1 of index p. Indeed by
[Suz82, Chap. 2, Thm. 1.6], we know that any proper subgroup of G is a proper normal subgroup of its normaliser ;
if we take H1 to be the normaliser of H in G, then either H is maximal in H1 and thus H1/H must be cyclic of order
p since it contains non non-trivial subgroup, or there exists a subgroup of H1 in which H is maximal for the inclusion
relation. This gives the desired H1. On the other hand, we have

c2 (IndGH (1)) = c2 (IndGH1
(IndH1

H (1))).

Since H is normal in the finite group H1, we may choose a character χ : H1 → C× such that H = ker χ. In particular
we have an isomorphism of H1-modules IndH1

H (1) ≃ C[H1/H] ; moreover the class ofC[H1/H] in R(H1) is given by

C[H1/H] = 1 + χ + χ2 + . . . + χp−1.

Applying the Whitney formula to the induced chain of sequences of vector bundles on X , we get that

c2 (IndGH (1)) = c2 (IndGH1
(1)) + . . . + IndGH1

(χp−1))
≡ c2 (IndGH1

(1)) + . . . + c2 (IndGH1
(χp−1)) mod H3

p (G,Q/Z).

But by the induction hypothesis, we know that all of these classes are permutation negligible, which concludes the
proof. □

[19]Where we identified Hi (H,Q/Z) ∼−−→ Hi+1 (H,Z)
f (n)∗−→ Hn(i+1) (G,Z) ∼−−→ Hn(i+1)−1 (G,Q/Z) . For n = 1, the map Cores(1) = Cores is just

the usual corestriction.
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2.2.2.2. Every class in H3
nr (C(W )G/C,Q/Z(2)) arises from a class in H3

nr (G,Q/Z). It now remains to deter-
mine the inverse image of H3

nr (C(W )G/C,Q/Z(2)) in H3 (G,Q/Z) along the exact sequence of Proposition (2.2.13).
For convenience let us fix some notations by writing k := C(W )G and L := C(W ). Let ρ : Gal(L/k) → G be

the natural surjection and γ ∈ H3
nr (G,Q/Z). We would like to determine whether ρ∗ (γ) ∈ H3 (C(W )G ,Q/Z(2)) is

unramified. Let A and B be rank one discrete valuation rings containing Cwith respective fraction fields C(W )G and
C(W ), and such that B ∩ C(W )G = A.

Let k̂A be the completion of k at A and L̂B the completion of L at B, LB an algebraic closure of L̂B and k̂nr
A and L̂nr

B
the maximal unramified extensions of k̂A and L̂B in LB respectively. We denote by D the decomposition group of B in
G and I its inertia group. We also put GA := Gal(LB/̂kA) and GB := Gal(LB/L̂B), and IA and IB the corresponding
inertia groups. We obtain a commutative diagram with (tautological) exact rows :

0 IA GA GA/IA 0

0 I D D/I 0

πA

fGfI

j π

jA

. (II.1)

Since IA ≃ Ẑ(1) has cohomological dimension equal to 1 (cf. [GS17, Prop. 6.1.3]), then the Hochschild-Serre
spectral sequence

Ep,q2 = Hp ( GA/IA,Hq (IA,Q/Z(2)) ⇒ Hp+q ( GA,Q/Z(2))

has nonzero terms only in the rectangle {Ep,q2 | 0 ≤ q ≤ 1}. Moreover, by Kummer theory then for any j ≥ 1 we have
an isomorphism of Galois modules H1 (IA,Q/Z(j)) ≃ Hom(IA,Q/Z(j)) ≃ Q/Z(j − 1). We obtain a map

H3 (̂kA,Q/Z(2)) −→ H2 ( GA/IA,H1 (IA,Q/Z(2)),

hence a well-defined residue map

𝜕A : H3 (k,Q/Z(2)) −→ H2 (κA,Q/Z(1))

as the composite

H3 (k,Q/Z(2)) −→ H3 (̂kA,Q/Z(2)) −→ H2 ( GA/IA,H1 (IA,Q/Z(2))
∼−−→ H2 (κA,Q/Z(1))

(where the first map is the usual corestriction CoreŝkAk ).

Proposition 2.2.15. The groupH3
nr (G,Q/Z) is precisely the inverse image ofH3

nr (C(W )G/C,Q/Z(2)) inH3 (G,Q/Z).

Proof. SinceC contains all the roots of unity, then the extension

0 −→ IA −→ GA −→ GA/IA −→ 0 (II.2)

is central. On the other hand k̂A is isomorphic to the field of Laurent series κA ((t)) and we have an isomorphism of field
extensions

k̂nr
A /̂kA ≃ lim

−→
ℓ/κA

ℓ ((t))/κA ((t)),

where ℓ runs among the finite separable extensions of κA[20] (see e.g. [Ser80, Chap. II, §4, Thm. 2]). Similarly, since the
residue field of k̂A is algebraically closed of characteristic zero, then Puiseux’s theorem [Ser80, Chap. IV, §2, Prop. 8]
shows that

kA ≃ lim
−→
n≥1

k̂nr
A (t

1/n).

[20]One should be careful here because the extension k̂nr
A /̂kA is not complete in general.
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Therefore, the central extension (II.2) splits[21]. Now by the commutativity of the diagram (II.1) and the surjectivity of
its vertical arrows, we get that I is central in D as well. If we denote by r a retraction for jA, then we get a commutative
diagram

GA GA ×IA

⟲

D D ×I

(Id−r)×r

fG fG×fI

di←�(d,i) :m

Let ψ := (fG × fI) ◦ (Id − r) × r. The factorisation fG = m ◦ ψ then fits into a bigger commutative diagram with
exact rows :

0 IA GA GA/IA 0

0 I D ×I D 0

0 I D D/I 0

jA π1

fI ψ τ
i2 pr1

j
m

π

π

, (II.3)

where τ is the unique map that makes this diagram commute. Taking cohomology, we deduce a big commutative
diagram :

H3 (D ×I,Q/Z) H3 (̂kA,Q/Z(2))

ker[H3 (D ×I,Q/Z)
i∗2→ H3 (I,Q/Z)] H3 (̂kA,Q/Z(2))

H2 (D,H1 (I,Q/Z)) H2 (κA,Q/Z(1))

sD,I

ψ∗

ψ∗

.

Here, the map sD,I is defined as in §1.2 and the left and right bottom vertical maps are given by the Hoschchild-
Serre spectral sequences as discussed in §1.2 and earlier in the proof respectively. Let us give a brief explanation of
the commutativity of this diagram. The top square commutes since ψ∗ ◦ pr∗2 = r∗ ◦ f ∗

I
= 0 (by commutativity of

the previous diagram and the fact that H3 (IA,Q/Z) = 0 since cd(IA) = 1) ; for the bottom one, it comes from the
definition of ψ and the functoriality of the Hochschild-Serre spectral sequence.

Now remark that the diagram (II.3) also provides a factorisation :

ψ∗ ◦m∗ ◦ ResGD = CoreŝkAk ◦ ρ
∗ : H3 (G,Q/Z) −→ H3 ( GA,Q/Z(2)).

Together with the above diagram and fixing a suitable generator g of I, this yields a commutative diagram :

H3 (G,Q/Z) H2 (D,Q/Z)

⟲

H3 (k,Q/Z(2) H2 (κA,Q/Z(1))

𝜕D,g

𝜕A

, (II.4)

[21]If κA had positive characteristic p, we would always get a splitting since GA/IA has p-cohomological dimension ≤ 1 by [Ser97, Chap. 2, §2,
Prop. 3], so that Ext1 ( GA/IA,IA ) ≃ H2 ( GA/IA,IA ) = 0.
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so that if a class γ ∈ H3 (G,Q/Z) vanishes along the residue 𝜕D,g, then its image inH3 (k,Q/Z(2)) = H3 (C(W )G ,Q/Z(2))
must vanish along 𝜕A. Since this holds for any choice of residue, we obtain that

H3
nr (G,Q/Z) ⊆ (ρ∗)−1 (H3

nr (C(W )G/C,Q/Z(2))).

It therefore remains to show that the reverse inclusion also holds. Let H ⊂ G be a subgroup. If i ≥ 0 is an integer,
we let

Hi
gnr (G,Q/Z) := (ρ∗)−1 (Hi

nr (C(W )G/C,Q/Z(2)))
(the classes in this group are called geometrically unramified). We claim that for any morphism of groups ϖ : H → G,
the induced restrictions preserve geometrically unramified classes, that is,

ϖ ∗ (Hi
gnr (G,Q/Z)) ⊆ Hi

gnr (H,Q/Z) ∀i ≥ 0.

Indeed, if we fix a faithful complex representationV ofH , thenW also yields a representation ofH via ϖ , andV ⊕W
provides a faithful representation ; moreover the chain of field inclusions

C(W )G ⊆ C(W )H ⊆ C(V ⊕W )G

and the functoriality of unramified cohomology (see Proposition (1.5.93)) show that the image ofHi
nr (C(W )G/C,Q/Z(2))

under the induced mapHi (C(W )G ,Q/Z(2)) → Hi (C(V⊕W )H ,Q/Z(2)) is contained inHi
nr (C(V⊕W )H/C,Q/Z(2)),

as desired. Now if we fix an element g ∈ ZG (H) and I := ⟨g⟩, then by definition of the residue 𝜕H,g and the previous
remark, we can restrict ourselves to the case where G = H × I . As before, choose a faithful representation V of H and
let χ : I → C× be the character given by sending the generator g to exp(2iπ/#I). We obtain that V ⊕ χ is a faithful
representation of G, and we can identify the field of functions C(V ⊕ χ) with C(V ) (t) where t is an indeterminate.
TakingG = H×I -invariants thus yieldsC(V ⊕χ)G = C(V )H (t#I ). Now, consider the rank one discrete valuation ring
B = C(V ) (t) (t) and let A be the induced valuation ring insideC(V ⊕ χ)G . The diagram (II.4) reads in this situation :

H3 (G,Q/Z) H2 (H,Q/Z)

⟲

H3 (C(V ⊕ χ)G ,Q/Z(2) H2 (C(V )H ,Q/Z(1))

𝜕H,g

𝜕A

.

We claim that the right vertical map is injective, as this will immediately imply the desired inclusion. In order to see
this, we only need to show that the subgroup of geometrically negligible classes in H2 (G,Q/Z) is trivial. Recall that by
Serre’s lemma we have :

H2 (G,Q/Z) = ker[H2 (G,Q/Z) → H2 (C(V )G ,Q/Z)].
On the other hand, remark that we have an isomorphism of trivial G-modules Q/Z ≃ µ∞ ; moreover C×/µ∞ is a Q-
vector space, hence an injective G-module. Therefore, the long exact sequence attached to the exact sequence of trivial
G-modules

0 −→ Q/Z −→ C× −→ C×/µ∞ −→ 0

provides an isomorphism H2 (G,Q/Z) ≃ H2 (G,C×). Now, since V is an affine space we have the tautological exact
sequence

0 −→ C× −→ C(V )× −→ Div(V ) −→ 0,
and by assumption on V we know that Div(V ) is a permutation G-module. Applying Shapiro’s lemma thus yields
H1 (G,Div(V )) = 0, so in the long exact sequence attached to the above exact sequence, we obtain an injection

0 −→ H2 (G,Q/Z) −→ H2 (G,C(V )×).

But by [Ser80, Chap. X, §4, Prop. 6], we have an injectionH2 (G,C(V )×) ↩→ H2 (C(V )G ,Q/Z). Therefore, we must
also have an inclusion H2 (G,Q/Z) ↩→ H2 (C(V )G ,Q/Z), which concludes the proof. □



Chapter III

Unramified cohomology and the integral
Hodge conjecture

III.1. Setting and notations
1.1. Integral Hodge classes
— Let X be a smooth, projective and connected complex variety of dimension d. Let Z(1) := 2πiZ ⊂ C and Z(j) :=
Z(1)⊗j for j ≥ 1. As in Chapter I, §2.2, for each such j, there is a Betti cycle class

CHj (X ) −→ H2j
B (X,Z(j)),

whose image is denoted byH2j
alg (X,Z(j)). Among the the rational classes inH2j

B (X,Q(i)) = H2j
B (X,Z(i))⊗ZQ, we have

the subgroup of Hodge classes, denoted Hdg2j (X,Q(j)), which consists of the classes that have type (j, j) for the usual
Hodge decomposition ofH2j

B (X,Q(i)) ⊗QC (see e.g. [Voi03, §7.1.1]). We have a natural inclusionH2j
alg (X,Z(j)) ⊗ZQ ⊂

Hdg2j (X,Q(j)), and the Hodge conjecture asks whether this inclusion is actually an equality. This question has a
positive answer in general for j = 1 (Lefschetz theorem on (1, 1)-classes [Voi02, Thm. 7.2]) or j = d− 1 (hard Lefschetz
theorem [Voi03, Thm. 1.23]).

Definition 3.1.1. The group of integral Hodge classes of degree 2j is defined as the subgroup Hdg2j (X,Z(j)) ⊂
H2j
B (X,Z(j)) given by the inverse image of Hdg2j (X,Q(j)) in H2j

B (X,Z(j)) via the natural map from integral Betti
cohomology to rational Betti cohomology.

From this observation, we have a natural inclusion

H2j
alg (X,Z(j)) ⊂ Hdg2j (X,Z(j)).

We write Z2j (X ) := Hdg2j (X,Z(j))/H2j
alg (X,Z(j)) for the group that measures the potential failure of the integral

Hodge conjecture for codimension j cycles on X . We naturally have the equality

Z2j (X )tors = (H
2j
B (X,Z(j))/H

2j
alg (X,Z(j)))tors,

and the rational Hodge conjecture in degree 2j precisely asks whether these two groups coincide with Z2j (X ). The
integral Hodge conjecture (also called integral Hodge question) aks whether this group is zero in general. There are some
counterexamples to this question (for instance thanks to the work of Atiyah-Hirzebruch), but they are in general quite
difficult to construct. In [CTV12], a link between the unramified cohomology group H3

nr (X,Q/Z(2)) andZ4 (X ) has
been established by Colliot-Thélène and Voisin, which provides a new point of view on the integral Hodge conjecture
for cycles of codimension 2, and the techniques that can be used to measure its failure. In particular, the main result of
Colliot-Thélène and Voisin allowed them to construct unirational varieties for the which the integral Hodge conjecture
is not satisfied in codimension (or dimension) 2.

75
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1.2. Bloch-Ogus for Betti cohomology
— As explained in Chapter I, §2.2, for any complex algebraic variety X , there is a commutative diagram of sites :

Xcl X (C)

⟲

Xét XZar

δ

f

g

h ,

and we put π : Xcl → XZar for the composite morphism of sites. For a given abelian group A (seen alternatively as
a constant sheaf on Xcl) and an arbitrary integer j, we let A(j) := A ⊗Z Z(j), where Z(j) := (2πiZ)⊗j if j ≥ 0 and
Z(j) := HomZ (Z(−j),Z) otherwise. We have seen in Chapter I, §4.2 that for any i ≥ 0 and any torsion sheaf F on
Xét, Bloch-Ogus theory provides an acyclic resolution for the Zariski sheaf Hi

ét (F), which is given by the filtration
by codimension of support. As mentioned in the same paragraph, their effacement argument for étale cohomology
with torsion coefficients also applies to a wide variety of other cohomology theories. Betti cohomology is one of them.
Indeed, if we write Hi

B (A) for the Zariski sheaf associated to the presheaf U ↦→ Hi
B (X, A), then a result symmetric to

the Bloch-Ogus theorem (1.4.71) applied to this sheaf is proved in their original paper. For any closed integral subvariety
ιD : D ↩→ X , write :

Hi
B (k(D), A) := lim

−→
D⊂U

Hi
B (U,A),

where U ranges among the Zariski open subset of X that meet D. We then have the following acyclic resolution :

Theorem 3.1.2 ([BO74, Thm. 4.2]). For any abelian group A, any smooth and connected variety X overC and any
integer i ≥ 1, we have the following exact sequence of Zariski sheaves on X :

0 Hi
B (A) ιηX ∗Hi

B (k(X ), A)
⊕
D∈X (1)

ιD∗Hi−1
B (k(D), A(−1))

· · ·
⊕
D∈X (i)

ιD∗H0
B (k(D), A(−i)) 0,

where the differentials are induced by the topological residues ResD,D′ when D′ ⊂ D (and zero otherwise), ιηX :
Spec k(X ) ↩→ X is the inclusion of the generic point, and ιD : Spec k(D) ↩→ X is the inclusion of the generic point
of D.

III.2. Failure of the integral Hodge conjecture
2.1. Preliminary results
2.1.1. A generalisation of an argument of Bloch-Srinivas

— The following argument was initially discussed by Bloch and Srinivas in [BS83, Thm. 1] ; it states that the sheaves
H

p
B (Z) have no torsion for each p ≥ 1 on a general connected complex variety. However the original statement of

Bloch-Srinivas could only revolve around the2-torsion of H3
B (Z), since by that time only the Merkurjev-Suslin theorem

was known to be true. The proof of Voisin and Colliot-Thélène is roughly the same but relies on the general Bloch-
Kato conjecture proved by Voevodsky and Rost, and the Gersten conjecture for Milnor’sK -theory proved by Kerz (see
Chapter I, §3.2.2.4).
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Theorem 3.2.3. Let X be a smooth connected complex algebraic variety. For any integer i, the multiplication by an
integer n ≥ 1 on the sheaves H

p
B (Z(i)) (p ≥ 0) induces short exact sequences of Zariski sheaves :

0 −→H
p
B (Z(i))

·n−→H
p
B (Z(i)) −→H

p
B (Z/n(i)) −→ 0.

In particular, the sheaves H
p
B (Z(i)) are torsion-free.

Proof. As twists don’t really matter in Betti cohomology, we can just treat the case where i = p. The exact sequence of
abelian groups

0 −→ Z(p) ·n−→ Z(p) −→ Z/n(p) −→ 0

gives rise to a long exact sequence of Zariski sheaves :

· · · −→ R p−1π∗Z/n(p) −→ R pπ∗Z(p)
·n−→ R pπ∗Z(p) −→ R pπ∗Z/n(p) −→ · · ·

so we only have to show that the arrows R pπ∗Z(p) −→ R pπ∗Z/n(p) are surjective. We have a commutative diagram
with exact rows :

0 Z(1) OX,cl O×X,cl 1

0 Z/n(1) O×X,cl O×X,cl 1

exp

z↦→zn

(where OX,cl denotes the sheaf of continuous fonctions on X (C) and the two left vertical arrows are induced by z ↦→
exp(z/n)). Taking cohomology, we obtain a commutative diagram of sheaves

π∗O×X,cl R 1π∗Z(1)

π∗O×X,cl R 1π∗Z/n(1)

⟲ .

