Linear representations TD3

Reminders. Unless explicitly mentioned, a *representation* of a (finite) group G is assumed to be *linear* and *complex* (that is, with values in GL(V) for some finite dimensional vector space V over the field C of complex numbers). Moreover, we have the following fundamental properties.

- (1) Every representation is a direct sum of irreducible representations (Maschke's theorem);
- (2) Characters of irreducible representations form an orthonormal basis of the space of central functions on G endowed with the inner product $\langle \varphi, \psi \rangle = \frac{1}{|G|} \sum_{g \in G} \varphi(g) \overline{\psi(g)};$
- (3) If we denote by n_1, \ldots, n_r the dimensions of the irreducible representations of G, then they satisfy the relation $\sum_{i=1}^r n_i^2 = |\mathbf{G}|.$

T

Notation. Exercises marked with a are classical and will be corrected during the exercise class (if time permits it).

Those marked with a re slightly more advanced and facultative.

 \mathbb{Z} Exercise 1. Let p be a prime number.

(1) Describe all of the irreducible representations of $\mathbf{Z}/p\mathbf{Z}$. What can one conclude about the orthogonality of characters in this case?

(2) Show that the map $\chi : (\mathbf{Z}/p\mathbf{Z})^* \to \mathbf{C}^*$ given by $\chi(\overline{a}) = 1$ if a is a square mod p, resp. $\chi(\overline{a}) = -1$ otherwise, is a representation. Let now assume that $p \ge 3$; what can one deduce from the fact that this character is orthogonal to the trivial character?

Exercise 2. (1) Let $\rho : \mathfrak{S}_3 \to \operatorname{GL}_3(\mathbb{C})$ be the regular representation, i.e. given by permuting the vectors of the canonical basis $\mathscr{B} = (e_1, e_2, e_3)$ of \mathbb{C}^3 . Show that the subspace $V := \mathbb{C}(1, 1, 1) \subset \mathbb{C}^3$ is a subrepresentation of ρ and that $W := \{(x, y, z) \in \mathbb{C}^3 \mid x + y + z = 0\}$ is a subrepresentation which is complementary to V.

- (2) Show that W is an irreducible representation, and explain how to generalise this construction to \mathfrak{S}_n for $n \ge 4$.
- (3) Describe all of the irreducible representations of \mathfrak{S}_3 and give its character table.

Exercise 3. Let $G \subset GL_n(\mathbb{C})$ $(n \ge 1)$ be a subgroup with finite order. Show that $\sum_{g \in G} Tr(g)$ is an integer. Give a geometric interpretation of this fact.

Exercise 4. Let k be a field of characteristic p > 0. Show that the following two properties are equivalent:

- (i) The group algebra k[G] is semisimple;
- (ii) the order of G is not divisible by p.

[Hint: to prove that (i) \Rightarrow (ii) show that, if p divides |G|, then the augmentation ideal I = { $\sum_{g \in G} a_g[g] \mid \sum_{g \in G} a_g = 0$ } $\subset k[G]$ is not a direct factor (as a module)]

Exercise 5. Consider the dihedral group given by the following presentation:

$$D_4 := \{r, s \mid r^4 = s^2 = 1, srs = r^{-1}\}.$$

(1) Show that D_4 has order 8. Deduce that the dimensions of the irreducible representations of D_4 are 1, 1, 1, 1, 2.

(2) Show that the map $D_4 \to GL_2(\mathbf{R})$ that sends r to the rotation of angle $\pi/2$ with center $(0,0) \in \mathbf{R}^2$ and s to the reflexion of axis $\mathbf{R}(0,1) \subset \mathbf{R}^2$ is an injective group morphism (hence a faithful representation).

(3) Determine all of the irreducible representations of D_4 .

Exercice 6. We recall the following notation: given a group G, its *center* is the subgroup $Z(G) := \{z \in G \mid \forall g \in G, zg = gz\}$. Fix a representation $\rho : G \to GL(V)$ once and for all.

(1) Show that for every $z \in Z(G)$, one has $\rho(z) = \chi(z) \cdot Id$ for some $\chi(z) \in \mathbb{C}^*$.

(2) Show that the map $\chi : Z(G) \to C^*$ thus defined is a group morphism (usually called the *central character* of the representation ρ).

(3) Deduce that as soon as G admits a faithful representation (i.e. injective), then its center Z(G) is a cyclic group.

Exercise 7. (0) Let $\zeta_1, \ldots, \zeta_r \in \mathbf{C}^*$ be roots of unity and $\alpha := (\zeta_1 + \ldots + \zeta_r)/r$. Show that if α is an algebraic integer, then either $\alpha = 0$ or $\alpha = \zeta_1 = \ldots = \zeta_r$

[Hint: if one denotes by Π the product of the conjugates of α over \mathbf{Q} , show that $|\Pi| \leq 1$].

Let $\rho : \mathbf{G} \to \mathbf{GL}(\mathbf{V})$ be an irreducible representation of degree $n \ge 1$ and character χ . For $g \in \mathbf{G}$, denote by c(g) the cardinal of the conjugacy class of g.

(1) Let $a = \sum_{g \in \mathcal{G}} a_g[g] \in \mathbb{C}[\mathcal{G}]$ be a central element such that each $a_g \in \mathbb{C}$ is an algebraic integer. Show that the element $(1/n) \cdot (\sum_{g \in \mathcal{G}} a_g \cdot \chi(g))$ is an algebraic integer.

[Hint: you may use Question (0) from Exercise 8].

(2) Deduce that $(c(g)/n) \cdot \chi(g)$ is an algebraic integer.

(3) Show that if c(g) and n are relatively prime and $\chi(g) \neq 0$, then $\rho(g)$ is a homothety.

[Hint: $(1/n) \cdot \chi(g)$ is an algebraic integer]

Exercise 8. Let G be a finite group.

(0) Let $a = \sum_{g \in G} a_g[g] \in \mathbb{C}[G]$ be a central element such that each $a_g \in \mathbb{C}$ is an algebraic integer. Show that a is integral over \mathbb{Z} .

[Hint: let C_1, \ldots, C_r denote the conjugacy classes of G, put $e_i := \sum_{g \in C_i} [g]$ and write $a = \sum_{i=1}^r a_i [e_i]$ for some adequate a_i 's. You may then use the fact that the elements of $\mathbf{C}[G]$ which are integral over \mathbf{Z} form a subring]

(1) Let $\rho : \mathbf{G} \to \mathrm{GL}(\mathbf{V})$ be an irreducible representation. Show that for every $m \geq 0$, the tensor representation $\rho^{\otimes m} : \mathbf{G}^m \to \mathrm{GL}(\mathbf{V}^{\otimes m})$ is irreducible.

(2) Show that the image under $\rho^{\otimes m}$ of any $(z_1, \ldots, z_m) \in \mathbb{Z}(\mathbb{G})^m$ is a homothety. [Hint: apply Schur's lemma]

The subgroup H of $Z(G)^m$ consisting of those (z_1, \ldots, z_m) such that $\prod_{i=1}^m z_i = 1$ acts trivially on $V^{\otimes m}$; taking quotients, we obtain a representation of G^m/H which is irreducible.

(3) Deduce that the degree of this representation divides the order of G^m/H . Varying the choice of $m \ge 0$, infer that the degree of ρ divides the index (G : Z(G)).