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Problem statement

Private information retrieval (PIR):

Given a remote database F € ¥M and i € [1, M],
can we retrieve the entry/file F;,

without leaking information on the index i?
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Problem statement

Private information retrieval (PIR):

Given a remote database F € ¥M and i € [1, M],
can we retrieve the entry/file F;,

without leaking information on the index i?

Appications: access to medical data, geoprivacy, ...

Trivial solution: full download.
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Definition of PIR

Introduced in:
% Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

A database F is stored (in some way) on n servers Sy, ..., Sy.
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Definition of PIR

Introduced in:
% Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

A database F is stored (in some way) on n servers Sy, ..., Sy.
A user U wants to recover F; privately.

A Private Information Retrieval protocol is a set of algorithms (Q, A, R):

1. U generates a query vector
q:=(q1,---,4n) < Q) (@1, 0)

and sends g; to server S;.

2. Each server S; computes User
rj = Algj Fis) %
and sends it back to U.

(r1,.-.,1n)
3. U recovers the desired entry 5152 Sn

Fi=TR(q,r1i).
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Privacy

The adversary: a collusion of servers = a subset of servers {S; : j € T}, where
T C [1,n], which exchange information about queries, data, etc.

t:= max{|T|,T C [1,n] is a collusion} > 1
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The adversary: a collusion of servers = a subset of servers {S; : j € T}, where
T C [1,n], which exchange information about queries, data, etc.

t:= max{|T|,T C [1,n] is a collusion} > 1

e Information-theoretic (IT) privacy:
IG;qr) =0, VT C[1,n]|T|<t.

e Computational privacy: by varying the index i, distributions of queries
g, = Q(i)|r are computationally indistinguishable.

Theorem [CGKS95, CG97]. If t = n (in particular if n = 1 server), then:

— for IT privacy, no better solution than full download,

— computational privacy is possible, but remains expensive as of now.
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Main parameters of PIR schemes

We focus on IT-privacy
(hence we need n > 2 servers)
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Main parameters of PIR schemes

We focus on IT-privacy
(hence we need n > 2 servers)

Parameters to be taken into account:

communication complexity (upload and download)
computation complexity (client and servers)
global server storage overhead

maximum size of collusions (f)

Several possible settings:

5/33

replicated database vs. coded database

unresponsive or byzantine servers

small entries vs. large entries

bounded vs. unbounded number of entries in the database

dynamic database vs. static database
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Seminal work [CGKS’95-98]

% Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

Settings: database F stored on n servers, where:
> |F| = M entries (bits), with M = L2, and [1,M] ~ [1,L]?.
» n = 4 servers Sg, So1, S10, S11, each storing a replica of F.

Fe {01}

6/33 J. Lavauzelle



Seminal work [CGKS’95-98]

% Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

Settings: database F stored on n servers, where:
> |F| = M entries (bits), with M = L2, and [1,M] ~ [1,L]?.
» n = 4 servers Sg, So1, S10, S11, each storing a replica of F.

Goal: retrieve F; = F(; ;,), for1 <iy,ip <L.

i1,ip
L

Fe {01}

6/33 J. Lavauzelle



Seminal work [CGKS’95-98]

% Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

Settings: database F stored on n servers, where:
> |F| = M entries (bits), with M = L2, and [1,M] ~ [1,L]?.
» n = 4 servers Sg, So1, S10, S11, each storing a replica of F.

Goal: retrieve F; = F(; ;,), for1 <iy,ip <L.

i1,ip
L

Fe {01}~ 1. U generates at random two subsets X7, X,
of [1,L]. Then U sends:

X5

6/33 J. Lavauzelle



Seminal work [CGKS’95-98]

% Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

Settings: database F stored on n servers, where:
> |F| = M entries (bits), with M = L2, and [1,M] ~ [1,L]?.
» n = 4 servers Sg, So1, S10, S11, each storing a replica of F.

Goal: retrieve F; = F(; ;,), for1 <iy,ip <L.

i1,ip
L

Fe {01}~ 1. U generates at random two subsets X7, X,
of [1,L]. Then U sends:
-( X1 , Xz )toSe,

6/33 J. Lavauzelle



Seminal work [CGKS’95-98]

% Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

Settings: database F stored on n servers, where:
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i1,ip
L

Fe {01}~ 1. U generates at random two subsets X7, X,
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Seminal work [CGKS’95-98]

% Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

Settings: database F stored on n servers, where:
> |F| = M entries (bits), with M = L2, and [1,M] ~ [1,L]?.
» n = 4 servers Sg, So1, S10, S11, each storing a replica of F.

Goal: retrieve F; = F(; ;,), for1 <iy,ip <L.

i1,ip
L

Fe {0, 1}L2 1. U generates at random two subsets X;, X,
of [1,L]. Then U sends:
X; , X )toSg,
Xi1A{i1}, X, )toSi,

-

- )

- ( X5 ,XoA{ir})toSa,
- (XlA{i]},XzA{iz}) to Sq1.
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Seminal work [CGKS’95-98]

% Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

Settings: database F stored on n servers, where:
> |F| = M entries (bits), with M = L2, and [1,M] ~ [1,L]?.
» n = 4 servers Sg, So1, S10, S11, each storing a replica of F.