On the other hand, the comparison theorems between étale and Betti cohomology with torsion coefficients (see [DA73,
Exposé XI, Thm. 4.4]) show that R if∗Z/n(1) = 0 for i ≥ 1, so using the Kummer sequence

1 −→ Z/n(1) −→ O×X,cl
z↦→zn−→ O×X,cl −→ 1

on Xcl, we obtain a commutative with exact rows :

1 Z/n(1) O×X,cl O×X,cl 1

1 f∗Z/n(1) f∗O×X,cl f∗O×X,cl 1

z↦→zn

∼ ,

hence a commutative diagram of Zariski sheaves :

g∗f∗O×X,cl R 1g∗f∗Z/n(1)

g∗Gm,X R 1g∗Z/n(1)

∼⟲ .
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But since R 1f∗Z/n(1) = 0, the Grothendieck spectral sequence R pg∗R qf∗Z/n(1) ⇒ R p+qπ∗Z/n(1) shows that
the natural mapR 1g∗f∗Z/n(1) → R 1π∗Z/n(1) is an isomorphism. Therefore, up to rearranging the above diagram,
we can extend it to a bigger one :

π∗O×X,cl R 1π∗Z(1)

π∗O×X,cl R 1π∗Z/n(1)

g∗Gm,X R 1g∗Z/n(1)

∼

.

Since R 1g∗Gm,X = 0 by Grothendieck’s Hilbert 90, we get that the connecting map g∗Gm,X → R 1g∗Z/n(1) is
surjective, hence in the above diagram the mapR 1π∗Z(1) −→ R 1π∗Z/n(1) is surjective. More, we know that O×X →
g∗Gm,X is an isomorphism. We thus get that the composite map

O×X
∼−−→ g∗Gm,X −→ π∗O×X,cl −→ R 1π∗Z(1) −→ R 1π∗Z/n(1) −→ R 1g∗Z/n(1)

coincides with the natural surjection O×X → R 1g∗Z/n(1) deduced by the Kummer sequence and the direct image
functor g∗ : Sh(Xét) → Sh(XZar). Taking cup-products, we obtain a sequence of morphisms :

(O×X )⊗p −→ R pπ∗Z(p) −→ R pπ∗Z/n(p) −→ R pg∗Z/n(p),
and the composite map (O×X )⊗p → R pg∗Z/n(p) is nothing more than the composition

(O×X )⊗p −→ (R 1g∗Z/n(1))⊗p −→ R pg∗Z/n(p)
where the first map is given by the Kummer sequence. But again, the vanishing of R pf∗Z/n(p) and the Grothendieck
spectral sequence associated to f and g provide an isomorphism R pg∗Z/n(p)

∼−−→ R pπ∗Z/n(p).
We now want to show that the induced map (O×X )⊗p → R pg∗Z/n(p) is surjective. By Rost-Voevodsky’s proof of

the Bloch-Kato conjecture, we know that at for any field k together with an integer n ≥ 1 that is coprime to char(k),
we have isomorphisms KM

p (k)/n ≃ Hp (k,Z/n(p)) for p ≥ 1. Applying Kerz’s proof of the Gersten conjecture and
the Bloch-Ogus theorem, we have an isomorphism of acyclic resolutions of Zariski sheaves :

0 KM
p /n ιηX ∗KM

p (k(X ))/n · · ·
⊕

x∈X (p) ιx∗K
M
0 (κ(x))/n 0

0 H
p
ét (Z/n(p)) ιηX ∗Hp (k(X ),Z/n(p)) · · ·

⊕
x∈X (p) ιx∗H

0 (κ(x),Z/n) 0

∼ ∼

hence an induced isomorphism of sheaves KM
p /n

∼−−→H
p
ét (Z/n(p)). This yields a surjective morphism :

(O×X )⊗p ↠ (O
×
X )⊗p/n↠ KM

p /n
∼−−→H

p
ét (Z/n(p)).

We thus showed that the composite map

(O×X )⊗p −→ R pπ∗Z(p) −→ R pπ∗Z/n(p) −→ R pg∗Z/n(p)
is surjective, which forces R pπ∗Z(p) → R pπ∗Z/n(p) to be surjective as well, hence the theorem. □

Remark 3.2.4. We could also drop the smoothness assumption on the varietyX (this is implicitely done in the paper of
Voisin and Colliot-Thélène). Indeed, as explained in Chapter I, §3.2.2.4, we still have an isomorphism KM

p (OX,x)/n ≃
Hp

ét (OX,x ,Z/n(p)) for any x ∈ X , because X is defined over an infinite field ; we then obtain a surjection of sheaves
KM

p /n↠H
p
ét (Z/n(p)) which induces a surjective morphism

(O×X )⊗p −→ R pπ∗Z(p) −→ R pπ∗Z/n(p) −→ R pg∗Z/n(p)
(one should however carefully check that the morphisms considered in this composite agree with the morphism of
sheaves KM

p /n↠H
p
ét (Z/n(p)) constructed via the stalks).
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2.1.2. Decomposition of the diagonal and action of correspondences on H•B (−)

Proposition 3.2.5. Let X be a projective, smooth and connected complex variety of dimension d. Then :

(i) If there exists a closed subvariety j : Y ↩→ X of dimension r such that the pushforward j∗ CH0 (Y ) → CH0 (X )
is surjective, then there exists an integer N ≥ 1 such that H0 (X,Hp

B (A)) is annihilated by N for p > r ;

(ii) If there exists a closed subvariety j : Y ↩→ X of codimension r such that the pushforward j∗ CH0 (Y ) → CH0 (X )
is surjective, then there exists an integer N ≥ 1 such that Hp (X,Hd

B (A)) is annihilated by N for p < r ;

(iii) If X = Pd
C

, then Hp
Zar (X,H

q
B (A)) = 0 for p ≠ q and Hp (X,Hp

B (A)) = A for every p ≤ d.

Remark 3.2.6. If we specialise (i) to A = Z, then Theorem (3.2.3) shows that H
p
B (Z) is torsion-free, a fortiori the

group H0 (X,Hp
B (Z))tors is zero, hence actually H0 (X,Hp

B (Z)) = 0.

Proof. As proved in Appendix A, the correspondences act naturally on the cohomology of the sheaves Hq (A), in such
a way that composition of correspondences is compatible with this action.

Let us first prove (i). By the Bloch-Srinivas decomposition of the diagonal (1.1.18) discussed in Chapter I, §1.4.2, we
know that there exists an integer N ≥ 1 and two correspondences Γ1, Γ1 such that

N [ΔX ] = Γ1 + Γ2 ∈ CHd (X ×C X ),

where Supp(Γ1) ⊂ Y ×CX andY can be supposed of pure dimension r, and Supp(Γ2) ⊂ X ×CDwhereD is a proper
subvariety of X . The action of these correspondences on the cohomology of H

p
B (A) yields the identity :

N · Id = Γ1∗ + Γ2∗ : H0 (X,Hp
B (A)) −→ H0 (X,Hp

B (A)).

Invoking Hironaka’s theorem, we can consider resolutions of singularities D̃ → D and Ỹ → Y and corresponding
lifts of Γ1, Γ2 such that Γ1∗ factors through the restriction map

H0 (X,Hp
B (A)) −→ H0 (Ỹ ,Hp

B (A)).

On the other hand, the sheaf H
p
B (A) is identically zero on Ỹ . Indeed, since dim Ỹ < p, then for any affine open subset

U ⊂ Ỹ , we have Hp
B (U,A) = 0 by the usual vanishing of Betti cohomology in the affine case (see e.g. [Voi03, Thm.

1.22][22]) ; for a general open subsetU ⊂ X , we can always fix an affine open cover, and the claim follows from the sheaf
property. Moreover, sinceΓ2 is supported onD×CX , then the image ofΓ2∗ consists of classes with support inDwhich,
by the Gersten resolution of H

p
B (A), implies that they are zero. Thus N Id : H0 (X,Hp

B (A)) −→ H0 (X,Hp
B (A)) is

the zero map.
By permuting the factors in the Bloch-Srinivas decomposition of [ΔX ] ∈ CHd (X ×C X ), we can now assume

that Γ1 is supported on D ×C X with D a proper closed subvariety, and Γ2 is supported on X ×C Y with Y of pure
codimension r. As before, by looking at the action of correspondences on the cohomology of Hd

B (A), we obtain that

N · Id = Γ1∗ + Γ2∗ : H
p
Zar (X,H

d
B (A)) −→ Hp

Zar (X,H
d
B (A)).

Once again, by Hironaka’s theorem, we have desingularisations D̃→ D and Ỹ → Y and corresponding lifts of Γ1 and
Γ2 so that Γ1∗ factors through

Hp
Zar (X,H

d
B (A)) −→ Hp

Zar (D̃,H
d
B (A)).

But this map is zero by the same argument as before, since dimD < d. On the other hand, Γ2∗ factors through

j̃∗ : H
p−r
Zar (Ỹ ,H

d−r
B (A)) −→ Hp

Zar (X,H
d
B (A)),

[22]This is more or less given by Artin’s version of the weak Lefschetz theorem, combined with Poincaré duality.



80 Chapter III :Unramified cohomology and the integral Hodge conjecture

where j̃ denotes the composite map Ỹ → Y ↩→ X . As p < r, we have that Hp
Zar (X,H

d
B (A)) = 0, so Γ2∗ is zero as well.

This proves (ii).
If X = Pd

C
, as discussed in Chapter I, §1.4, Examples (1.1.10), we have a decomposition

[ΔX ] =
d∑︁
i=0

hi1h
d−i
2

where hj := pr∗j c1 (OPd
C
(1)) for j = 1, 2. As a consequence, if we pick a class α ∈ Hp

Zar (X,H
q
B (A)), then we have

[ΔX ]∗α =
∑d
i=0 (hi1hd−i2 )∗α. If we write ji : Xi := PiC ↩→ Pd

C
for the canonical inclusion and πi : PiC → {★} for the

constant map, then hi1h
d−i
2 is the class of Xd−i ×C Xi in Pd

C
×C PdC, so that we have the identity :

(hi1hd−i2 )∗α = ji∗ (π∗i (πd−i∗ (j∗d−iα))).

As πd−i∗ ◦ j∗d−i is identically zero onHp
Zar (X,H

q
B (A)) for p ≠ q, we thus get the vanishing ofHp

Zar (X,H
q
B (A)) for these

choices of p and q. The assertion Hp
Zar (X,H

p
B (A)) = A for p ≤ d results from the same arguments, so (iii) is proved. □

2.2. Proof of the main results
2.2.1. Unramified cohomology of degree 3 with torsion coefficients and failure of the integral Hodge con-

jecture in degree 4

— We first discuss the integral Hodge question for codimension 2 cycles on X . Indeed, the Leray spectral sequence
with Z(2)-coefficients associated to the morphism of sitesXcl → XZar has no nonzero term under the diagonal thanks
to Bloch-Ogus theory. Therefore, by considering the lower terms in the first quadrant, we can derive an interesting
short exact sequence :

Theorem 3.2.7 (Colliot-Thélène-Voisin [CTV12, Thm. 3.7]). Let X be a smooth, projective and connected com-
plex variety. For any integer n ≥ 1, we have a short exact sequence :

0 −→ H0 (X,H3
B (Z(2)))/n −→ H0 (X,H3

B (Z/n(2))) −→ Z4 (X ) [n] −→ 0.

Proof. Consider the Leray spectral sequence :

Ep,q2 = Hp
Zar (X,H

q
B (Z(2))) ⇒ Hp+q

B (X,Z(2)).

As usual, sinceX is smooth, we know by Bloch-Ogus theory for Betti cohomology that the Ep,q2 -terms vanish for p > q,
so that among the E2-terms of degree 4, no nonzero differential starts from E2,2

2 or E1,3
2 , and no nonzero differential

arrives at E1,3
2 or E0,4

2 . This implies that

E2,2
2 ↠ coker[E2,2

2 → E4,1
2 ] = E2,2

∞ , E1,3
2 = E1,3

∞ and E0,4
∞ = ker[E0,4

2 → E2,3
2 ] ⊂ E

0,4
2 ,

so that there is a natural composite map

CH2 (X )/alg −→ E2,2
∞ ⊂ H4

B (X,Z(2))

whose image is the deepest level F 2 H4
B (X,Z(2)) in the Leray filtration which, by Bloch-Ogus theory, coincides with

the coniveau filtration. This identification on the respective filtration also allows us to identify this map with the cycle
class cℓ2, so that coker[E2,2

2 → H4
B (X,Z(2))] = H4

B (X,Z(2))/H
4
alg (X,Z(2)). But this group has a filtration coming

from the Leray spectral sequence, whose graded pieces are

E1,3
∞ = H1

Zar (X,H
3
B (Z(2))) and E0,4

∞ ⊂ H0 (X,H4
B (Z(2))).
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As H0 (X,H4
B (Z(2))) is torsion-free, we obtain an isomorphism

Z4 (X ) [n] = (H4
B (X,Z(2))/H

4
alg (X,Z(2))) [n] = H1

Zar (X,H
3
B (Z(2))) [n].

Finally, the short exact sequence of sheaves 0 → H3
B (Z(2)) → H3

B (Z(2)) → H3
B (Z/n(2)) → 0 provides an

isomorphism

H1
Zar (X,H

3
B (Z(2))) [n] ≃

H0 (X,H3
B (Z/n(2)))

coker[H0 (X,H3
B (Z(2)))

·n→ H0 (X,H3
B (Z(2)))]

,

hence the desired exact sequence. □

2.2.1.1. Relating integral and rational Hodge classes. The exact sequence obtained earlier is not completely
satisfying, because we cannot control the group H0 (X,H3

B (Z(2)))/n in general. Moreover, it only provides informa-
tion on the torsion classes in Z4 (X ). Under the assumption that CH0 (X ) is supported on a surface, we can however
make use of the following celebrated classical result, due to Bloch and Srinivas :

Theorem 3.2.8 (Bloch-Srinivas [BS83, Thm. 1, (iv)]). Let X be a smooth and projective complex variety such that
there exists a closed subvariety j : Y ↩→ X of dimension ≤ 3, such that the proper pushforward j∗ : CH0 (Y ) →
CH0 (X ) is surjective. Then the (rational) Hodge conjecture holds for cycles of codimension 2 on X.

Remark 3.2.9. As codimension 2 cycles on a variety of dimension 3 are precisely 1-dimensional cycles, then the ra-
tional Hodge conjecture on Y as above is a direct consequence of the Lefschetz theorem on (1, 1)-classes and the hard
Lefschetz theorem. Bloch and Srinivas then considered a suitable decomposition of the diagonal [ΔX ] = Γ1 + Γ2 ∈
CHdimX (X ×C X ) and observed that the action of the correspondences Γ1 and Γ2 on H4

B (X,Q) sends Hdg4 (X,Q) to
H4

alg (X,Z) ⊗Z Q.

Theorem 3.2.10 (Colliot-Thélène-Voisin [CTV12, Thm. 3.8]). Let X be a smooth, projective and connected com-
plex variety such that there exists a closed subvariety j : Y ↩→ X that is smooth, projective and connected of dimension
≤ 3 and such that j∗ : CH0 (Y ) → CH0 (X ) is surjective. Then Z4 (X ) is a finite group, and there is a short exact
sequence :

0 −→ H0 (X,H3
B (Z(2))) ⊗Z Q/Z −→ H0 (X,H3

B (Q/Z(2))) −→ Z4 (X ) −→ 0.

Proof. The previous theorem shows that the rational Hodge conjecture for codimension 2 cycles holds for X , so that
Z4 (X ) = H4

B (X,Z(2))/H
4
alg (X,Z(2)) is a torsion group (every Hodge class in Hdg4 (X,Z(2)) is equal to an algebraic

class up to a rational factor). The statement is thus directly obtained by taking the direct limit of the short exact se-
quences displayed in Theorem (3.2.7). □

Corollary 3.2.11. Let X be a smooth, projective and connected complex variety such that there exists a closed subvariety
j : Y ↩→ X that is smooth, projective and connected of dimension 2 and such that j∗ : CH0 (Y ) → CH0 (X ) is
surjective. Then Z4 (X ) is finite and there is an isomorphism

Z4 (X ) ∼−−→ H3
nr (X,Q/Z(2)).

Proof. By Proposition (3.2.5), we know that H0 (X,H3
B (Z(2))) is annihilated by some integer N ≥ 1, so that in the

exact sequence

0 −→ H0 (X,H3
B (Z(2))) ⊗Z Q/Z −→ H0 (X,H3

B (Q/Z(2))) −→ Z4 (X ) −→ 0

provided by the above theorem, the group H0 (X,H3
B (Z(2))) ⊗Z Q/Z is zero. □
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Remark 3.2.12. Note that the proof of Colliot-Thélène and Voisin heavily relies on Rost-Voevodsky’s proof of the
Bloch-Kato conjecture ; Kahn later showed in [Kah12] that Bloch-Kato in degree 2, i.e. the Merkurjev-Suslin theorem,
suffices to prove the result, using Jannsen’s formalism of continuous ℓ -adic cohomology. However both approaches
use the Gersten conjecture proven by Bloch-Ogus. In a very recent paper [Sch23], Schreieder introduced the notion
of refined unramified homology of varieties and proved comparison theorems that identify some of these groups with
groups of algebraic cycles. In particular, he provided a simpler argument that does not need Bloch-Kato in any degree
and which does not make use of the Gersten conjecture. Actually, the proof he presented generalizes quite easily to give
a similar result in arbitrary codimension and in fact on possibly singular schemes (see [Sch23, Thm. 7.7]).

2.2.2. Failure of the integral Hodge conjecture in degree 2d − 2

— Similarly to codimension 2 cycles, one can identify the group Z2d−2 (X ) (parametrising the obstruction to the
integral Hodge conjecture for cycles of dimension 2 on X ) with a suitable Zariski cohomology group of the sheaf
HdimX

B (Q/Z). The arguments are essentially symmetric to the ones we discussed earlier :

Theorem 3.2.13. Let X be a smooth, projective and connected complex variety of dimension d. Then there is an exact
sequence

0 −→ Hd−3
Zar (X,H

d
B (Z(d − 1))) ⊗Z Q/Z −→ Hd−3

Zar (X,H
d
B (Q/Z(d − 1))) −→ Z2d−2 (X ) −→ 0,

where Z2d−2 (X ) is finite.

Proof. By Theorem (3.2.3), we have a short exact sequence of Zariski sheaves

0 −→Hd
B (Z(d − 1))

·n−→Hd
B (Z(d − 1)) −→Hd

B (Z/n(d − 1)) −→ 0

which, by taking cohomology, yields a short exact sequence

0 −→ Hd−3
Zar (X,H

d
B (Z(d − 1)))/n −→ Hd−3

Zar (X,H
d
B (Z/n(d − 1))) −→ Hd−2

Zar (X,H
d
B (Z(d − 1))) [n] −→ 0.

