Linear representations TD5

Reminders. Unless explicitly mentioned, a *representation* of a (finite) group G is assumed to be *linear* and *complex* (that is, with values in GL(V) for some finite dimensional vector space V over the field C of complex numbers). Moreover, we have the following fundamental properties.

- (1) Every representation is a direct sum of irreducible representations (Maschke's theorem);
- (2) Characters of irreducible representations form an orthonormal basis of the space of central functions on G endowed with the inner product $\langle \varphi, \psi \rangle = \frac{1}{|G|} \sum_{g \in G} \varphi(g) \overline{\psi(g)};$
- (3) If we denote by n_1, \ldots, n_r the dimensions of the irreducible representations of G, then they satisfy the relation $\sum_{i=1}^{r} n_i^2 = |\mathbf{G}|.$

Notation. Exercises marked with a are classical and will be corrected during the exercise class (if time permits it).

Those marked with a are slightly more advanced and/or facultative.

Exercise 1. Let $n \ge 1$. For $\sigma \in \mathfrak{S}_n$, denote by $f_{\sigma} \ge 1$ the number of fixed points $\{1, \ldots, n\}$ under the action of σ . Show that we have an equality:

$$\sum_{\sigma\in\mathfrak{S}_n}f_\sigma^2=2n!$$

Exercise 2. Let G be a finite abelian group. We aim at describing the structure of G precisely. Denote by $\hat{G} := Hom(G, \mathbb{C}^*)$ the set of characters of G.

- (1) Show that the composition law $f \cdot f' : g \mapsto f(g)f'(g)$ endows \widehat{G} with a commutative group structure, and that $|\widehat{G}| = |G|$. (2) If H is an abelian group and $\pi : G \to H$ is a surjective group morphism, show that the induced map
- (2) If it is an abenan group and π . $G \rightarrow H$ is a surjective group morphism, show that the induced map

$${\rm \widetilde{H}} \longrightarrow {\rm \widetilde{G}} \ f \longmapsto f \circ \pi$$

is an injective group morphism.

(3) Let H be a subgroup of G. Show that restriction of functions induces a group morphism $\widehat{H} \to \widehat{G}$ whose kernel is isomorphic to $\widehat{G/H}$. Deduce to this morphism is surjective.

(4) Show that the map $G \to (\widehat{G})$ that sends an element $g \in G$ to $ev_q : f \mapsto f(g)$ is an isomorphism.

(5) Denote by e the exponent of G, that is, the lcm of all the orders of elements of G. Recall why there exists some $g_0 \in G$ whose order is precisely e. We will fix this g_0 once and for all.

(6) Show that there exists a character $f \in G$ such that $f(g_0)$ has order e. Deduce that $G \simeq \langle g_0 \rangle \times \ker(f)$.

- (7) Infer that G is a product of cyclic groups, and that $G \simeq \widehat{G}$.
- (8) Show that, if $g \in G$ is not the neutral element, then $\sum_{f \in \widehat{G}} f(g) = 0$.

Exercise 3. Let V be the (left) regular representation of a finite group G, i.e. V is the vector space of dimension |G| with a basis consisting of $(e_g)_{g\in G}$ such that ${}^ge_h = e_{gh}$ for any $g, h \in G$. Let $H \subset G$ be a subgroup and let $W \subset V$ be the subspace generated by the vectors $(e_h)_{h\in H}$.

(1) Show that W is stable under the action of H and that it is isomorphic to the regular representation of H.

(2) Show that V is the induced representation of W from H to G. In particular, when $H = \{e\}$, this shows that $V = Ind_{\{e\}}^{G}(\mathbf{1})$, where **1** denotes the trivial representation of the trivial group.

Exercise 4. Let G be a finite group, let $H \subset G$ be a subgroup and consider two representations (W_1, π_1) and (W_2, π_2) of H.

(1) Show that, if $\rho_1 := \operatorname{Ind}_{\mathrm{H}}^{\mathrm{G}}(\pi_1)$ and $\rho_2 := \operatorname{Ind}_{\mathrm{H}}^{\mathrm{G}}(\pi_2)$, then $\rho_1 \oplus \rho_2 = \operatorname{Ind}_{\mathrm{H}}^{\mathrm{G}}(\pi_1 \oplus \pi_2)$.

(2) Generalise this fact to the direct sum of finitely many representations.

Exercise 5. Let G be a finite group, let $H \subset G$ be a subgroup, and let (V, ρ) (resp. (W, π)) be a representation of G (resp. of H). Recall that $Hom_G(V_1, V_2)$ (resp. $Hom_H(W_1, W_2)$) denotes the set of morphisms of G-representations from V_1 to V_2 (resp. H-representations from W_1 to W_2).

(1) Show that $\operatorname{Hom}_{H}(W, V) \simeq \operatorname{Hom}_{G}(\operatorname{Ind}_{H}^{G}(W), V)$.

(2) In the language of categories, we say that induction from H to G yields a functor $\text{Ind}_{\text{H}}^{\text{G}}(-)$ which is left adjoint to the forgetful functor from G-representations to H-representations. Look up the words that you do not understand here and make sense of this sentence.

(3) Show, using (1), that if W is a representation of H and if the induced representation of W from H to G exists, then it must be unique.

(4) The last point yet again translates in the language of categories: namely, the universal property of (2) implies that the induction functor is unique. Try to understand this statement.

Exercise 6. Let G be a finite group and let $H \subset G$ be a subgroup.

(1) Let $\Sigma \subset G$ be a system of coset representatives of G/H. Show that the elements of Σ form a basis of $\mathbf{C}[G]$ viewed as a right $\mathbf{C}[H]$ -module, i.e. that there is an isomorphism:

$$\mathbf{C}[\mathbf{G}] \simeq \bigoplus_{g \in \Sigma} [g] \cdot \mathbf{C}[\mathbf{H}]$$

as right C[H]-modules.

(2) Deduce that for any H-representation (W, π) , the associated induced representation from H to G satisfies $Ind_{H}^{G}(W) \simeq C[G] \otimes_{C[H]} W$.