Linear representations TD6

Reminders. Unless explicitly mentioned, a *representation* of a (finite) group G is assumed to be *linear* and *complex* (that is, with values in GL(V) for some finite dimensional vector space V over the field C of complex numbers). Moreover, we have the following fundamental properties.

- (1) Every representation is a direct sum of irreducible representations (Maschke's theorem);
- (2) Characters of irreducible representations form an orthonormal basis of the space of central functions on G endowed with the inner product $\langle \varphi, \psi \rangle = \frac{1}{|G|} \sum_{g \in G} \varphi(g) \overline{\psi(g)};$
- (3) If we denote by n_1, \ldots, n_r the dimensions of the irreducible representations of G, then they satisfy the relation $\sum_{i=1}^{r} n_i^2 = |\mathbf{G}|.$

Notation. Exercises marked with a are classical and will be corrected during the exercise class (if time permits it).

Those marked with a view are slightly more advanced and/or facultative.

 $\mathbb{A}_{\mathbb{Z}}$ Exercise 1. Let $\mathfrak{A}_5 \subset \mathfrak{S}_5$ be the alternating group on 5 elements.

(1) Show that \mathfrak{A}_5 has exactly 5 conjugacy classes, and that it does not admits any nontrivial normal subgroup.

(2) Deduce that \mathfrak{A}_5 has no nontrivial 1-dimensional representation.

(3) Construct an irreducible 4-dimensional representation of \mathfrak{A}_5 .

(4) Infer that the degrees of the irreducible representations of \mathfrak{A}_5 are 1, 3, 3, 4, 5.

(5) Let $\psi : \mathfrak{A}_4 \to \mathbf{C}^*$ be a nontrivial 1-dimensional representation. Show that $\operatorname{Ind}_{\mathfrak{A}_4}^{\mathfrak{A}_5}(\psi)$ is an irreducible 5-dimensional representation of \mathfrak{A}_5 .

(6) View \mathfrak{A}_5 as the group of transformations of a 3-dimensional space which preserve the isocahedron in order to construct an irreducible 3-dimensional representation. As \mathfrak{A}_5 is a normal subgroup of \mathfrak{S}_5 of index 2, you may use this to construct the other irreducible 3-dimensional representation.

(7) Does every irreducible representation of \mathfrak{S}_5 remain irreducible when restricted to \mathfrak{A}_5 ?

Exercise 2. Let G be an abelian group, possibly infinite.

(1) Let (V, ρ) be an irreducible representation of G (possibly infinite dimensional). Under which hypotheses is this representation 1-dimensional? Is this actually always the case?

(2) Let now G be an arbitrary group (possibly infinite), and let (V, ρ) be a representation of G (possibly infinite dimensional). Under which hypotheses does this representation split as a direct sum of irreducible factors (that is, Maschke's Theorem holds)? Is this always the case?

Exercise 3. A finite group G is said to be *supersolvable* if there exists an increasing sequence of subgroups

$$\{1\} = \mathcal{G}_0 \subset \mathcal{G}_1 \subset \ldots \subset \mathcal{G}_{n-1} \subset \mathcal{G}_n = \mathcal{G}$$

such that for any $i \in [0, n-1]$, G_i is normal in G_{i+1} and G_{i+1}/G_i is cyclic. (In particular, a nilpotent group is supersolvable). We aim at showing that any irreducible representation of such a group is necessarily *monomial*, i.e. induced by a 1-dimensional representation from an adequate subgroup $H \subset G$.

(1) Let $N \subset G$ be a normal subgroup and $\rho : G \to GL(V)$ an irreducible representation. Show that one of the following two statements holds:

- (a) there exists a strict subgroup $H \subset G$ which contains N and an irreducible representation ρ' of H such that $\rho = \operatorname{Ind}_{H}^{G}(\rho')$, or
- (b) the restriction of ρ to N is *isotypic*, i.e. splits as a direct sum of isomorphic irreducible representations.

(2) Suppose that G is non-abelian. Show that there exists a normal abelian subgroup of G which is not contained in Z(G).

(3) Infer that any irreducible representation of G is monomial (one may argue by induction on the order of G and assume without loss of generality that all the representations that are considered are faithful).

Exercise 4. Let G be a finite p-group and let χ be an irreducible character of G. Show that

$$\sum_{\chi'} \chi'(1)^2 \equiv 0 \mod \chi(1)^2,$$

where the sum is taken over the set of irreducible characters χ' such that $\chi'(1) < \chi(1)$.

Exercise 5. Let G be a finite simple group (that is, a group with no nontrivial proper normal subgroup).

(1) Show that every 1-dimensional representation of G is trivial, and infer that any for any irreducible representation (V, ρ) of G, one has $\rho(G) \subset SL(V)$.

(2) Show that G admits no irreducible 2-dimensional representation.

Exercise 6. Let G be a finite group and let H be a subgroup of G. Assume that for each $g \notin H$ we have $H \cap gHg^{-1} = \{1\}$; we say that H is a *Frobenius subgroup* of G. Denote by N the set of elements of G which are not conjugate to any element of H.

(1) Show that the number of elements of N is precisely |G|/|H| - 1.

(2) Let φ be a class function on H. Show that there is exactly one class function $\tilde{\varphi}$ on G which extends φ and takes the value $\varphi(1)$ on N.

(3) Show that $\tilde{\varphi} = \operatorname{Ind}_{\mathrm{H}}^{\mathrm{G}}(\varphi) - \varphi(1)\psi$, where ψ is the character of $\operatorname{Ind}_{\mathrm{H}}^{\mathrm{G}}(1) - 1$ (permutation representation minus trivial one).

(4) Show that for any choice of φ_1, φ_2 central functions on H and $\tilde{\varphi}_1, \tilde{\varphi}_2$ lifts of those functions as in (2), one has

$$\langle \varphi_1 | \varphi_2 \rangle_{\mathrm{H}} = \langle \tilde{\varphi}_1 | \tilde{\varphi}_2 \rangle_{\mathrm{G}}.$$

(5) Fix some irreducible character of H. Show, using (3) and (4), that $\langle \tilde{\varphi} | \tilde{\varphi} \rangle_{\rm G} = 1$, $\tilde{\varphi}(1) \geq 0$ and that $\tilde{\varphi}$ is a linear combination with integer coefficients of irreducible characters of G. Conclude that $\tilde{\varphi}$ is an irreducible character of G. If ρ denotes a corresponding representation, show that $\rho(s) = 1$ for each $s \in \mathbb{N}$.

(6) Show that every representation of H extends to a representation of G whose kernel contains N. Conclude that $N \cup \{1\}$ is a normal subgroup of G, and that G is the semidirect product of H and $N \cup \{1\}$ (this is known as *Frobenius's Theorem*).

(7) Suppose conversely that G is the semidirect product of H and a normal subgroup A. Show that H is a Frobenius subgroup of G if and only if, for each $h \in H \setminus \{1\}$ and each $a \in A \setminus \{1\}$, we have $hah^{-1} \neq a$ (i.e. H acts freely on $A \setminus \{1\}$). (If $H \neq \{1\}$, this property implies that A is nilpotent by combining with a theorem of Thompson.)