Passing to the limit over all n ≥ 1, we obtain a short exact sequence :

0 −→ Hd−3
Zar (X,H

d
B (Z(d − 1))) ⊗Z Q/Z −→ Hd−3

Zar (X,H
d
B (Q/Z(d − 1))) −→ Hd−2

Zar (X,H
d
B (Z(d − 1)))tors −→ 0.

(III.1)
As in the proof of Theorem (3.2.7), The Leray spectral sequence

Ep,q2 = Hp
Zar (X,H

q
B (Z(d − 1)) ⇒ Hp+q

B (X,Z(d − 1))

has nonzero terms only in the cone {Ep,q2 | 0 ≤ p ≤ q ≤ d}, so that we obtain an exact sequence

Ed−3,d2 −→ Ed−1,d−12 −→ Ed−1,d−1∞ −→ 0.

On the other hand, the image of

Ed−1,d−12 = CHd−1 (X )/alg −→ Ed−1,d−1∞ = F d−1 H2d−2
B (X,Z(d − 1))

is the deepest level in the Leray filtration which coincides with the coniveau filtration, so this map is precisely the cycle
class cℓd−1. The next term in the filtration of H2d−2

B (X,Z(d − 1)) is given by Ed−2,d∞ which has a surjection by Ed−2,d2 ,
so we obtain an exact sequence :

Hd−3
Zar (X,H

d
B (Z(d − 1))) −→ CHd−1 (X )/alg

cℓd−1−→ H2d−2
B (X,Z(d − 1)) −→ Hd−2

Zar (X,H
d
B (Z(d − 1))) −→ 0.

By the hard Lefschetz theorem and the Lefschetz theorem on (1, 1)-classes, see e.g. [Voi03, Thm. 1.23] and [Voi02, Thm.
7.2] respectively, we know that Z2d−2 (X ) is finite and coincides with the torsion of the cokernel of CHd−1 (X )/alg→
H2d−2
B (X,Z(d − 1)) which is, by the exact sequence (III.1), equal to Hd−2

Zar (X,H
d
B (Z(d − 1)))tors. □
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Corollary 3.2.14. Let X be a smooth, projective and connected complex variety of dimension d such that there exists a
closed subvariety j : Y ↩→ X that is smooth, projective and connected of dimension 2 and such that j∗ : CH0 (Y ) →
CH0 (X ) is surjective. Then we have an isomorphism of finite groupd

Hd−3
Zar (X,H

d
B (Q/Z(d − 1))

∼−−→ Z2d−2 (X ).

Proof. Under the above hypotheses and by Proposition (3.2.5), the group Hd−3
Zar (X,H

d
B (Z(d − 1)) is torsion, so this is a

direct consequence of the previous theorem. □

2.3. Some examples obtained through K-theory
— One can apply the results of Colliot-Thélène and Voisin discussed earlier in this chapter in various cases, especially
for studying the geometry and the arithmetic of «good» varieties ; notably, one can discuss the vanishing of the group
H3

nr (X,Q/Z(2)) when one considers families of varieties X → B over a base of low dimension (the example one
should have in mind is a fibration over a smooth, projective and connected curve). Indeed, by controlling the unramified
cohomology at the level of the generic fibre, it is possible to deduce some interesting results on the family itself.

2.3.1. Unramified cohomology under fibrations

— Let X and B be two smooth, projective and connected complex varieties and f : X → B a dominant morphism
whose generic fibre is smooth and connected. Let F := k(B) and write X := X ×B F . Comparing the Bloch-Ogus
resolutions for the sheaf H3

ét (Z/n(2)) on X and X respectively, we obtain a natural injection H3
nr (X,Z/n(2)) ↩→

H3
nr (X,Z/n(2)) for each integer n ≥ 1. If we thus manage to determine the vanishing of H3

nr (X,Q/Z(2)), then
Theorem (3.2.7) implies that Z4 (X)tors = 0.

Let F be a field of characteristic zero, X a smooth, projective and geometrically connected variety over F . A first
interesting case is the one where X is a quadric :

Theorem 3.2.15 (Kahn, Rost, Sujatha [KRS98, Thm. 5, Cor. 10]). Let Q be a smooth quadric of dimension at
least 1 over F , that is not an Albert form (that is, given by a quadratic form of rank6 of the form ⟨a, b, ab,−c,−d,−cd⟩).
Then the restriction map

H3
nr (F,Q/Z(2)) −→ H3

nr (Q,Q/Z(2))

is surjective[23]

When cd(F ) ≤ 2, we obtain in particular that H3
nr (Q,Q/Z(2)) = 0 unless Q is an Albert quadric. Actually, if Q

arises as the generic fibre of a dominant morphism to a surface, then H3
nr (Q,Q/Z(2)) always vanishes :

Corollary 3.2.16. Let X → B be a dominant morphism of smooth, projective and connected complex varieties where
dimB = 2, and whose generic fibre is a quadric X of dimension at least 1. Then H3

nr (X,Q/Z(2)) = 0, a fortiori
Z4 (X) = 0.

Proof. If dimX ∈ {1, 2}, then X cannot be an Albert quadric, so the previous theorem provides the vanishing
H3

nr (X,Q/Z(2)) = 0. If X has dimension at least 3, then it admits a k(B)-point ; since B is a surface, then k(B) is
a C2-field, so this implies that X is birational to a projective space Pd

k(B) over k(B), and by the stable birational invari-
ance of unramified cohomology, we have an isomorphism

H3
nr (X,Q/Z(2))

∼−−→ H3
nr (Pdk(B) ,Q/Z(2))

∼−−→ H3 (k(B),Q/Z(2)),

and the latter vanishes since cd(k(B)) = 2. Hence in any case, we have an injectionH3
nr (X,Q/Z(2)) ↩→ H3

nr (X,Q/Z(2))
and the latter is zero. □

[23]This theorem actually holds in any characteristic different from 2, one just has to replace the coefficientsQ/Z(2) by lim
−→

gcd(n,char F )=1

Z/n(2) .
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2.3.2. Varieties over a field of cohomological dimension one

2.3.2.1. Galois descent for cycles of codimension 2. It is well-known that for a proper, geometrically reduced
and geometrically connected variety over a field F , one has an exact sequence :

0 −→ Pic(X ) −→ Pic(X )ΓF −→ Br(F ) −→ ker[Br(X ) → Br(X )] −→ H1 (F,Pic(X )) −→ H3 (F, F ×s )

(this is nothing more than the exact sequence of lower terms of the Leray spectral sequenceEp,q2 = Hp (F,Hq
ét (X,Gm)) ⇒

Hp+q
ét (X,Gm), together with the fact that H0 (X,Gm) = F ×s under the above hypotheses on X ). In particular, the nat-

ural map Pic(X ) → Pic(X )ΓF is always injective, and its cokernel is controlled by the constant classes in Br(X ).
However, if we instead consider codimension 2 cycles on X , then the corresponding map is in general neither injective
nor surjective. In this paragraph, under the assumption that cd(F ) ≤ 1 (and supposing that char(F ) = 0 for conve-
nience about torsion problems), we explain how to derive a similar exact sequence for codimension 2 cycles on X by
replacing the Brauer group with unramified cohomology of degree 3.

Proposition 3.2.17. Let X be a geometrically integral variety over F .

(i) There exists a natural isomorphism :

ker[H3 (k(X ),Q/Z(2)) → H3 (k(X ),Q/Z(2))] ∼−−→ H2 (F, K2 (k(X ))).

(ii) If X is furthermore smooth, then this isomorphism induces an isomorphism :

ker[H0 (X,H3
ét (Q/Z(2))) → H0 (X,H3

ét (Q/Z(2)))]
∼−−→ ker

[
H2 (F, K2 (k(X ))) → H2 (F, ⊕

x∈X (1)K1 (κ(x)))
]
.

Proof. By the Merkurjev-Suslin theorem (Bloch-Kato in degree 2), the Galois symbol provides a ΓF -equivariant iso-
morphism K2 (k(X )) ⊗Z Q/Z

∼−−→ H2 (k(X ),Q/Z(2)). On the other hand, we have the tautological exact sequence
defining torsion :

0 −→ K2 (k(X ))tors −→ K2 (k(X )) −→ K2 (k(X )) ⊗Z Q −→ K2 (k(X )) ⊗Z Q/Z −→ 0,

which we can split into two short exact sequences of ΓF -modules

0 −→ K2 (k(X ))tors −→ K2 (k(X )) −→ L −→ 0

and
0 −→ L −→ K2 (k(X )) ⊗Z Q −→ K2 (k(X )) ⊗Z Q/Z −→ 0.

Taking the long exact cohomology sequence associated to the second one, and using the fact that K2 (k(X )) ⊗Z Q is
acyclic, we obtain an isomorphism H1 (F, K2 (k(X )) ⊗Z Q/Z)

∼−−→ H2 (F, L). On the other hand, the first sequence
provides an exact portion

H2 (F, K2 (k(X ))tors) −→ H2 (F, K2 (k(X ))) −→ H2 (F, L) −→ H3 (F, K2 (k(X ))tors),

and the side terms are zero since cd(F ) ≤ 1. Therefore, we obtain an isomorphism

H2 (F, K2 (k(X )))
∼−−→ H1 (F, K2 (k(X )) ⊗Z Q/Z).

Taking these identifications in account, the Hochschild-Serre spectral sequence

Ep,q2 = Hp (F,Hq (k(X,Q/Z(2)))) ⇒ Hp+q (k(X ),Q/Z(2))

provides a homomorphism

ker[H3 (k(X ),Q/Z(2)) → H3 (k(X ),Q/Z(2))] −→ H1 (F,H2 (k(X ),Q/Z(2)))).



§III.2. Failure of the integral Hodge conjecture 85

Indeed, we have an exact sequence

0 −→ F 1 H3 (k(X ),Q/Z(2))
F 2 H3 (k(X ),Q/Z(2))

−→ E1,2
2 −→ E3,1

2 ,

and the right term is zero since cd(F ) = 1 ; moreover we have an exact sequence

0 −→ F 1 H3 (k(X ),Q/Z(2)) −→ H3 (k(X ),Q/Z(2)) −→ E0,3
∞ −→ 0

where E0,3
∞ = ker[E0,3

2 → E2,2
2 ] = E0,3

2 . From this we also see that the desired morphism is bijective, hence the first
claim of the proposition.

Now let us assume that X is smooth over F . If we fix a point x ∈ X (1) , one can look at the semi-local ring OX,x at
the points of X above x. By Hoobler’s trick (see Chapter I, §3.2.2.4), we have a ΓF -equivariant isomorphism

K2 (OX,x) ⊗Z Q/Z
∼−−→ H2

ét (OX,x ,Q/Z(2)).

By the same arguments as before, we have an isomorphism :

ker[H3
ét (OX,x ,Q/Z(2)) → H3

ét (OX,x ,Q/Z(2))]
∼−−→ H2 (F, K2 (OX,x)).

On the other hand, as x has codimension 1 in X , we know that Quillen’s proof of the Gersten conjecture (Chapter I,
§3.2.2.2, Theorem (1.3.59)) applied to OX,x provides a short exact sequence of ΓF -modules

0 −→ K2 (OX,x) −→ K2 (k(X )) −→ F ⊗F κ(x) −→ 0.

Therefore, the kernel of
H2 (F, K2, (k(X ))) −→ H2 (F, ⊕x∈X (1) F ⊗F κ(x))

can be identified with the subgroup ofH2 (F, K2 (k(X ))) consisting of elements that lie in the image ofH2 (F, K2 (OX,x))
for every x ∈ X (1) . By Bloch-Ogus theory (Chapter I, §4.2.1, Corollary (1.4.73)), we know that H0 (X,H3

ét (Q/Z(2)))
consists of the classes in H3 (k(X ),Q/Z(2)) that lie in the image of H3

ét (OX,x ,Q/Z(2)) for every x ∈ X (1) . This
shows that the two kernels ker[H0 (X,H3

ét (Q/Z(2))) → H0 (X,H3
ét (Q/Z(2)))] and ker

[
H2 (F, K2 (k(X ))) →

H2 (F, ⊕
x∈X (1)K1 (κ(x)))

]
are equal. □

Theorem 3.2.18 (Compare [CTS21, §5.4.1, (5.20)]). LetX be a smooth, projective and geometrically integral variety
over F . There exists an exact sequence :

0 ker[CH2 (X ) → CH2 (X )ΓF ] H1 (F,H1
Zar (X,K2))

ker[H3
nr (X,Q/Z(2)) → H3

nr (X,Q/Z(2))] coker[CH2 (X ) → CH2 (X )ΓF ] 0.

Proof. If E/F is a Galois extension with group G and V is a general smooth and geometrically integral variety over F ,
then by Theorem (1.3.59) the homology of the complex

0 −→ K2 (k(VE)) −→
⊕
x∈V (1)E

K1 (κ(x)) −→
⊕
x∈V (2)E

K0 (κ(x)) −→ 0

in degree i is precisely Hi
Zar (XE ,K2). If we denote byZ the kernel of the second arrow and I its image, then we obtain

three short exact sequences of G-modules

0 −→ Z −→
⊕
x∈V (1)E

κ(x)× −→ I −→ 0,
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and
0 −→ K2 (k(VE))

H0 (VE ,K2)
−→ Z −→ H1

Zar (VE ,K2) −→ 0

and
0 −→ I −→

⊕
x∈V (2)E

Z −→ CH2 (VE) −→ 0.

On the other hand,
H1 (G, ⊕x∈V (2)Z) = H1 (G, (⊕x∈V (2)E

Z)G) = 0

by Shapiro’s lemma (see [GS17, Cor. 3.3.2]). Similarly, by Hilbert 90 and Shapiro’s lemma we have thatH1 (G, ⊕x∈V (2)E
κ(x)×) =

0. Taking the long exact sequences associated to the three previous exact sequences (and using Bloch’s formulaH2 (V,K2) ≃
CH2 (V )), we obtain two exact portions :

0 −→ H1 (G, Z) −→ CH2 (V ) −→ CH2 (VE)G −→ H1 (G, I) −→ 0

and
0 −→ H1 (G, I) −→ H2 (G, Z) −→ H2 (G, ⊕x∈V (1)E

κ(x)×).

Passing to the limit over all Galois subextensions of F/F , we deduce the same result for E = F . Now let us specialise
this to a varietyX as in the theorem. By [CTR85, Thm. 1.8], we know thatH0 (X,K2) is the extension of a finite group
by a divisible group, and similarly for H1

Zar (X,K2) (see [CTR85, Thm. 2.2]), we have an extension

0 −→ D −→ H1
Zar (X,K2) −→

⊕
ℓ prime

H3
ét (X,Zℓ (2)){ℓ} −→ 0,

where D is divisible and the right hand side is finite (as X is smooth, proper and connected over a separably closed
field, this follows by smooth base change [Mil80, Chap. VI, Cor. 4.2] and comparison with Betti cohomology). In
particular, as cd(F ) ≤ 1, then we obtain the vanishing of Hr (F,Hi

Zar (X,K2)) for i = 0, 1 and r ≥ 2. On the other
hand, a version of Hilbert 90 for K2 (see [GS17, Thm. 8.4.1]) shows that H1 (F, K2 (k(X ))) = 0, so that the map
H2 (F, K2 (k(X ))) → H2 (F, K2 (k(X )))/H0 (X,K2) is an isomorphism. Putting everything together, we derive an
exact sequence :

0 −→ H1 (F, Z) −→ H1 (F,H1
Zar (X,K2)) −→ H2 (F, K2 (k(X ))) −→ H2 (F, Z) −→ 0,

where the left term is identified withker[CH2 (X ) → CH2 (X )]. We have a mapH2 (F, K2 (k(X ))) → H2 (F, ⊕
x∈X (1) κ(x)

×)
induced by residues in codimension 1, which therefore induces a mapH2 (F, Z) → H2 (F, ⊕

x∈X (1) κ(x)
×) and provides

the exact sequence :

0 ker[CH2 (X ) → CH2 (X )ΓF ] H1 (F,H1
Zar (X,K2))

ker[H2 (F, K2 (k(X ))) → H2 (F, ⊕
x∈X (1) κ(x)

×)] ker[H2 (F, Z) → H2 (F, ⊕
x∈X (1) κ(x)

×)] 0,

which is precisely the exact sequence we are looking for (indeed, the previous proposition provides the desired inden-
tifications). □

2.3.2.2. Controlling K2-cohomology. In order to understand the map CH2 (X ) → CH2 (X )ΓF in the above
theorem, the subsidiary problem is to control the group H1

Zar (X,K2). Thanks to the work of Colliot-Thélène and
Raskind in [CTR85], we have the following result (note that the first point below was used in the proof of the previous
theorem) :
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Theorem 3.2.19 (Colliot-Thélène-Raskind [CTR85, Thm. 2.1, Thm. 2.2, Thm. 2.12]). Let X be a smooth,
projective and geometrically integral variety over F , and M :=

⊕
ℓ prime H

3
ét (X,Zℓ (2)){ℓ}. Then :

(i) There exists a natural exact sequence

0 −→ D −→ H1
Zar (X,K2) −→M −→ 0,

where M is finite and D is divisible.

(ii) For every prime number ℓ, there exists a natural isomorphism :

H2
ét (X,Qℓ/Zℓ (2))

∼−−→ H1
Zar (X,K2){ℓ}.

(iii) If K (resp. C) denotes the kernel (resp. cokernel) of the natural map Pic(X ) ⊗ F × → H1 (X,K2), then under
the hypothesis H2 (X,OX ) = 0, the group K is uniquely divisible (resp. C is the direct sum ofM and a uniquely
divisible group).

Remark 3.2.20. In particular, if there exists an integer i ≥ 1 such that cd(F ) ≤ i, then the groups Hr (F,H0 (X,K2))
and Hr (F,H1

Zar (X,K2)) are zero for r ≥ i + 1.

If we thus assume that H2 (X,OX ) = 0 (for instance if X is rationally connected, see e.g. [Deb01, Cor. 4.18] for a
proof of this claim), then we can precisely describe the groups arising in the long exact sequence of Theorem (3.2.18) as
follows :

Corollary 3.2.21 (Colliot-Thélène-Voisin). Let X be a smooth, projective and geometrically integral variety over F
such that H2 (X,OX ) = 0. There is an exact sequence :

0 ker[CH2 (X ) → CH2 (X )ΓF ] H1 (F,
⊕

ℓ prime H
3
ét (X,Zℓ (2)){ℓ})

ker[H3
nr (X,Q/Z(2)) → H3

nr (X,Q/Z(2))] coker[CH2 (X ) → CH2 (X )ΓF ] 0.

Remark 3.2.22. The same exact sequence arises unconditionally if we replace F by a finite field k. However the proof
crucially relies on the finiteness of CH2 (X )tors, and the latter fact has been proved thanks to the finiteness results of
Deligne for ℓ -adic cohomology (Weil conjectures, with twisted coefficients). Indeed, using a Hochschild-Serre spectral
sequence, one shows that if j ≠ 2i, 2i + 1, then Hj

ét (X,Qℓ (i)) = 0 and Hj
ét (X,Qℓ/Zℓ (i)) is finite (the second fact is

also proven in [Del77, Th. finitude]). On the other hand CH2 (X ){ℓ} is a sub-quotient of H3
ét (X,Qℓ/Zℓ (2)) (this

is essentially given by Bloch-Ogus theory, see [CT93, Thm. 3.2.2]) so it is finite, and there are finitely many prime
numbers ℓ ≠ char(k) such that H3

ét (X,Qℓ/Zℓ (2)) ≠ 0. Finally, if p = char(k), then Gabber showed that the p-torsion
of CH2 (X ) is always finite, but the argument is more delicate (it uses the crystalline comparison theorem of Illusie on
the de Rham-Witt complex together with a result of Bloch-Gabber-Kato), see [CTSS83, §1.4] for details.

Proof. This essentially directly follows from the above theorem. Indeed, keeping the corresponding notations, we have
an exact sequence of ΓF -modules

0 −→ K −→ Pic(X ) ⊗ F × −→ H1
Zar (X,K2) −→ C −→ 0

(whereK is uniquely divisible andC = M ⊕ C ′ whereM =
⊕

ℓ prime H
3
ét (X,Zℓ (2)){ℓ} andC ′ is uniquely divisible),

which we can break into two exact sequences

0 −→ K −→ Pic(X ) ⊗ F × −→ R −→ 0

and
0 −→ R −→ H1

Zar (X,K2) −→ C −→ 0
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where R is divisible. As X is smooth and proper, we have the usual short exact sequence

0 −→ Pic0
X/F (F ) −→ Pic(X ) −→ NS(X ) −→ 0

which gives a long exact sequence

· · · −→ Tor1 (NS(X ), F ×) −→ Pic0
X/F (F ) ⊗ F

× −→ Pic(X ) ⊗ F × −→ NS(X ) ⊗ F × −→ 0.

We therefore deduce two short exact sequences

0 −→ P −→ Pic0
X/F (F ) ⊗ F

× −→ Q −→ 0

and
0 −→ Q −→ Pic0

X/F (F ) ⊗ F
× −→ NS(X ) ⊗ F × −→ 0

where P is finite and Q is divisible. Now remark that Pic0
X/F
(F ) ⊗ F × is uniquely divisible as a tensor product of two

divisible groups, so it is cohomologically acyclic. Moreover, since cd(F ) ≤ 1, then for any ΓF -module W that is finite
or divisible, we have H2 (F,W ) = 0 ; we also have that

H1 (F,NS(X ) ⊗ F ×) = H1 (F, (NS(X )/NS(X )tors) ⊗ F
×) = 0

because (NS(X )/NS(X )tors) ⊗ F
×

is a torus (since NS(X ) is finitely generated) and cd(F ) ≤ 1, see e.g. [Ser97, Chap.
III, §2.2, Thm. 1]. Therefore, taking the long exact cohomology sequences associated to the two previous exact se-
quences, we obtain that H1 (F, Q) = 0, thus H1 (F,Pic(X ) ⊗ F ×) = 0. Similarly, as K is uniquely divisible and given
the previous vanishing, we obtain that H1 (F, R) = H2 (F, R) = 0. Finally, taking the long exact cohomology sequence

· · · −→ H1 (F, R) −→ H1 (F,H1
Zar (X,K2)) −→ H1 (F, C ′) ⊕ H1 (F,M) −→ H1 (F, R) −→ · · · ,

we obtain an isomorphism H1 (F,H1
Zar (X,K2))

∼−−→ H1 (F,M), hence the desired result. □

2.3.2.3. Some vanishing results. We now discuss the vanishing of H1 (F,
⊕

ℓ H
3
ét (X,Zℓ (2)){ℓ}). It is well-

known that the coefficient group
⊕

ℓ H
3
ét (X,Zℓ (2)){ℓ} is closely related to the Brauer group of X , a fortiori to the

geometry of X (e.g. the vanishing of H2 (X,OX )), see [CTS21, Chap. 5, §5.1–§5.5] for a detailed treatment. When X is
(stably) rational, one can then describe the cokernel of CH2 (X ) → CH2 (X )ΓF in terms of H3

nr (X,Q/Z(2)).

Corollary 3.2.23 (Colliot-Thélène-Voisin). Let X be a smooth, projective and geometrically integral variety over
F . Then :

(i) If Br(X ) = 0, then we have an exact sequence :

0 −→ CH2 (X ) −→ CH2 (X )ΓF −→ H3
nr (X,Q/Z(2)) −→ H3

nr (X,Q/Z(2)).

(ii) If (furthermore) X is rational, then we have an exact sequence :

0 −→ CH2 (X ) −→ CH2 (X )ΓF −→ H3
nr (X,Q/Z(2)) −→ 0.

(iii) IfX is rationally connected of dimension3and such thatH3
B (X,Z) is torsion-free, then we have an exact sequence

0 −→ CH2 (X ) −→ CH2 (X )ΓF −→ H3
nr (X,Q/Z(2)) −→ 0.
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Proof. First note that we have an extension

0 −→ (Q/Z)b2−ρ −→ Br(X ) −→
⊕
ℓ prime

H3
ét (X,Zℓ (1)){ℓ} −→ 0

where ρ := rk NS(X ) and b2 := rkH2
B (X,Z), see e.g. [CTS21, Prop. 5.2.9] for a proof of this claim. Therefore, the

vanishing of Br(X ) ensures (in characteristic 0) that b2 = ρ, which is equivalent to the fact that H2 (X,OX ) = 0
(the exponential sequence provides an exact portion 0 −→ NS(X ) −→ H2

B (X,Z) −→ H2 (X,OX ) ; the converse
implication follows from Hodge theory, see e.g. [Voi02, Thm. 7.2]), so the previous corollary applies and (i) holds.
Now, the conditions Br(X ) = 0 andH3

nr (X,Q/Z(2)) = 0 are satisfied whenX is rational since both groups are (stable)
birational invariants of smooth and proper connected varieties (for the Brauer group, see [CTS21, Cor. 6.2.11] ; for
unramified cohomology, this has been discussed in Chapter I, §5.1.3.2, Corollary (1.5.98)). Therefore, the exact sequence
in (i) arises as soon as X is stably rational, and we obtain (ii). Finally, if X is rationally connected, then H2 (X,OX ) = 0
(see [Deb01, Cor. 4.18]). In particular, the invariance of étale cohomology under separably closed extensions (cf. [Mil80,
Chap. VI, Cor. 4.3] ) and the usual comparison with Betti cohomology provide an inclusion

Br(X ) ≃
⊕
ℓ prime

H3
ét (X,Zℓ (1)){ℓ} ↩→ H3

B (X,Z)tors = 0,

so we have an exact sequence as in (i). Now it is a (highly) non-trivial result that a rationally connected threefold X
verifies H3

nr (X,Q/Z(2)) = 0 (see [CTV12, Cor. 6.2] for more details[23]). □

2.3.2.4. The case of surfaces. Let X be a variety over an arbitrary field k. The index of X is defined as the integer
I (X ) := gcd{degk z | z ∈ CH0 (X )} (one can alternatively only consider the gcd of the degrees over k of all the closed
points onX ). By definition, we thus have that I (X ) = 1 if and only ifX admits a 0-cycle of degree 1 (this is for instance
true when X admits a decomposition of the diagonal, see Chapter I, §1.4.1, Lemma (1.1.11)). It is well-known that the
index is a birational invariant of smooth varieties, see [GLL13, Prop. 6.8]. In the specific situation where k = F has
characteristic 0 and cd(F ) = 1, and X is a surface, then under rather mild geometric conditions one can control the
index in terms of the unramified cohomology of X .

Proposition 3.2.24 (Colliot-Thélène-Voisin). Let X be a smooth, projective and geometrically integral surface over
F such that H1 (X,OX ) = 0. Then if H3

nr (X,Q/Z(2)) = 0, we have that I (X ) = 1.

Proof. Consider the tautological exact sequence of ΓF -modules :

0 −→ A0 (X ) −→ CH0 (X )
deg
−→ Z −→ 0.

As H1 (X,OX ) = 0, we have that AlbX/F = 0 so Roitman’s theorem (see Appendix C, §C.1) shows that A0 (X ) is
torsion-free (since char F = 0). Moreover A0 (X ) is always divisible, see e.g. [Blo10, Lem. 1.3], so it is in particular
uniquely divisible, hence cohomologically acyclic. Taking the long exact sequence attached to the above exact sequence,
we obtain that the degree map CH0 (X )ΓF → Z is surjective. On the other hand, we may apply Theorem (3.2.18) and
use the vanishing of H3

nr (X,Q/Z(2)) in order to obtain that coker[CH0 (X ) → CH0 (X )ΓF ] = 0 (as X is a surface),
so we get a surjection CH0 (X ) → CH0 (X )ΓF . This implies the claim of the proposition by definition of the index. □

[23]One first proves the claim for F = C. Indeed, a rationally connected complex variety is uniruled : there is a rational curve passing through every
point x ∈ X , so the evaluation map ev : P1

C
×C Mor(P1

C
, X ) → X is dominant. As Mor(P1

C
, X ) has at most countably many components (see

[Deb01, §2.1]) andX is irreducible, then there is a dominant map P1
C
×C Y → X where Y ⊂ Mor(P1

C
, X ) is irreducible of dimension ≤ dimX − 1,

as desired. Moreover, Voisin proved in [Voi04, Thm. 2] that the integral Hodge conjecture for codimension 2 cycles is true for uniruled threefolds.
By Corollary (3.2.11), we thus haveH3

nr (X,Q/Z(2) ) = 0 ; then one can use the fact that unramified cohomology with torsion coefficients is invariant
under extensions of algebraically closed fields, cf. [CT95, Thm. 4.4.1].



90 Chapter III :Unramified cohomology and the integral Hodge conjecture

Proposition 3.2.25 (Colliot-Thélène-Voisin). Let X be a smooth, projective and geometrically integral surface over
F and n ≥ 2 an integer such that :

(i) H1 (X,OX ) = 0 ;

(ii) NS(X ) [n] = 0 ;

(iii) H3
nr (X,Z/n(2)) = 0.

Then I (V ) is coprime to n.

Proof. As discussed before, Bloch-Ogus theory applied to the Leray spectral sequenceEp,q2 = Hp
Zar (X,H

q
ét (Z/n(2)) ⇒

Hp+q
ét (X,Z/n(2)) provides an exact sequence of lower terms :

H3
ét (X,Z/n(2)) −→ H3

nr (X,Z/n(2)) −→ CH2 (X )/n −→ H4
ét (X,Z/n(2))

where the map on the right is the cycle class. The hypothesis (iii) thus shows that cℓ2 : CH2 (X )/n→ H4
ét (X,Z/n(2))

is injective. On the other hand, since X is a surface, then Poincaré duality provides an isomorphism CH2 (X )/n ∼−−→
H4

ét (X,Z/n(2)) ≃ Z/n. On the other hand, the Leray spectral sequence for X → Spec F and Z/n(2) reads

Ep,q2 = Hp (F,Hq
ét (X,Z/n(2))) ⇒ Hp+q

ét (X,Z/n(2)).

By the finiteness of étale cohomology with torsion coefficients over a separably closed field (see [Mil80, Chap. VI, Cor.
2.8]) and using the fact that cd(F ) ≤ 1, we derive an exact sequence of lower terms

0 −→ H1 (F,H3
ét (X,Z/n(2))) −→ H4

ét (X,Z/n(2)) −→ H4
ét (X,Z/n(2))ΓF −→ 0.

The hypotheses (i) and (ii) show that Pic(X ) [n] ≃ NS(X ) [n] = 0 (by invoking the usual exact sequence 0 −→
Pic0

X/F
(F ) −→ Pic(X ) −→ NS(X ) −→ 0), so the Kummer sequence provides the vanishing of H1

ét (X,Z/n(1)).

By Poincaré duality, and as X is a surface, we obtain that H3
ét (X,Z/n(2)) = 0. Therefore, H4

ét (X,Z/n(2))
∼−−→

H4
ét (X,Z/n(2))ΓF . As the latter verifies H4

ét (X,Z/n(2))ΓF ≃ Z/n ≃ H4
ét (X,Z/n(2)), we thus obtain a commutative

diagram with injective rows :

CH2 (X ) H4
ét (X,Z/n(2))

CH2 (X ) H4
ét (X,Z/n(2))

cℓ2

∼

cℓ2

⟲ .

Therefore, the degree map deg : CH2 (X ) = CH0 (X ) → Z (whose image is precisely I (V )Z) induces an injection
CH0 (X )/n ↩→ Z/n, hence an injection I (V )Z/nI (V ) ↩→ Z/n, so that I (V ) is coprime to n. □

Proposition 3.2.26 (Colliot-Thélène-Voisin). Let X be a smooth, projective and geometrically integral surface over
F such that H2 (X,OX ) = 0 and NS(X ) is torsion-free. Then there exists an exact sequence :

0 −→ CH0 (X ) −→ CH0 (X )ΓF −→ H3
nr (X,Q/Z(2)) −→ 0.

If moreover H1 (X,OX ) = 0, then we have an isomorphism H3
nr (X,Q/Z(2))/H3

nr (X,Q/Z(2))div
∼−−→ Z/I (V ). If

furthermore the degree map deg : CH0 (X ) → Z is an isomorphism, then H3
nr (X,Q/Z(2))div = 0.

Proof. Note that for a surface, Poincaré duality provides an isomorphism⊕
ℓ prime

H3
ét (X,Zℓ (2)){ℓ}

∼−−→
⊕
ℓ prime

H2
ét (X,Zℓ (1)){ℓ},
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and the latter is zero if and only if NS(X )tors = 0 (see for instance [CTS21, Chap. 5, (5.13)]). Therefore, asH2 (X,OX ) =
0, we get that Br(X ) = 0, and we may apply Corollary (3.2.23) in order to obtain an exact sequence :

0 −→ CH0 (X ) −→ CH0 (X )ΓF −→ H3
nr (X,Q/Z(2)) −→ H3

nr (X,Q/Z(2)).

Moreover sinceX is smooth and connected, then Bloch-Ogus theory provides the natural inclusionH3
nr (X,Q/Z(2)) ↩→

H3 (k(X ),Q/Z(2)), and the latter is zero because X is a surface (we know that k(X ) therefore has cohomological di-
mension 2). This proves the main statement. If we suppose that H1 (X,OX ) = 0, then once again A0 (X ) is uniquely
divisible by Roitman’s theorem, so H1 (F, A0 (X )) = 0, and the snake lemma provides an exact sequence :

A0 (X )ΓF −→ H3
nr (X,Q/Z(2)) −→ Z/I (X ) −→ 0.

But the image ofA0 (X )ΓF → H3
nr (X,Q/Z(2)) is preciselyH3

nr (X,Q/Z(2))div (by identifying once again 0-cycles with
codimension 2 cycles on X ), hence the second claim. Finally, if deg : CH0 (X ) → Z is an isomorphism, then this pre-
cisely means that A0 (X ) = 0, hence in particular A0 (X )ΓF = 0 and we conclude using the above exact sequence. □





Chapter IV

Motivic classes and the integral Hodge
question

IV.1. Setting and preliminary notions

— The Grothendieck ring of complex varieties K0 (VarC) first appeared in a letter of Grothendieck to Serre in 1964.
The motivation behind Grothendieck’s definition was that the class of a variety in this ring contains a lot of geometric
information, while the ring itself is not too «harsh» to compute thanks to the scissors relations and the projective bun-
dle formula that is satisfies. This ring has been deeply used for developing theories of motivic integration. For example,
the topological Euler characteristic, Hodge polynomials, stably-birational properties, or even number of points (if the
variety is defined over a number field) can be read through the motivic class in the Grothendieck ring. Analogously,
one can make sense of a Grothendieck ring of varieties over a finite field, especially for counting points, which is a
useful heuristical method to obtain information on cohomological statements or ℓ -adic Galois representations for the
varieties considered. However, we know very little about this ring.

Moving back to the complex case, the study of the equality of some classes in the Grothendieck ring of complex vari-
eties has recently given some important results in birational geometry. In particular for a given finite groupG, although
no specific implication is known, the equality [BG] = 1 inK0 (StckC) (where BG = [SpecC/G] is the classifying stack
ofG, see §1.1.2.2) appears to be closely related to the stable birational class of the field of invariantsC(V )G of a suitable
faithful complex representation ofG. An interesting result in this regard is due to Ekedahl, who showed in [Eke09a] that
the non-vanishing of the unramified Brauer group Brnr (C(V )G/C) implies that [BG] ≠ 1 in K0 (StckC). Scavia re-
cently showed in [Sca21] that the converse in not true, that is, there exist finite groupsG such that Brnr (C(V )G/C) = 0
but the class [BG] is non-trivial in the Grothendieck ring of complex stacks. To do so, he considered the examples of
groups provided by Peyre in [Pey07] that satisfy Br(C(V )G/C) = 0 but H3

nr (C(V )G/C,Q/Z) ≠ 0 together with
the comparison between the groups H3

nr (X,Q/Z) and Z4 (X ) for suitable complex varieties, due to Colliot-Thélène
and Voisin in [CTV12]. This suggests that higher unramified cohomology allows a refinement of the understanding of
the motivic class [BG] ∈ K0 (StckC) and supports the conjecture, formulated by Totaro, that the stable rationality of
C(V )G «controls» the motivic class of BG.

1.1. Recollection on stacks

— The goal of this section is to provide a very short list of key concepts in the general theory of stacks ; it should not be
considered as a thorough introduction to stacks and algebraic spaces, but rather as a guideline through the next section
which deals with the Grothendieck ring of stacks. It would be of course impossible to provide a detailed yet concise
exposition to the general theory, so we will assume some familiarity with the standard definitions and systematically
refer the reader to [LMB00], [Ols16] or [DJ+22] (in particular for a complete exposition) when needed. We will follow
almost to the letter the excellent short introduction due to Colliot-Thélène and Skorobogatov in [CTS21].

93
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1.1.1. Fibred categories

— Let us begin our discussion with the definition of a fibred category, see [DJ+22, Tag 02XJ], [Ols16, §3.1] and [LMB00,
§2] for more details. Let C be a category, the prototypical example being the category SchS of schemes over a fixed base
scheme S.

Definition 4.1.1. A category over C is a pair (F, p) where F is a category and p : F → C is a functor. For any object
U ∈ Ob( C), the fibre F (U ) overU is the category whose objects are the objects u of F overU , i.e. such that p(u) = U ,
and whose morphisms are morphisms in F that lift IdU : U → U .

Definition 4.1.2. A morphism ϕ : u→ v in F is said to be cartesian if for any object w in F , a morphism ψ : w→ v
and a factorisation

p(w) h−→ p(u)
p(ϕ)
−→ p(v)

of p(ψ), there exists a unique morphism λ : w→ u in F such that p(λ) = h and ϕ ◦ λ = ψ .

In this case, the morphism u is called a pullback of v along f = p(ϕ) and it is usually denoted by u = f ∗v. It is
unique up to a unique isomorphism.

Definition 4.1.3. A fibred category over C is a category p : F → C over C such that for every morphism f : U → V
in C and every v ∈ F (V ), there exists an object u ∈ F (U ) and a cartesian morphism ϕ : u → v which lifts f , that is,
p(ϕ) = f .

A morphism of fibred categories p : F → C to q : G → C is a functor g : F → G sending cartesian morphisms
to cartesian morphisms such that there is an equality of functors p = q ◦ g.

1.1.1.1. Categories fibred in groupoids. The references for this paragraph are [DJ+22, Tag 003S], [Ols16, §3.4] and
[LMB00, §2]. We recall that a groupoid is a category in which every morphism is an isomorphism.

Definition 4.1.4. A fibred category p : F → C is a category fibred in groupoids if the fibre F (U ) is a groupoid for any
object U ∈ Ob( C).

Equivalently, one can remark that p : F → C is fibred in groupoids if and only if every morphism in F is cartesian,
see [Ols16, Exer. 3.D, p.85]. For a given x ∈ Ob(F ), the functor p gives rise to an equivalence of categories between the
«localised» categories F/x and C/p(x).

Let p : F → C be a category fibred in groupoids. For any object X of C and any pair of objects x1, x2 of F (X ), we
define the functor

Isom(x1, x2) : ( C/X )op −→ Sets

that associates to f : Y → X the set IsomF (Y ) (f ∗x1, f ∗x2) for some chosen pullbacks f ∗x1 and f ∗x2 along f . By the
definition of a category fibred in groupoids, this implies that a given morphism g : Z → Y gives rise to a canonical
map :

Isom(x1, x2) (f : Y → X ) −→ Isom(x1, x2) (fg : Z → X ),

so this is a functor. Moreover up to a canonical isomorphism, it does not depend on the choice of the pullbacks f ∗x1
and f ∗x2.

In particular, for x ∈ Ob(F (X )), we obtain a functor :

Autx := Isom(x, x) : ( C/X )op −→ Grps.

1.1.1.2. Yoneda’s lemma. For a givenS-schemeX , we are provided with the natural functor of pointshX : (SchS)op →
Sets given by hX (Y ) := HomS (Y, X ). By Yoneda’s lemma, we know that this functor is fully faithful SchS →
Fun((SchS)op, Sets), hence it provides an embedding of SchS into the category of contravariant functors from SchS
to Sets. On the other hand, for any functor F : (SchS)op → Sets, there is a natural bijection :

Hom(hX , F )
∼−−→ F (X )
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given by evaluating the object IdX : X → X of hX (X ). Therefore, we can replace an S-scheme X by its functor
of points hX , which is an object of a larger category (according to Laumon and Moret-Bailly in [LMB00], this is the
«functorial point of view», which we can oppose to the «geometric point of view», i.e. viewing the category Sch as a
full subcategory of the category of ringed spaces). In what follows, we will often not make the distinction between an
S-scheme X and its functor of points hX for a matter of convenience.

Remark that this Yoneda embedding operation can actually be refined. Indeed, for a given S-scheme X , we note
that the category SchX is naturally fibred over SchS via the forgetful functor. There is an analogue of Yoneda’s lemma
for 2-categories (see [DJ+22, Tag 003G] for a detailed account on 2-categories), see [DJ+22, Tag 004B], which provides
the following statement : if p : F → SchS is another fibred category, then the functor

ξ : HomSchS (SchX , F ) −→ F (X )

that sends a morphism of fibred categories to the value of this morphism on the object Id : X → X of SchX , is an
equivalence of categories.

1.1.1.3. Sheaves on a category fibred in groupoids over a site. Let p : X → SÉt be a category fibred in groupoids
over the category of schemes over a base scheme S that is equipped with the étale topology (we could alternatively
consider the small étale site or the fppf site of S). First note that the site SÉt induces a site XÉt where the coverings are
families of morphisms {xi → x}i∈I in X such that {p(xi) → p(x)}i∈I is a covering in SÉt, see [DJ+22, Tag 06NU]
for details. Therefore, we have a natural framework for the notion of sheaves on XÉt. The functor p induces a natural
equivalence between the localised categoriesX/x and Sch/p(x) for any x ∈ Ob(X) ; more, one can show that the sites
XÉt/x and p(x)Ét are actually equivalent, see [DJ+22, Tag 06W0].

One can also define a structure scheaf OX as follows : the structure sheaf O on SÉt associates to any S-scheme T
the ring Γ(T,OT ). We let OX be the sheaf of rings on XÉt such that OX (x) := O(p(x)) for any object x ∈ Ob(X).
It is therefore possible to talk about sheaves of OX-modules. One can check that the localised sites XÉt/x and p(x)Ét
are equivalent as ringed sites if we take the structure sheaves into account. Then one can define the usual classes of OX

by analogy with ringed spaces, [DJ+22, Tag 03DL] for details :

Definition 4.1.5. Let F be a sheaf of OX-modules.

(i) F is locally free if for every object x ∈ Ob(X), there is an étale covering {xi → x}i∈I such that the restriction
of F to each xi is a free Oxi -module ;

(ii) F is finite locally free if for every object x ∈ Ob(X), there is an étale covering {xi → x}i∈I such that the
restriction of F to each xi is isomorphic to O⊕nxi for some n ≥ 1 ;

(iii) F is of finite type if for every object x ∈ Ob(X), there is an étale covering {xi → x}i∈I such that the restriction
of F to each xi is isomorphic to a quotient of O⊕nxi for some n ≥ 1 ;

(iv) F is quasi-coherent if for every object x ∈ Ob(X), there is an étale covering {xi → x}i∈I such that the restriction
of F to each xi is isomorphic to the cokernel of a map of free Oxi -modules ;

(v) F is coherent if it is of finite type and for every object x ∈ Ob(X) and anyn ≥ 1, the kernel of any map O⊕nx → F
is of finite type.

Remark 4.1.6. One can also make sense of what a vector bundle onX is, by considering it as a locally free OX-module
of finite constant rank n ≥ 1.

1.1.2. Stacks and spaces

— We refer to [Ols16, §4.2, §4.6] and [LMB00, §3]. Let p : F → C be a category fibred in groupoids where C
admits finite fibre products. For a given set of morphisms {Xi → X }i∈I in C, one defines F ({Xi → X }i∈I ) to
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be the category of descent data, that is, the category consisting of objects Ei of F (Xi) for i ∈ I and isomorphisms
σi,j : pr∗1 (Ei) → pr∗2 (Ej) in F (Xi ×X Xj) for i, j ∈ I satisfying the usual cocycle condition, on triple intersections :

pr∗0 Xi pr∗2 Xk

pr∗1 Xj

pr∗02 σi,k

pr∗01 σi,j pr∗12 σj,k
.

If the natural functor F (X ) → F ({Xi → X }i∈I ) is an equivalence of categories, we say that the set of morphisms
{Xi → X }i∈I is of effective descent for F .

Let now C be a site, e.g. C = SÉt where S is a fixed scheme.

Definition 4.1.7. A category fibred in groupoids p : F → C is a stack if for any object X ∈ Ob( C), then every
covering family {Xi → X }i∈I is of effective descent for F .

See [LMB00, Def. 3.1] for further details. Equivalently, for any covering of any X ∈ Ob( C), then any descent
datum with respect to this covering is effective, and Isom(x1, x2) is a sheaf on C/X for any pair of objects x1, x2 of
F (X ), cf. [Ols16, Prop. 4.6.2]. (In particular, Autx is a sheaf on C/X for any x ∈ Ob(F (X )).) We give two absolutely
fundamental examples :

Examples 4.1.8.

(i) (The stack associated to a sheaf on a site.) A set can be canonically viewed as a groupoid by defining morphisms
to be the identity maps on the elements of this set. A functor f : Cop → Sets then naturally gives rise to a
category fibred in sets over C, whose fibre over an object X is the set f (X ), see [CTS21, Ex. 4.1.5]. Hence it can
be seen as a category fibred in groupoids. If C is in particular a site, then this fibred category over C is a stack if
and only if f is a sheaf.

(ii) (The stack associated to an S-scheme.) By the 2-Yoneda lemma, one can replace an S-scheme X by the fibred
category SchX → SchS . One then checks that this actually is a category fibred in groupoids, more precisely in
sets with the identity maps. More, it is a stack for the usual topologies on SchS (fpqc, fppf, étale, Nisnevich,
Zariski, etc.) since by a theorem on Grothendieck [DJ+22, Tag 0AI2], the functor of points hX is a sheaf for the
fpqc topology, which is finer than all of the topologies mentioned above.

1.1.2.1. Algebraic spaces. We first give the definition of an algebraic space, see [Ols16, Chap. 5] and [LMB00, §1]
(actually we don’t need the notion of categories fibred in groupoids and descent data in order to define these objects,
but they are crucial to define algebraic stacks). See also [Ols16, §3.4] for a complete treatment of the notion of 2-fibred
products of categories fibred in groupoids.

Definition 4.1.9. Let S be a scheme. A morphism of sheaves of sets F → G on SÉt is said to be representable by schemes
(or more simply representable) if for any S-schemeT and any morphismT → G the fibre product F ×G T is a scheme.

If F and G are already representable, say F = hX and GY for some S-schemes X and Y , then by Yoneda’s lemma,
we know that any morphism F → G is induced by a morphism of schemesX → Y , which implies that the morphism
F → G is itself representable.

Let now F be a sheaf of sets on SÉt. If the diagonal map F → F ×S F is representable, then any S-morphism
T → F where T is an S-scheme is representable as well (this is indeed a consequence of the isomorphism T ×F Z ≃
(T ×S Z) ×F×SF F for any S-scheme Z and any S-morphism Z → F ).

Let (P) be a property of morphisms of schemes that is stable under base change (being proper, flat, separated, etc.).
More precisely, we ask that for every covering {Ui → U }i∈I of S-schemes, the morphism U → S has property (P) if
and only if each Ui → S has property (P). If F and G are functors (SchS)op → Sets, then a morphism of functors
F → G has property (P) if it is representable by schemes, i.e. for everyT ∈ SchS and any morphismT → G, the fibre
product functor F ×G T is isomorphic to hY for some S-scheme Y , and the resulting morphism of schemes Y → T
has property (P).
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Definition 4.1.10. A sheaf of sets X on SÉt is an algebraic space over S if :

(i) the diagonal ΔX : X → X ×S X is representable, and

(ii) there is a surjective étale S-morphism U → X where U is an S-scheme (étale presentation property).

Note that the first condition implies that the morphismU → X in (ii) is representable, so the condition «surjective
étale» makes sense. We define a morphism of S-algebraic spaces in the obvious way (being a morphism of sheaves of
sets), so that we can consider the category of S-algebraic spaces SpcS . It is then clear that an S-scheme is an S-algebraic
space for any suitable Grothendieck topology (view it as a sheaf of sets for the fpqc topology via its functor of points),
so that the category of S-schemes is a full subcategory of the category of S-algebraic spaces. Like schemes, algebraic
spaces are sheaves for the fpqc topology on SchS (this is a recent result of Gabber, see [DJ+22, Tag 03W8]).

1.1.2.2. Algebraic stacks. Let us now consider stacks over SÉt. Since an algebraic space is in particular a sheaf on
the big étale site of S, then it naturally gives rise to a scheme by the previous examples.

Definition 4.1.11. A morphism of stacksX → Y is representable by algebraic spaces if for every algebraic spaceV and
every morphism V → Y, the fibre product X ×Y V is an algebraic space.

Definition 4.1.12. A stacks X over SÉt is said to be algebraic (also called an Artin stack) if :

(i) the diagonal ΔX : X →X ×S X is representable by algebraic spaces, and

(ii) there exists a smooth surjective S-morphism U →X where U is an S-scheme.

Similarly, one can define a morphism of stacks in the evident way and therefore consider the 2-category of S-
algebraic stacks AlgStckS . Furthermore, an algebraic stackX is said to be Deligne-Mumford if there exists a surjective
étale S-morphismU →X whereU is an S-scheme (compare with the étale presentation property for algebraic spaces).
Note also that property (i) in the above definition is equivalent to the following property (cf. [Ols16, Lem. 8.1.8]) : for
every S-scheme U and any pair of objects u1, u2 ∈ Ob(X(U )), the sheaf Isom(u1, u2) is an algebraic space. We finish
this section with a fundamental notion that we will use extensively in the rest of this chapter :

Example 4.1.13. (Quotient stacks.) An important example of algebraic stack over SÉt arises in the context of the action
of an S-group schemeG over an S-schemeX . Indeed, ifG is a smooth S-group scheme that acts on an S-algebraic space
X , then we define a quotient stack [X/G] as the stack whose objects are triples (T,P, π) where T is an S-scheme, P is
a sheaf of torsors for G ×S T on TÉt and π : P → X ×S T is a G ×S T -equivariant morphism of sheaves. One can
then check that this stack is algebraic, see [Ols16, Ex. 8.1.12]. A smooth covering can be obtained from the natural map
X → [X/G] given by the trivial GX -torsor over X .

In particular, if X = S and G acts trivially on S, the quotient stack [S/G] is called the classifying stack of G and is
denoted by BSG (when G is a k-group scheme, then we usually adopt the notation BG instead of BkG[24]).

Remark 4.1.14. The category of quasi-coherent sheaves on an algebraic stack is abelian. Actually, we can say more :
it is a Grothendieck category (cf. [DJ+22, Tag 079A] for the definition); so it admits in particular direct sums, tensor
products, and direct and inverse limits. Also, the dual of a sheaf of OX-modules that is locally of finite presentation is
quasi-coherent, see [DJ+22, Tag 06WU].

1.2. Grothendieck ring of stacks
— Quite recently, the problem of counting points on varieties extended to the setting of moduli problems or equiv-
ariant geometry (for instance geometric invariant theory), where one often has to deal with algebraic spaces, or even
algebraic stacks. This led to a generalisation of the Grothendieck ring of varieties to the notion of Grothendieck ring of
stacks, due to Ekedahl in [Eke09b]. Let us give a definition of this ring, by first defining its underlying group :

Definition 4.1.15. The Grothendieck group of stacks over a field k is the group K0 (Stckk) generated by classes [X] of
algebraic stacksX of finite type over k and whose automorphism group scheme (also called stabiliser) is affine, modulo
the relations :

[24]This should not be mistaken with the classifying space BG = |N (G) | of G (viewed as a category) that was defined in Chapter I, §3.1.1.1.
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(i) The class [X] depends only on the isomorphism class of X in Stckk ;

(ii) If Y ↩→X is closed immersion of stacks with complement U, then [X] = [Y] + [U] ;

(iii) If E→X is a vector bundle of constant rank n ≥ 1, then [E] = [X ×k Ank ].
Remark 4.1.16. One can also make sense of a Grothendieck ring K0 (Spck) of k-algebraic spaces of finite type, by
imposing the relations [X ] = [Y ] + [U ] only for closed subschemes Y ↩→ X of a given k-algebraic space X (with
complementU := X \Y ). As pointed out by Ekedahl in [Eke09b, §1], this gives the same group asK0 (VarC) because a
quasi-compact and quasi-separated k-algebraic space always admits a finite stratification by closed subschemes (see e.g.
[DJ+22, Tag 0A4I]), and the projective bundle formula follows naturally from the scissors relations.

One can then enrich the group structure into a ring structure by setting [X ×k Y] := [X] · [Y] for X and Y
two algebraic stacks (the multiplicative unit being [Spec k]). We will write L := [A1

k] for the class of the affine line.
If we fix a class G of connected group schemes of finite type over k (for instance, connected algebraic groups such as

GLn,k or SLn,k for n ≥ 1), then we defineK G
0 (Stckk) to be the quotient ofK0 (Stckk) by the relations [Y ] = [G] · [X ]

whenever G ∈ G and Y → X is a G-torsor of algebraic spaces (note here that we impose the condition only for
algebraic spaces, see also [Ols16, Chap. 4, §4.5] and [DJ+22, Tag 04TV] for further structural results on torsors in the
context of algebraic spaces). There exists a unique obvious ring structure on K G

0 (Stckk) that makes the quotient map
K0 (Stckk) → K G

0 (Stckk) into a ring morphism, and if G′ ⊂ G is another class of connected group schemes, then
the quotient map K0 (Stckk) → K G′

0 (Stckk) factors through K0 (Stckk) → K G
0 (Stckk). Moreover, the natural

inclusion of Spck into Stckk as a full 2-subcategory (see [LMB00, Rmq 4.1.1]) induces a canonical map K0 (Spck) →
K0 (Stckk).

1.2.1. Some general results

— We now state the following proposition due to Ekedahl, which provides a lot of useful basic properties of the ring
K0 (Stckk) and its «equivariant analogues» :

Proposition 4.1.17 ([Eke09b, Prop. 1.1]). The following statements hold :

(i) We have [GLn,k] = (Ln − 1) (Ln − L) . . . (Ln − Ln−1) ∈ K0 (Stckk) ;

(ii) If X → Y is a GLn,k-torsor of k-algebraic stacks of finite type, then [X] = [GLn,k] · [Y] ∈ K0 (Stckk) ;

(iii) If G ∈ G and X → Y is a G-torsor of k-algebraic stacks of finite type, then [X] = [G] · [Y] ∈ K0 (Stckk) ;

(vi) If N,H ∈ G and G is an extension of algebraic groups of H by N, and if X → Y is a G-torsor, then [X] =
[G] · [Y] ∈ K0 (Stckk) ;

(v) If G ∈ G, then [G] · [BG] = 1 ∈ K0 (Stckk) ;

(vi) If G ∈ G and F is a G-space, X → Y is a G-torsor of k-algebraic stacks of finite type and Z → Y is the
F -fibration attached to X → Y and the G-action on F , then [Z] = [F ] · [Y] ∈ K0 (Stckk) ;

(vii) If G ∈ G andX → Y andX′ → Y are two G-torsors of k-algebraic stacks of finite type, and if Z → Y is the
stack of isomorphisms X ∼−−→X′, then [Z] = [G] · [Y] ∈ K G

0 (Stckk) ;

(viii) If G ∈ G, F is a G-space, H is a k-algebraic group, H → G is a morphism of algebraic groups, X → Y is
an H-torsor of k-algebraic stacks of finite type and Z → Y is the F -fibration associated to X → Y and the
H-action on F (given by its G-action and H → G), then [Z] = [F ] · [Y] ∈ K G

0 (Stckk) ;

(ix) If G ∈ G and H ↩→ G is a subgroup k-scheme, then [BH] = [G/H] · [BG] ∈ K G
0 (Stckk).

Ekedahl then remarked that one can relate the groupsK0 (Spck) andK0 (Stckk)more precisely, or at least «measure
the defect» of the natural mapK0 (Spck) → K0 (Stckk). Indeed, the key argument is to localiseK0 (Spck) with respect
to the classL of the affine line as well as the classesLn−1 forn ≥ 1. We will denote the resulting ring byK0 (Spck)′.
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Theorem 4.1.18 ([Eke09b, Thm. 1.2]). For any class G of connected group schemes of finite type over a field k, the
natural map

K G
0 (Spck) −→ K G

0 (Stckk)

induces an isomorphism K G
0 (Spck)′

∼−−→ K G
0 (Stckk).

Proof. By the above proposition, we know that [GLn,k] = (Ln − 1) . . . (Ln − Ln−1) is invertible (consider the GLn,k-
torsor Spec k→ BGLn,k), so that Li and Ln − Li are invertible in K G

0 (Stckk) for i ≥ 0 as well. In particular, we get a
natural factorisation

K G
0 (Spck) −→ K G

0 (Spck)
′ −→ K G

0 (Stckk).

The goal from now on is to define a map in the other direction. First assume that X = [X/GLn,k] is a global quotient
of a k-scheme X of finite type. We define the class [X] ∈ K G

0 (Spck)′ to be [X ]/[GLn,k]. To check well-definedness,
suppose that one can also write X as another global quotient X = [Y /GLm,k]. Then we can always construct a
2-cartesian diagram

Z X

Y X

where Z → X is a GLm,k-torsor and Z → Y is a GLn,k-torsor. By the previous proposition, we thus get that
[GLm,k] · [X ] = [Z] = [GLn,k] · [Y ], hence the claim in this case. If we consider a general stack X, then Kresch
showed that under the hypothesis that X is of finite type with affine stabilisers, then one can always stratify this stack
by finitely many global quotients by GLn,k for suitable n’s (see [DJ+22, Tag 04UZ]) ; we can therefore define the class
[X] ∈ K G

0 (Spck)′ by summing-up the classes of the global quotients arising in the stratification. □

Remark 4.1.19. We would like to point out the fact that localising with respect to the affine line is not a trivial operation
at all. For instance, over the complex numbers, Borisov recently showed in [Bor15] that L = [A1

C
] is a zero-divisor in

K0 (VarC).

1.2.2. Bittner’s presentation

— We finish this preliminary section by going back to the complex setting. Indeed, thanks to Hironaka’s theorem on
resolution of singularities, Bittner managed to provide a useful presentation of K0 (VarC) in terms of generators and
relations, which we state below :

Theorem 4.1.20 ([Bit04, Thm. 3.1], [Eke09b, p. 14]). As an abelian group, K0 (VarC) [L−1] may be presented
by formal fractions of the form [X ]/Lm for m ≥ 0 where X is a smooth and projective complex variety, modulo the
condition that [∅] = 0 and the relations :

(i) For every smooth and projective complex variety X and every blowup X̃ → X at a smooth closed subscheme
Y ↩→ X with exceptional divisor E → Y , and for every m ≥ 0, we have

[X̃ ]/Lm − [X ]/Lm = [E]/Lm − [Y ]/Lm;

(ii) For every smooth and projective complex variety X and every m ≥ 0, we have

[X ×C P1C]/L
m+1 − [X ]/Lm+1 = [X ]/L.



100 Chapter IV :Motivic classes and the integral Hodge question

IV.2. Main theorem
2.1. Dimension filtration and statement of the theorem
— There is a quite natural filtration Fil•K0 (VarC) [L−1] that one can define on the localisation K0 (VarC) [L−1]. In-
deed, the isomorphism

K0 (VarC)
′ ∼−−→ K0 (StckC)

provided by Theorem (4.1.18) together with the presentation of K0 (VarC) in Theorem (4.1.20) suggest that we con-
sider the elements «bounded» by a fixed power of the class of the affine line. More precisely, for n ∈ Z, we let
FilnK0 (VarC) [L−1] be the subgroup of K0 (VarC) [L−1] generated by elements of the form [X ]/Lm where X is a
smooth and projective complex variety and dimX − m ≤ n (indeed, by Hironaka’s theorem, we could alternatively
consider the classes of all complex varieties X such that dimX − m ≤ n, but this would give the same subgroup, see
[Eke09b, Lem. 3.1]). We denote by K̂0 (VarC) the formal completion ofK0 (VarC) [L−1] with respect to this filtration.
It is clear that for m, n ∈ Z, we have :

FilmK0 (VarC) [L
−1] · FilnK0 (VarC) [L

−1] ⊆ Film+nK0 (VarC) [L
−1],

so that the completion K̂0 (VarC) comes naturally equipped with a multiplication that makes it a commutative ring
with identity and that extends the ring structure on K0 (VarC) [L−1]. Moreover, in K̂0 (VarC), we have the identity :

(1 − Ln)
∑︁
i≥0
Lni = 1

for any n ≥ 1, so that the natural map K0 (VarC) → K̂0 (VarC) factors through K0 (VarC) → K0 (StckC).
We now describe the main theorem proved in [Sca21]. Recall as in Chapter III, §1.1 that for any smooth and projec-

tive complex variety X , there is a Betti cycle class map :

cℓi : CHi (X ) −→ H2i
B (X,Z(i))

for each 0 ≤ i ≤ dimX , which naturally lands in the sugroup of integral Hodge classes Hdg2i (X,Z(i)) of type (i, i).
For any integer i, we defined the finitely generated abelian groups Z2i (X ) := Hdg2i (X,Z(i))/H2i

alg (X,Z(i)) which
measure the failure of the integral Hodge question on X (by convention, we put Z2i = 0 for i < 0 or i > dimX ). By
symmetry, we define the groups Z2i (X ) := Z2 dimX−2i (X ) which measure the failure of the integral Hodge question
for cycles of dimension i on X . What Scavia remarked is that one can view the assignment Z2i as a map from the
Grothendieck group of varieties to the Grothendieck group of the category of abelian groups in such a way that it is
«compatible» with the topology induced by the dimension filtration :

Theorem 4.2.21 (Scavia [Sca21, Thm. 1]). Let i be any integer. Then,

(i) There exists a unique group homomorphism :

Z2i : K0 (VarC) [L
−1] −→ K0 (Ab)

that sends [X ]/Lm to [Z2i+2m (X )] for every smooth and projective complex variety X and every m ≥ 0.

(ii) This homomorphism is continuous with respect to the dimension filtration topology on K0 (VarC) [L−1] on the
one hand and for the discrete topology on K0 (Ab) on the other hand. In particular, it extends uniquely to a
group morphism :

Ẑ2i : K̂0 (VarC) −→ K0 (Ab).

2.2. Proof of the main theorem
— The proof of Scavia revolves around the presentation from Theorem (4.1.20) provided by Bittner for the group
K0 (VarC). Indeed, thanks to this result, we are reduced to showing that the assignment Z2i is compatible with the
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dimension filtration in the case of a blowup on the one hand and a projective bundle on the other hand.

Proof of Theorem (4.2.21). We first need to check that the assignement [X ]/Lm ↦→ [Z2i+2m (X )] respects the relations
of Theorem (4.1.20). We begin with the case of a blowup. Let m ≥ 0, Y ↩→ X a closed immersion of codimension r
smooth and projective complex varieties where X has dimension d, and X̃ → X the blowup of X along Y ; let E → Y
be the exceptional divisor. We need to show that

[Z2i+2m (X )] − [Z2i+2m (Y )] = [Z2i+2m (X̃ )] − [Z2i+2m (E)]

in K0 (Ab). If we let j := d − i −m, then we can rewrite the above equality as :

[Z2j (X )] − [Z2j−2r (Y )] = [Z2j (X̃ )] − [Z2j−2 (E)]. (IV.1)

We now make use of the blowup formula for Chow groups. Indeed, as proven in [Voi03, Thm. 9.27], there is a natural
isomorphism of groups :

φj :
r−2⊕
h=0

CHj−1−h (Y ) ⊕ CHj (X ) ∼−−→ CHj (X̃ ).

Similarly, there is a blowup formula for the corresponding Hodge structures, see [Voi02, Thm. 7.31] :

ψ j :
r−2⊕
h=0

Hdg2j−2−2h (Y,Z) ⊕ Hdg2j (X,Z) ∼−−→ Hdg2j (X̃ ,Z)

(note that we dropped the twists in the notation for convenience here). Moreover one can check in the proofs of the
two statements that these isomorphisms are constructed in such a way that they are compatible with the cycle class
maps, see [Voi14, Chap. 2, §2.2.2], so that we get a commutative diagram :⊕r−2

h=0 CH
j−1−h (Y ) ⊕ CHj (X ) CHj (X̃ )

⊕r−2
h=0 Hdg2j−2−2h (Y,Z) ⊕ Hdg2j (X,Z) Hdg2j (X̃ ,Z)

φj

(
⊕r−2

h=0 cℓh,Y )⊕cℓj,X

ψ j

cℓj,X̃⟲ .

Therefore, we obtain an isomorphism of groups :

Z2j (X̃ ) ∼−−→
r−2⊕
h=0

Z2j−2−2h (Y ) ⊕ Z2j (X ).

On the other hand, the morphism E → Y induced by the blowup makes E into a projective bundle of rank r − 1 given
by the projectivisation E = P(NY /X ) of the normal bundle NY /X of Y insideX , see [Voi02, Chap. 3, §3.3.3]. As shown
in [Voi03, Thm. 9.25], the pullback along E → Y induces an isomorphism on Chow groups :

τj−1 :
r−1⊕
h=0

CHj−1−h (Y ) ∼−−→ CHj−1 (E),

and similarly for Hodge structures it induces an isomorphism :

γj−1 :
r−1⊕
h=0

Hdg2j−2−2h (Y,Z) ∼−−→ Hdg2j−2 (E,Z),
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cf. [Voi02, Lem. 7.32] Once again, these isomorphisms are constructed in such a way that they are compatible with the
cycle class maps, so we deduce an isomorphism of groups :

Z2j−2 (E) ∼−−→
r−1⊕
h=0

Z2j−2−2h (Y ).

This shows that the formulæ of the form (IV.1) are respected by Z2i .
We now check the compatibility with projective bundles. LetX be a smooth and projective variety of dimension d

and m ≥ 0 an integer. We want to show that

[Z2i+2m+2 (X ×C P1C)] − [Z2i+2m+2 (X )] = [Z2i+2m (X )].

Rearranging once again by putting j := d − i −m, we see that we need to show the following equality :

[Z2j (X ×C P1C)] − [Z
2j−2 (X )] = [Z2j (X )]. (IV.2)

We again make use of [Voi02, Lem. 7.32] and [Voi03, Thm. 9.25], this time applied to the trivial projective bundle
X ×C P1C → X , so that we obtain a commutative diagram :

CHj (X ) ⊕ CHj−1 (X ) CHj (X ×C P1C)

Hdg2j (X,Z) ⊕ Hdg2j−2 (X,Z) Hdg2j (X ×C P1C,Z)

∼

cℓj,X⊕cℓj−1,X

∼

cℓj,X×CP1C⟲ ,

hence an isomorphism of groups :

Z2j (X ×C P1C)
∼−−→ Z2j (X ) ⊕ Z2j−2 (X ).

Taking motivic classes, this yields formula (IV.2) as desired, and concludes the proof of (i).
We now prove (ii), which follows easily. LetX be a smooth and projective variety of dimension d and letm ≥ d− i,

so that 2i + 2m ≥ 2d. We thus get that Z2i ( [X ]/Lm) = [Z2i+2m (X )] = 0, in other words, the assigment Z2i sends
the ith piece FiliK0 (VarC) [L−1] of the dimension filtration to zero. If we therefore endow K0 (VarC) [L−1] with the
topology induced by this filtration andK0 (Ab) with the discrete topology, thenZ2i is naturally continuous, hence the
claim. □

2.3. Some consequences
— The main theorem in Scavia’s paper has some very interesting applications, as it somehow allows one to «detect» the
non-triviality of certain classes in the Grothendieck ring of stacks. In particular, thanks to the results of Colliot-Thélène
and Voisin discussed in Chapter III (notably Corollary (3.2.11)), we know that for a suitable smooth and projective
complex variety X (that is, whose Chow group of 0-cycles is supported on a surface, for instance if X is rationally
connected), we can identify the group Z4 (X ) with the unramified cohomology group H3

nr (X,Q/Z), and both groups
are birational invariants of general smooth and projective complex varieties. For convenience, for any integer i, we will
still denote by Z2i the composite map :

K0 (StckC) −→ K̂0 (VarC)
Ẑ2i−→ K0 (Ab).

Proposition 4.2.22 (Scavia [Sca21, Prop. 7]). Let G be a finite group and let V be a faithful complex representation
of G. Then Z2i ( [BG]) = 0 for every i ≥ −1, and we have :

Z−4 ( [BG]) = [H3
nr (C(V )G/C,Q/Z)] ∈ K0 (Ab).
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Proof. Let d be the dimension of V . As proven by Ekedahl in [Eke09a, Prop. 3.1, (ii)], we can write [BG] as :

[BG] = lim
m→+∞

[Vm/G] · L−md.

If we fix an integer i, then Theorem (4.2.21, (ii)) shows that the natural map Ẑ2i : K̂0 (VarC) → K0 (Ab) is continuous.
Therefore, in Ẑ2i (VarC), we have for m sufficiently large the equality :

Z2i ( [BG]) = Ẑ2i ( [BG]) = Ẑ2i ( [Vm/G] · L−md) = Z2i ( [Vm/G] · L−md).

Let us fix such an integer m. By Hironaka’s theorem we can find a finite sequence of smooth blowups starting from
a smooth and projective complex variety X and finishing at the quotient variety Vm/G. Using the scissors formulæ
defining K0 (VarC), we can thus write :

[Vm/G] = [X ] +
∑︁
q≥0

nq [Xq] ∈ K0 (VarC)

where the Xq’s are smooth and projective complex varieties such that dimXq ≤ md − 1 and nq ∈ Z for each q ≥ 0.
Applying Z2i on both sides, we obtain that :

Z2i ( [BG]) = [Z2i+2md (X )] +
∑︁
q≥0

nq [Z2i+2md (Xq)].

But by Lefschetz’s theorem on (1, 1)-classes [Voi02, Thm. 7.2], we have that Z2md−2 (X ) = Z2 (X ) = 0. Hence if
i ≥ −1, then every term on the right hand side of the above identity is zero, so that Z2i ( [BG]) = 0 for all such
i’s. If now i = −2, then we get the equality [Z2md−4 (X )] = [Z4 (X )]. On the other hand, since X is birationally
equivalent toV/G, then we have H3

nr (k(X )/C,Q/Z) ≃ H3
nr (C(V )G/C,Q/Z).Moreover, remark thatX is rationally

connected : indeed, V/G is unirational since it is dominated by the affine space V , and X is smooth and projective, so
this follows from Chapter I, Remark (1.1.19). This variety thus satisfies the conditions of Chapter III, Corollary (3.2.11),
so we naturally have :

Z4 (X ) ≃ H3
nr (X,Q/Z) ≃ H3

nr (C(V )G/C,Q/Z).
By the previous decomposition of Z2i ( [BG]) applied to i = −2, we obtain the desired identity :

Z−4 ( [BG]) = [Z4 (X )] = [H3
nr (C(V )G/C,Q/Z)].

□

We finish this section with the following result, also due to Scavia :

Corollary 4.2.23 (Scavia [Sca21, Thm. 3]). Let G be a finite group and V be a faithful complex representation of
G. Assume that H3

nr (C(V )G/C,Q/Z) ≠ 0. Then [BG] ≠ 1 in K0 (StckC).

Proof. It was shown by Ekedahl in [Eke09b, Prop. 3.3, (i)] that the Grothendieck group K0 (Ab) is can be written in
terms of generators as :

K0 (Ab) =
〈
[Z], [Z/pn]

�� p prime, n ≥ 1
〉
.

On the other hand, if H3
nr (C(V )G/C,Q/Z) is non-zero, then it has a non-trivial class inK0 (Ab). By the above propo-

sition, this shows that Z−4 ( [BG]) ≠ 0 in K0 (Ab). But Z−4 ( [SpecC]) = 0 since Z−4 is a morphism of groups. We
conclude that [BG] must be nonzero in K0 (StckC). □

As a consequence, there exist finite groupsG such that Brnr (C(V )G/C) = 0 but [BG] ≠ 1 inK0 (StckC). Indeed,
as discussed at the beginning of Chapter II, Peyre constructed in [Pey07, Thm. 3.1] for any odd prime number p a
central extension

0 −→ (Z/p)6 −→ G −→ (Z/p)6 −→ 0

such that Brnr (C(V )G/C) = 0 and H3
nr (C(V )G/C,Q/Z) ≠ 0 for any faithful complex representation V of G.





Appendix A

Action of correspondences on the
cohomology of H•B(−)

A.1. Bloch’s formula for Betti cohomology
Lemma 1.1.1. Let X be a smooth and proper variety over an algebraically closed field k.

(i) For any prime ℓ distinct from char k, algebraic and homological equivalence relatively to the étale ℓ-adic cycle class
coincide for divisors on X.

(ii) If moreover k = C, then algebraic and homological equivalence relatively to the Betti cycle class coincide for divisors
on X.

Proof. Let us first prove (ii). The exponential sequence on X provides an exact piece :

H1 (X,OX ) −→ Pic(X ) cℓ1−→ H2
B (X,Z),

where the second arrow is the cycle class. Moreover since X is smooth and proper, we have an exact sequence

0 −→ Pic0 (X ) −→ Pic(X ) −→ NS(X ) −→ 0,

see e.g. [Laz04, Thm. 1.1.16], and Pic0 (X ) = ker[Pic(X ) → H2
B (X,Z)]. Since Pic0 (X ) precisely consists of the

invertible sheaves that are algebraically equivalent to 0 (it is represented by a complex abelian variety which, as a complex
torus, is the quotient H1 (X,OX )/H1

B (X,Z) ; the claim follows since this torus is connected, because then H0
B (X,Z) =

0), we obtain an inclusion NS(X ) ↩→ H2
B (X,Z) as the image of the cycle class, which is the desired result.

Now for (i), we know that the Kummer sequence for varying n ≥ 1 on Xét provides injections Pic(X )/ℓn ↩→
H2

ét (X,Z/ℓn (1)) which, after taking inverse limits, yields an injection (these groups are finite, see [Mil80, Chap. VI,
Cor. 2.8]) :

lim
←−
n≥1

Pic(X )/ℓn ↩→ H2
ét (X,Zℓ (1)).

On the other hand, using once again the properness and smoothness of X , we have an exact sequence

0 −→ Pic0X/k (k) −→ Pic(X ) −→ NS(X ) −→ 0,

where Pic0X/k is the Picard variety of X . Since the latter is an abelian variety, then its k-points form a divisible group ;
on the other hand, NS(X ) is always finitely generated [BGI71, Exposé XIII, Thm. 5.1], so taking limits we obtain an
isomorphism :

lim
←−
n≥1

Pic(X )/ℓn ∼−−→ NS(X ) ⊗Z Zℓ ,

105
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hence an injection
NS(X ) ↩→ NS(X ) ⊗Z Zℓ

∼−−→ lim
←−
n≥1

Pic(X )/ℓn ↩→ H2
ét (X,Zℓ (1)),

as we wanted. □

Proposition 1.1.2 (Bloch’s formula for Betti cohomology). For any smooth, projective and connected variety over
C, we have canonical isomorphisms

CHp (X )/alg ∼−−→ Hp
Zar (X,H

p
B (Z(p)))

for all p ≥ 1.

Proof. Recall that by the Bloch-Ogus resolution of H
p
B (Z(p)), we have an isomorphism

Hp
Zar (X,H

p
B (Z(p))) ≃ ker dp,p1 /Im dp−1,p1 = Z p (X )/Im dp−1,p1 ,

where dp,q1 denotes the differential in position (p, q) in the E1-page of the coniveau spectral sequence attached toX and
Z(p). The goal is thus to show that the image of the differential

dp−1,p1 :
⊕

D∈X (p−1)
H1
B (k(D),Z(1)) −→

⊕
D∈X (p)

H0
B (k(D),Z)

is precisely the group Z p (X )alg of cycles of codimension p algebraically equivalent to 0.
If we fix a closed subvarietyD ↩→ X of codimension p− 1, then by Hironaka one can choose a resolution of singu-

larities D̃→ D that is projective. In particular, we obtain an isomorphism H1
B (k(D̃),Z(1))

∼−−→ H1
B (k(D),Z(1)). As

proper morphisms preserve cycles that are algebraically equivalent to 0, see [Ful98, Prop. 10.3], then we are reduced to
showing that the image of the differential in the Cousin complex corresponding to D̃ coincides with the group of cycles
of codimension p that are algebraically equivalent to 0, so in this case, the divisors on D̃ (as the latter has codimension
p − 1 in X ). But as D̃ is smooth and proper, the lemma shows that a divisor D′ is algebraically equivalent to 0 if and
only if it is homologically equivalent to 0 (for Betti cohomology), and the last condition is satisfied if and only if there
exists α ∈ H1

B (D̃ \ Supp(D′),Z(1)) whose (topological) residue is D′, hence the desired result. □

A.2. Main statement
— Let X, Y be two smooth and projective varieties over C. We recall that for a given abelian group A and an integer
j ≥ 0, the sheaf H

j
B (A) is defined as R jπ∗A, where π : Xcl → XZar is the usual morphism of sites ; this coincides with

the sheafification of the Zariski presheaf that sends an open subsetU ⊂ X to Hj
B (U,A). In this appendix, we consider

correspondences from X to Y with support in codimension r + dimX , where r is a fixed integer.

Proposition 1.2.3. Any correspondence Γ ∈ CHr+dimX (X ×C Y )/alg induces homomorphisms

Γ∗ : H
p
Zar (X,H

q
B (A)) −→ Hp+r

Zar (Y,H
q+r
B (A(r)))

for p, q ≥ 0 that are compatible with the composition of correspondences.

Proof. Let us write d := dimX . By the above lemma, we know that Γ has a class

[Γ]BO ∈ Hr+d
Zar (X ×C Y,H

r+d
B (Z(r + d))).
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On the other hand, the projection onto the first factor yields a pullback map

pr∗1 : H
p
Zar (X,H

q
B (A)) −→ Hp

Zar (X ×C Y,H
q
B (A)).

The cup-products in Betti cohomology Hl
B (A) ⊗Hs

B (Z(l)) →Hl+s
B (A(l)) yield cup-products on cohomology :

Hp
Zar (Z,H

l
B (A)) ⊗Z H

q
Zar (Z,H

s
B (Z(l))) −→ Hp+q

Zar (Z,H
l+s
B (A(l)))

for any variety Z. We thus obtain a map

(−⌣ [Γ]BO) ◦ pr∗1 : H
p
Zar (X,H

q
B (A)) −→ Hp+d+r

Zar (X ×C Y,H
q+d+r
B (A(d + r))).

Note that this is not exactly the map we are looking for ; we want to shift the degree in the right hand side by the
dimension ofX . By Bloch-Ogus theory, for any pair of integers i, j ≥ 0, the Gersten resolution for the sheaf H

j
B (A(d+

r)) on X ×C Y gives an isomorphism :

Hi
Zar (X×CY,H

j
B (A(d+r)))

∼−−→

ker
[ ⊕
x∈ (X×CY ) (i)

Hj−i
B (κ(x), A(d + r − i)) −→

⊕
x∈ (X×CY ) (i+1)

Hj−i−1
B (κ(x), A(d + r − i − 1))

]
Im

[ ⊕
x∈ (X×CY ) (i−1)

Hj−i+1
B (κ(x), A(d + r − i + 1)) −→

⊕
x∈ (X×CY ) (i)

Hj−i
B (κ(x), A(d + r − i))

]
where the differentials on the right are the obvious residues in the associated Cousin complex. Now, any point x ∈
(X ×C Y ) (i) has its Zariski closure Zx that is mapped under pr2 to a subvariety Z′x ⊂ Y of codimension at least i − d
(with equality if the projection is generically finite). Let x′ := pr2 (x). For any x such that x′ has codimension > i − d,
we say that

pr2∗ : H
j−i
B (κ(x), A(d + r − i)) −→ Hj−i

B (κ(x
′), A(d + r − i))

is the zero map. Otherwise, it is induced by the proper morphisms pr2 |Zx : pr−12 |Zx (V ) → V for sufficiently small
open subsets V ⊂ Z′x . We now use the following lemma :

Lemma 1.2.4. The maps pr2∗ commute with the residues in the Cousin complex

0 −→ Hj
B (k(X ), A(d + r)) −→ · · · −→

⊕
x∈ (X×CY ) (i)

Hj−i
B (κ(x), A(d + r − i)) −→ · · ·

Proof of the lemma. Let Z ⊂ X ×C Y be a subvariety of codimension i and D′ ⊂ Z′ = pr2 (Z) a subvariety of Y of
codimension i − d − 1. Suppose without loss of generality that Z and Z′ are normal (we will see that the arguments
commute with taking normalisations). We want to show that for any integer l, the composite morphism

𝜕Z′ ,D′ ◦ pr2∗ : Hk
B (k(Z), A(l)) −→ Hk

B (k(Z
′), A(l)) −→ Hk−1

B (k(D
′), A(l − 1))

coincides with the composition

pr2∗ ◦
( ∑︁

D⊂Z
pr2 (D)=D′

pr2∗
)
◦ 𝜕Z,D : Hk

B (k(Z), A(l)) −→
⊕
D⊂Z

pr2 (D)=D′

Hk−1
B (k(D), A(l − 1)) −→ Hk−1

B (k(D
′), A(l − 1)).

First suppose that dimZ = dimZ′. Since the residues considered here are induced by the long exact cohomology
sequences with support for pairs defined by varieties and their divisors, then the two maps must coincide since pr2
yields proper morphisms between pairs of the form (Z0,∪pr2 (D)=D′D) and (Z′0, D′) whereZ′0 is a smooth open subset
ofZ′ containing a dense open subset ofD′ andZ0 is the inverse image ofZ′0 inZ. This morphism remains also proper
when taking complements. (If the varieties were not normal, we could always take normalisations and get the same
conclusion.)
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If now dimZ′ < dimZ, remark that this case occurs only when dimZ′ = dimZ − 1 and Z′ = D′, so that
pr2∗ : Hk

B (k(Z), A(l)) → Hk
B (k(Z

′), A(l)) is the zero map. As a consequence, the composite 𝜕Z′ ,D′ ◦ pr2∗ is zero, so
we have to show that for any class α ∈ Hk

B (k(Z), A(l)), we have pr2∗ (𝜕 (α)) = 0, where 𝜕 =
∑

D⊂Z
pr2 (D)=D′

pr2∗ ◦𝜕Z,D so

that 𝜕 (α) is a finite sum of classes of degree k − 1 supported on divisors D ⊂ Z such that pr2 : D→ D′ is generically
finite. The last assumption shows that above a dense open subset Z′0 of D′ = Z′, the projection induces a proper and
smooth morphism pr02 : Z0 → Z′0 of relative dimension 1, which in turn yields a pushforward

pr2∗ : Hk+1
B (Z0, A(l)) → Hk−1

B (Z
′
0, A(l − 1)).

In particular, for any divisor j : D ↩→ Z0 that is smooth and proper above Z′0, and for any β ∈ Hk−1
B (D,A(l − 1)),

we have a factorisation pr2∗ (β) = (pr02∗ ◦j∗) (β) (where pr2∗ is taken relatively to the induced proper and smooth map
from D above Z′0). But on the other hand,

j∗ ◦ 𝜕 : Hk
B (Z0 \D,A(l)) −→ Hk−1

B (D,A(l − 1)) −→ Hk+1
B (Z0, A(l))

is the zero map. This proves the lemma. □

Let us get back to the proof of the main result. Since the map pr2∗ in our case commutes with residues, then it
descends to a well-defined morphism

Hi
Zar (X ×C Y,H

j
B (A(d + r))) −→

ker
[ ⊕
x∈ (X×CY ) (i−d)

Hj−i
B (κ(x), A(d + r − i)) −→

⊕
x∈ (X×CY ) (i+1−d)

Hj−i−1
B (κ(x), A(d + r − i − 1))

]
Im

[ ⊕
x∈ (X×CY ) (i−d−1)

Hj−i+1
B (κ(x), A(d + r − i + 1)) −→

⊕
x∈ (X×CY ) (i−d)

Hj−i
B (κ(x), A(d + r − i))

]
∼−−→ Hi−d

Zar (Y,H
j−d
B (A(r)))

where the second isomorphism comes once again from the Gersten resolution of the sheaf Hi−d
B (A(r)) on Y . With

these pushforwards now defined, the compositions

pr2∗ ◦(−⌣ [Γ]BO) ◦ pr∗1 : Γ∗ : H
p
Zar (X,H

q
B (A)) −→ Hp+r

Zar (Y,H
q+r
B (A(r)))

are precisely the desired maps in the proposition. The fact that these maps agree with the composition of correspon-
dences is then a natural consequence of the commutativity of Bloch’s formula with intersection products, the commu-
tativity of the maps pr2∗with cup-products, and a base change formula for the cohomology of H

q
B (A(l)) ; for complete

details, see [CTV12, Lem. 9.3]. □



Appendix B

Quillen’s Q-Construction

B.1. Classifying space of a category
— Let us briefly recall some basics about simplicial sets.

Definition 2.1.1. The category of simpleces is the category Δ whose objects are finite ordered sets

[n] := {0 < 1 < . . . < n}

and morphisms f : [m] → [n] are non-decreasing monotonous maps, that is, f (i) ≤ f (j) for i ≤ j.

When C is an arbitrary category, we define a simplicial object in C to be a presheaf F : Δop → C. We define a
morphism of simplicial objects as a natural transformation of functors, so that we can consider the category of simplicial
objects in C (denoted by sC). In particular, a simplicial set is a simplicial object in the category of sets, and a simplicial
space is a simplicial object in the category of topological spaces.

Definition 2.1.2. Let C be a small category. The nerve of C, denotedN ( C), is the simplicial set with n-simplices the
set of diagrams

x0 −→ x1 −→ · · · −→ xn with xi ∈ Ob( C), arrows in Mor( C).

Face operators arise by omitting objects and composing arrows, and degeneracies are defined by inserting identity maps,
that is :

𝜕i (x0
f1−→ x1

f2−→ · · ·
fn−→ xn) := x0

f1−→ x1
f2−→ · · ·

fi−1−→ xi−1
fi+1◦fi−→ xi+1

fi+2−→ · · ·
fn−→ xn

and
σi (x0

f1−→ x1
f2−→ · · ·

fn−→ xn) := x0
f1−→ x1

f2−→ · · ·
fi−1−→ xi−1

fi−→ xi
Id−→ xi

fi+1−→ · · ·
fn−→ xn.

IfX is a general simplical set given by a sequence {Xn}n≥0 of sets together with face operators 𝜕i : Xn → Xn−1 and
degeneracy operators σi : Xn → Xn+1, then the geometric realisation of X is the topological space

|X | :=
(∐
n≥0

Xn × Δn

)
/∼,

where Δn ⊂ Rn+1 denotes the standard n-simplex and Xn × Δn is the disjoint union of copies of Δn indexed by the
elements of Xn. The equivalence relation ∼ is defined as follows. Any map f : [m] → [n], induces a map f ∗ : Xn →
Xm and a continuous map of simpleces f∗ : Δm → Δn. Precisely, we define them on vertices v0, . . . , vm by sending
vi ↦→ vf (i) and extending linearly to the faces of Δm. For each x ∈ Xn and s ∈ Δm, we then identify

(f ∗ (x), s) ∼ (x, f∗ (s)).

109
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It follows by construction that the geometric realisation ofX is a CW-complex, whose n-cells are given by the elements
x ∈ Xn that are «non-degenerate», that is, which are not of the form σi (y) for some y ∈ Xn−1.

One can then check that any morphism of simplicial sets f : X → Y induces a continuous map |X | → |Y | :
indeed, f is a natural transformation of contravariant functors X ⇒ Y : Δop → Sets :

[n] Xn Yn

[m] Xm Ym

fn

fm

so we can define a map
Xn × Δn −→ Yn × Δn (∀n ≥ 0)

by sending (x, s) ↦→ (fn (x), s). One then checks that these maps descend to a well-defined continuous map |X | → |Y |.
We thus naturally obtain a functor | · | : sSets→ Top (where sSets denotes the category of simplicial sets).

Definition 2.1.3. Let nowX be any topological space. The singular complex ofX is the simplicial setSX : Δop → Sets
given by

[n] ⇝ HomTop (Δn, X ).

The main point of geometric realisation is encapsulated in the following result :

Proposition 2.1.4 ([May93, Chap. III, §16]). The geometric realisation functor | · | : sSets → Top is left adjoint
to the singular complex functor S : Top→ sSets :

HomTop ( |X |, Y )
∼−−→ HomsSets (X, SY )

for any Y ∈ Ob(Top) and X ∈ Ob(sSets).

Definition 2.1.5. The classifying space B C of a small category C is defined as the geometric realisation

B C := |N ( C) |

of the nerve of C.

Proposition 2.1.6 ([Sri96, Lem. 3.6]). Let F, G : C → D be two functors between small categories such that there
exists a natural transformation η : F ⇒ G. Then the induced maps BF,BG : BC→ BD are homotopic.

An immediate (and often useful) consequence is the following :

Corollary 2.1.7. Let F : C→ D be a functor between small categories. If F has a left adjoint or a right adjoint, then
BF is a homotopy equivalence. In particular, if C and D are equivalent categories, then BC and BC are homotopy
equivalent.

Example 2.1.8. Let C be a small category and ★ the category with a single element and identity morphism ★ → ★.
There exists a unique functor C→ ★.

• If C has an initial object I ∈ Ob( C), then the functor★⇝ I is left adjoint to F :

Hom C (I, X ) ≃ Hom★(★,★).

• If C has a terminal object T ∈ Ob( C), then the functor★⇝ T is right adjoint to F :

Hom★(★,★) ≃ Hom C (X, T ).

Therefore, a small category that admits an initial or a terminal object is contractible, that is, its classifying space
is contractible.
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B.2. The Q-Construction
— Let C be an exact category (see Chapter I, §3.1.1 for a definition). In this section, we explicit the construction of a
category QC that satisfies πtop

1 (BQC, 0) ≃ K0 ( C) for a given zero object 0 ∈ Ob( C). Following [Qui73, §2], we put
Ob(QC) = Ob( C), however we change the morphisms. A morphism in QC is a diagram of the form :

V 0 V ′ V X 0

X Y 0 V Y Y ′ 0

whereV ↠ X is an admissible epimorphism in C andV ↩→ Y is an admissible monomorphism in C. We consider the
isomorphism classes of such diagrams, that is, we identify two morphisms given as above if there exists an isomorphism
V ∼−−→ V ′ in C such that the following diagram commutes :

V

X Y

V ′

∼

For simplicity, we assume that such isomorphism classes form a set, so that QC is small. The composition of two
morphisms in QC is defined by considering the bi-cartesian square :

V ×Y W

V W

X Y Z

pr1 pr2

which exists in C, as the latter is closed under extensions by assumption. We obtain a short exact sequence

0 −→ ker pr1 −→ V ×Y W
pr1−→ V −→ 0

and ker pr1 ≃ ker[W → Y ]. By the universal property of pullback squares, we easily see that composition is associa-
tive, and it only depends on the considered isomorphism class.

Definition 2.2.9. Let i : A ↩→ B be an admissible monomorphism in C. This provides a morphism i! : A → B in
QC represented by a diagram :

A

A B

Id i .

The morphisms of the form i! are called injective. If p : A ↠ B is an admissible epimorphism in C, we define a
morphism p! : C → B in QC represented by a diagram :

B

C B

p Id .

The morphisms of the form p! are called surjective.
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By definition, any morphism f : X → Y in QC factors as a surjection followed by an injection i! ◦ p! :

V

V V

X V Y

Id Id

p i
Id Id

.

Similarly, there is a unique factorisation (up to a unique isomorphism) as an injection followed by a surjection p̃! ◦ ĩ!
given by a bi-cartesian square :

V

X Y

X X ∗V Y Y

p i

Id Id
ĩ p̃

.

The operations i←� ĩ and p ↦→ p̃ satisfy the following properties :

(i) If i and j are composable admissible monomorphisms (A
i
↩→ B

j
↩→ C), then (j ◦ i)! = j! ◦ i! :

A

A B

A B C

Id i

Id i
i Id

.

Dually, if p and q are composable admissible epimorphisms, then (p ◦ q)! = q! ◦ p!. Moreover (IdA)! = (IdA)! =
IdA.

(ii) If one has a bi-cartesian square

Z Y

X V

p̃

i

p

ĩ

where i and ĩ are admissible monomorphisms and p and p̃ are admissible epimorphisms, then i! ◦ p! = p̃! ◦ ĩ!.
From these observations, we can actually characterise the category QC as follows :

Lemma 2.2.10 ([Sri96, Lem. 6.2]). Let C be an exact category and D an arbitrary category. Assume that we are provided
with the following data :

• For each A ∈ Ob( C), there is an object F (A) ∈ Ob(D) ;

• for each admissible monomorphism i : A ↩→ B in C, there exists a morphism i!! : F (A) → F (B) in D ;

• for each admissible epimorphism p : B↠ C in C, there exists a morphism p!! : F (C) → F (B) in D ;

Suppose furthermore that the conditions (i) and (ii) as before hold for the morphisms i!! and p!!. Then this data uniquely
determines a functor F : QC→ D.
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Proposition 2.2.11. There is an isomorphism of categories

QCop ∼−−→ QC

such that injective morphisms in QC correspond to surjective morphisms in QCop, and vice versa.

Proof. If we are provided with a bi-cartesian square in C, then reversing arrows provides a bi-cartesian square in Cop,
say of the form :

Z Y Z Y

and

X V X V

p̃

i

p

ĩ

p̃op

iop

pop

ĩop .

Now, consider the functor that is the identity on objects and defined on the morphisms by :

i! ◦ p! ⇝ (p̃op)! ◦ (ĩop)!.

One naturally checks that this assignment is fully faithful : HomQC (X, Y ) ≃ HomQCop (X, Y ). □

B.3. Recovering K0

— We are now going to explain how the Q-construction allows us to recover, for a given small exact category C, the
groupK0 ( C) as the fundamental groupπtop

1 (BQC, 0) of the classifying space of C based at a zero object. We first need
to define the right notion of covering space in the simplicial setting. For the usual theory of coverings of topological
spaces and groupoids, we refer to [May93, Chap. III].

Definition 2.3.12. A morphism of simplicial sets p : E → X is called a covering of X if for any commutative diagram
as below in the category of simplicial sets :

Δ[0] E

Δ[n] X

p∃! ,

there is a unique morphism Δ[n] → E making the two subtriangles commute.

The coverings of a simplicial set X form a category CovX , where the morphisms are the following commutative
diagrams :

E E′

X

f

p p′
⟲ .

By construction, the geometric realisation functor is compatible with covering spaces of usual topological spaces :

Proposition 2.3.13 ([GZ67, Appendix I, §3.2]). The geometric realisation |p| : |E | → |X | of a simplicial covering
p : E → X is a covering space in the category of topological spaces.

In his original paper [Qui73], Quillen provided an insightful (and quite helpful) characterisation of the category
of coverings for the classifying space of a small category :
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Theorem 2.3.14 ([Qui73, §1, Prop. 1]). Let C be a small category. The categoryCovBC of coverings of the classifying
space of C is equivalent to the category of morphism-inverting functors F : C → Sets, i.e. the functors taking each
arrow A→ A′ to a bijection of sets F (A) → F (A′).

Now that all the necessary categorical machinery has been introduced and discussed, we are ready to prove the main
result of this appendix :

Theorem 2.3.15 ([Qui73, §2, Thm. 1]). Let C be a skeletally small exact category, and fix 0 a zero-object in C.
There is a natural isomorphism :

πtop
1 (BQC, 0) ∼−−→ K0 ( C).

Proof. By the previous theorem, we know that CovBQC is equivalent to the category of morphism inverting functors
F : QC→ Sets, which we will simply denote by IQC. The point of Quillen’s Q-construction is that the morphisms
in this category are precisely defined to satisfy compatibility with exact sequences definingK0 ( C). Indeed, the category
of covering spaces of BK0 ( C) is equivalent to the category of morphism inverting functors K0 ( C) → Sets (where
K0 ( C), as a group, is seen as a category), which is precisely the category of K0 ( C)-sets[25]. As πtop

1 (BQC) is naturally
isomorphic to the automorphism group of a universal covering space of BQC (cf. [Hat02, Thm. 1.38]), then the
theorem amounts to showing an equivalence between IQC and the category of K0 ( C)-sets.

First, observe that IQC is equivalent to the full subcategory I′ of morphism-inverting functors F ′ : QC→ Sets
such that F ′ (B) = F ′ (0) and F ′ (iX !) = IdF ′ (0) for every X ∈ Ob( C) (where iX denotes the admissible monomor-
phism 0 ↩→ X ). Indeed, for any admissible monomorphism i : A ↩→ B, we have that i ◦ iA = iB. Therefore,
IdF ′ (0) = F ′ (iB!) = F ′ (i!) ◦ F ′ (iA!) = F ′ (i!). If F : QC→ Sets is any morphism-inverting functor, one can define a
functor F ′ in I′ by putting :

V

X Y

ip

so that we consider F (iV !)−1 ◦ F (p!) ◦ F (iX !), with :

0 V 0

0 X X V 0 V

F (0) F (X ) F (X ) F (V ) F (V ) F (0)

iX

F (iX ! )

p

F (p! )

iV

F (iV ! )−1

.

Now consider a natural transformation of functors F ′ ⇒ F given by X ↦→ F (iX !). Since F (iX !) is a bijection of sets,
then F ′ ≃ F , so any object in IQC is isomorphic to an object of I′, as desired.

If S is a K0 ( C)-set, we can use Lemma (2.2.10) to define a morphism-inverting functor FS : QC → Sets which
belongs to I′, by putting FS (A) := S, FS (i!) := IdS and by defining FS (p!) as the natural action of [ker p] ∈ K0 ( C)
on S.

Conversely, we proceed the following way. If F : QC → Sets is a morphism-inverting functor which belongs
to I′, we describe a natural action of K0 ( C) on F (0) : if [A] ∈ K0 ( C), take F (p!A) ∈ Aut(F (0)) where pA is the
obvious admissible epimorphism A↠ 0. We need to check that this morphism is a homomorphism on K0 ( C). If

0 −→ A −→ B −→ C −→ 0

is exact in C, we should have
F (p!A) ◦ F (p

!
C ) = F (p!C ) ◦ F (p

!
A) ◦ F (p

!
B).

[25]The idea one should have in mind is that of a Galois category, which is more or less the category of covering spaces of a topological space thanks
to the main results of [GR71, §§4–6].
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Consider the bi-cartesian square :
C B

0 A

p

iC

pA

i ,

from which we deduce i! ◦ p!A = p! ◦ iC !. Since F (i!) = F (iC !) = IdF (0) , we conclude that F (p!A) = F (p!). Similarly
pB = pC ◦ p so we have that

F (p!B) = F ((pC ◦ p)!) = F (p! ◦ p!C ) = F (p!) ◦ F (p!C ) = F (p!A) ◦ F (p
!
C ).

We also claim that F (p!A) ◦ F (p
!
C ) = F (p!C ) ◦ F (p

!
A). Replacing B by A ⊕ C and considering the two split short exact

sequences
0 −→ A −→ A ⊕ C −→ C −→ 0

and
0 −→ C −→ A ⊕ C −→ A −→ 0,

we readily get the desired result. Finally, since ker pA ≃ A, we conclude that the assignments S ↦→ FS and F ↦→ F (0)
(as aK0 ( C)-set) are mutually inverse from each other, hence the equivalence of categories claim at the beginning of the
proof. □





Appendix C

Further results on algebraic cycles

C.1. Roitman’s Theorem

— We present Bloch’s proof of Roitman’s theorem [Blo79], which roughly states that the groupA0 (X ) of degree zero
0-cycles on a smooth and projective connected variety X over a separably closed field k is represented (up to torsion di-
visible by the characteristic of k) by the Albanese variety ofX , that is, the universal initial abelian variety underX (up to
the choice of base points). Roitman’s original proof uses purely analytic tools, therefore his argument cannot naturally
pass to positive characteristic. Bloch’s proof bypasses this issue thanks to Bloch-Ogus theory and the Merkurjev-Suslin
theorem; Milne later proved that the same statement holds for the p-torsion in characteristic p > 0 when the base field
is perfect, however his proof is slightly adapted and makes use of de Rham-Witt cohomology together with a duality
argument for fppf cohomology, see [Mil82, §§3–5].

Theorem 3.1.1 (Roitman). Let k be a separably closed field, X a smooth projective and connected k-variety, and ℓ a
prime number different from char(k). Then the Albanese map

alb : A0 (X ) −→ AlbX/k (k)

induces an isomorphism alb : A0 (X ){ℓ}
∼−−→ AlbX/k (k){ℓ}.

Proof. By Lefschetz’s theorem on hyperplane sections, one can find a smooth projective and connected curve C ⊂ X
over k such that there is a morphism of abelian varieties AlbC/k → AlbX/k that induces a surjection on ℓ -primary
torsion groups :

AlbC/k (k){ℓ} ↠ AlbX/k (k){ℓ}.

Indeed, as X is smooth and proper, we have the usual exact sequence

0 −→ Pic0X/k (k) −→ Pic(X ) −→ NS(X ) −→ 0. (C.1)

In particular, as AlbX/k ≃ (Pic0X/k)
∨ and H1

ét (X,Qℓ/Zℓ (1)) ↠ Pic(X ){ℓ} (via the Kummer sequence), then the
claim amounts to showing that H1

ét (X,Z/ℓn (1)) ↩→ H1
ét (C,Z/ℓn (1)) for all n ≥ 1. But C is obtained by taking

successive hyperplane sections. Consider such a section H ⊂ X , which therefore has affine complement U ⊂ X . By
cohomological purity and the long exact cohomology sequence with support, we have an exact portion

H2d−3
ét (H,Z/ℓn (d − 1)) −→ H2d−1

ét (X,Z/ℓn (d)) −→ H2d−1
ét (U,Z/ℓn (d))

117
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(where d := dimX ) and as U is affine and 2d − 1 > d, the right hand side vanishes. Applying the same process
inductively and using Poincaré duality, we obtain the desired injection. Now in the natural commutative diagram

A0 (C) AlbC/k (k)

A0 (X ) AlbX/k (k)

⟲

the top horizontal map is an isomorphism because C is a curve (indeed A0 (C) ≃ Pic0C/k (k) ; we then use the duality
induced by the Weil pairing). We thus obtain a surjection

A0 (X ){ℓ} ↠ AlbX/k (k){ℓ}.

It remains to show that this surjection is an isomorphism. Remark thatH2d−1
ét (X,Qℓ/Zℓ (d)) ≃ AlbX/k (k){ℓ}. Indeed,

Poincaré duality provides an isomorphism

H2d−1
ét (X,Qℓ/Zℓ (d))

∼−−→ Hom
(
H1

ét (X,Zℓ (1)),Qℓ/Zℓ (1)
)
≃ Hom

(
lim
←−
n≥1

Pic(X ) [ℓn],Qℓ/Zℓ (1)
)
,

where the second isomorphism comes from the Kummer sequence. Applying the exact sequence (C.1) again and using
the fact that NS(X ) is finitely generated (see [BGI71, Exposé XIII, Thm. 5.1]), we obtain an isomorphism

Hom
(
lim
←−
n≥1

Pic(X ) [ℓn],Qℓ/Zℓ (1)
) ∼−−→ Hom

(
lim
←−
n≥1

Pic0X/k (k) [ℓ
n],Qℓ/Zℓ (1)

)
.

But Pic0X/k is the dual of AlbX/k under the Weil pairing, that is, Pic0X/k (k) [ℓ
n] ≃ Hom

(
AlbX/k (k) [ℓn],Z/ℓn (1)

)
for

each n ≥ 1. Combining this fact with the above discussion, we thus obtain a isomorphism :

H2d−1
ét (X,Qℓ/Zℓ (d))

∼−−→ Hom
(
lim
←−
n≥1

Pic0X/k (k) [ℓ
n],Qℓ/Zℓ (1)

) ∼−−→ lim
−→
n≥1

AlbX/k (k) [ℓ
n] = AlbX/k (k){ℓ},

as desired. Recall from Bloch’s method (Chapter I, §4.3, Proposition (1.4.84)) that we have a short exact sequence :

0 −→ Hd−1
Zar (X,Kd) ⊗Z Qℓ/Zℓ −→ Hd−1

Zar (X,H
d
ét (Qℓ/Zℓ (d))) −→ CHd (X ){ℓ} −→ 0.

Moreover, Bloch-Ogus theory allows us to identify the middle term : indeed, the Leray spectral sequence Ep,q2 =

Hp
Zar (X,H

q
ét (Qℓ/Zℓ (d))) ⇒ Hp+q

ét (X,Qℓ/Zℓ (d)) has nonzero terms only for 0 ≤ p ≤ q ≤ d, so that Ed−1,d2
has no nonzero incoming nor departing differential. Hence Ed−1,d2 = Ed−1,d∞ = F d−1 H2d−1

ét (X,Qℓ/Zℓ (d)). But the
other successive quotients in the Leray filtration are also zero since Zariski cohomology vanishes in degree > d, so in-
ductively we obtain that F d−1 H2d−1

ét (X,Qℓ/Zℓ (d)) = H2d−1
ét (X,Qℓ/Zℓ (d)). Hence in the above exact sequence, we

can replace the middle term by AlbX/k (k){ℓ}, so that we obtain a surjection AlbX/k (k){ℓ} ↠ CH0 (X ){ℓ}. Since
CH0 (X )tors = A0 (X )tors (as the kernel of the degree map), then we actually obtain a surjection

AlbX/k (k){ℓ} ↠ A0 (X ){ℓ}.

On the other hand, the divisibility of Hd−1
Zar (X,Kd) ⊗Z Qℓ/Zℓ shows that the above surjection yields a surjection

AlbX/k (k) [ℓn] ↠ A0 (X ) [ℓn] for each n ≥ 1. Since the left group is finite (as torsion points of given order on an
abelian variety), then both groups are finite and surject onto each other, so we obtain an isomorphism. □
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C.2. Specialisation of Chow groups
— As discussed in Chapter I, §1.3, it is possible to define the pullback f ∗ : Z ∗ (Y ) → Z ∗ (X ) associated to a flat
morphism of noetherian schemes f : X → Y , and one can check that such a map descends to Chow groups, that is,
yields a well-defined morphism f ∗ : CH∗ (Y ) → CH∗ (X ). When X and Y are schemes over a field k, the projection
pr1 : X ×k Y → X is naturally flat by base change. Under rather mild conditions, the cycles annihilated under the
associated pullback on Chow groups are rationally equivalent to 0 up to a suitable integer factor :

Proposition 3.2.2. Let X and Y be two integral schemes of finite type over a field k and pr1 : X ×k Y → X the
projection onto the first factor. Then the kernel of the pullback

pr∗1 : CH∗ (X ) −→ CH∗ (X ×k Y )

is a torsion group. Moreover, if Y (k) is dense in Y , then this kernel is actually trivial.

Lemma 3.2.3 (Chevalley). Let f : T → S be a dominant morphism of integral noetherian schemes of finite type and let
η ∈ S be its generic point. There exists a dense open subset U ⊂ S such that dimTs = dimTη for every s ∈ U.

Proof. Note that the set F := {t ∈ T | dimt Tf (t) ≥ dimTη + 1} is closed inT , see e.g. [Gro67, (13.1.3)]. By Chevalley’s
constructibility theorem (cf. [Gro67, Thm. 18.4.3]), we know that f (F ) is a constructible subset of S that does not
contain η. We can thus take U := S \ f (T ). □

Lemma 3.2.4. Let ι : T ↩→ S be a closed immersion of schemes where S is integral and noetherian, Z a cycle on S whose
support does not contain any irreducible component of T . If Z is rationally equivalent to 0, then so is ι∗Z.

Proof. Without loss of generality, let us write Z = div(f ) for some rational function f ∈ k(W )× with W an integral
closed subscheme ofX . If we denote byT1, . . . , Tr the irreducible components ofT , then on each of these the function
f restricts to an invertible rational function fi . Since ι∗Z =

∑r
i=1 div(fi), the claim follows. □

Proof of Proposition (3.2.2). If U ⊂ Y is a dense open subset, then the kernel of pr∗1 : CH∗ (X ) → CH∗ (X ×k Y ) is
contained in the kernel of CH∗ (X ) −→ CH∗ (X ×k U ), and if Y (k) is dense in Y , then U (k) is dense in U . We can
therefore (without loss of generality) replace Y by a dense open subset for convenience purposes. If Z is a cycle on X
(of whose support can be assumed to be of pure codimension d ≤ dimX ) such that pr∗1 Z is rationally equivalent to 0,
then by definition one can find integral closed subschemesW1, . . . ,Wr ofX ×k Y and rational functions fi ∈ k(Wi)×
for i ∈ ⟦1, r⟧ such that

pr∗1 Z =

r∑︁
i=1

div(fi).

The goal of the proof is to pull back this decomposition to a suitable closed fibre of pr2 : X ×k Y → Y and apply the
previous lemma. More precisely, we need to find a closed point y ∈ Y such that for every i ∈ ⟦1, r⟧, the support of
div(fi) does not contain any irreducible component of the fibre (Wi)y. First note that Supp(pr∗1 Z) = Supp(Z) ×k Y
does not contain any irreducible component of (Wi)y for each i.

Up to shrinking Y , one can assume that each component of Supp(div(fi)) dominates Y . If η denotes the generic
point of Y , then Supp(div(fi))η has pure dimension d, so dim(Wi)η = d + 1 for all i. Therefore, every component
of every non-empty fibre of Wi → Y has dimension ≥ d + 1 by [Gro67, (13.1.1)]. Now by Chevalley’s semicontinuity
lemma above, up to shrinkingY again we can suppose that every non-empty fibre of Supp(div(fi)) → Y has dimension
d, so that for any y ∈ Y , the support Supp(div(fi)) cannot contain an irreducible component of (Wi)y. By the previous
lemma, we know that the pullback of div(fi) to (Wi)y is rationally equivalent to 0.

If we choose a point y0 ∈ Y , then we have an induced closed immersion ι : Xκ(y0 ) ↩→ X ×k Y . On the other hand,
ι∗ (pr∗1 Z) =

∑r
i=1 ι∗div(fi), so it is rationally equivalent to 0. As the composition

Z (X )
pr∗1−→ Z (X ×k Y )

ι∗−→ Z (Xκ(y0 ) )
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agrees with the pullback associated to the finite surjective morphism Xκ(y0 ) → X , then Z must be torsion annihilated
by the degree of this morphism (by projection formula, see Corollary (1.1.6)), which is equal to [κ(y0) : k], hence the
general claim. When Y (k) is dense in Y , then one can choose y0 ∈ Y (k) so that [κ(y0) : k] = 1 and Z is actually
rationally equivalent to 0. □

Remark 3.2.5. If we take in particular Y to be affine, then by Noether’s normalisation lemma one can choose a finite
surjective morphism Y → Adk for some d ≥ 1, so that the kernel of

CH∗ (X ×k Adk) −→ CH∗ (X ×k Y )

is torsion.
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