Goal: retrieve F; = F(;, ;)

L

Fe {01}

XOR this data
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Seminal work [CGKS’95-98]

% Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

Settings: database F stored on n servers, where:
> |F| = M entries (bits), with M = L2, and [1,M] ~ [1,L]?.
» n = 4 servers Sg, So1, S10, S11, each storing a replica of F.

Goal: retrieve F; = F for1l <iy,ip <L

i1,i2)”
L

Fe {01}~ 1. U generates at random two subsets X7, X,
XORed 2x  XORed 4x of [1,L]. Then U sends:
(X3 , Xp )toS,
EXIA{ll} X, )to S,

X1 XzA{lz}) to So1,
L (X]A{l]} XzA{Zz}) to S1q

i ‘\. computes a = ¢z, «z, Fz and sends a to
3. User XORs the 4 bits and retrieves F;.

2. Atreception of (Z1,Z;), each server
the user.
XORed 1x
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Features of the PIR scheme in [CGKS’95-98]

Correct, and secure if no collusion.

With n = 4 servers:
» Communication: 8v/M uploaded bits, 4 downloaded bits,
> Storage: replication of F over n = 4 servers,
> Complexity:

> for each server: in average, XOR of (L/2)? = M/4 bits
» for the user: XOR of n = 4 bits.

Generalisable to n = 2¥ servers:

» Communication: 2! M'/? = nlog(n)M/1°8(") uploaded bits, n
downloaded bits,

> Storage: replication of F over n servers,

»> Complexity:
» for each server: in average, XOR of M/n bits
P for the user: XOR of n bits.
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(Short) state of the art

e 1995: first definition [CGKS95]

© 2000: reduction from smooth locally decodable codes [KT00]

¢ 2000-10’s: many improvements
> PIR with 3 servers and subpolynomial communication [Yek08, Efr09]
» PIR with 2 servers and subpolynomial communication [DG16]
> lower storage overhead with PIR codes [FVY15]

¢ 2016-now: capacity-achieving schemes, schemes dedicated to storage systems
» capacity of PIR [S]J17, BU18]
» (nearly) capacity-achieving schemes [SRR14, CHY15, TR1S6, ...]
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2. PIR schemes with low computation and storage
Transversal designs and codes
A PIR scheme with transversal designs
Collusion-resistant PIR schemes with weighted lifted codes

8/33 J. Lavauzelle i inf i i i ding-theoreti



Context

Previous scheme:
» moderate communication complexity
> computationally inefficient (linear in |F|)

> huge storage overhead (replicas of |F|)
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Context

Previous scheme:
» moderate communication complexity
> computationally inefficient (linear in |F|)

> huge storage overhead (replicas of |F|)

Our goal:
» moderate communication complexity
» optimal computation (one read for each server)

» smaller storage overhead by encoding/distributing the database

Tools: coding theory
> codes from transversal designs
» “lifted” codes
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2. PIR schemes with low computation and storage
Transversal designs and codes
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Transversal designs

A transversal design TD(n,s) = (X, B, G) is given by:
> X aset of points, | X| = N = ns,
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Transversal designs

A transversal design TD(n,s) = (X, B, G) is given by:
> X aset of points, |X| =N = ns, G1 G Gn-1Gn

> groups G = {Gj}1<j<, satisfying *|° *|®
. o e o e
X:HG/ and |G]‘:S, ° .i~\ ol @
=t ° /o Ss_ || e
> blocks B € B satisfying o / . Veole
- BC Xand |B| =n; ol o .\ .

— forall {i,j} C X, {i,j} lie: ] \

either in a single group G € G, L®]le®] L®]l®]

or in a unique block B € B
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Example: a TD(3,3)

An example for a TD(3,3) :
- ns = 9 points
- 5 = 3 groups Gy, Gy, G3 of size 3
— ns = 9 blocks of n = 3 points, partitionned into 3 parallel classes B1, B, B3

G1 Gy Gy B, U 83
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Codes from designs

Let 7 be a transversal design TD(n,s) = (X, B, G).

Its incidence matrix M has size |B| x |X| = ns X ns, and is defined by:

1 ifx; €B;
O

0 otherwise.
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Codes from designs

Let 7 be a transversal design TD(n,s) = (X, B, G).

Its incidence matrix M has size |B| x |X| = ns X ns, and is defined by:

1 ifx; €B;
R ] 1
Mi { 0 otherwise.

Definition. The code C based on 7 over [F; is the [F;-linear code having M as

a parity-check matrix (i.e. C* is generated by M).

- length(C) = |X| = ns,
- dim(C) = dim(ker M),
— every block B € B gives a parity-check equation h € C*, such that

wt(h‘Gf) =1, Vi=1,...,n
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The transversal design TD(3, 3) represented by:
codeword ¢ € ]F9

gives a code with the following parity-check matrix:

U

—_

OROOR OO O
R OORrROOOOR
R OOORrROORO
OCOR R OO ~O
e Neololol ol "
ORrOrRrOoOOoO R OO
R OO0 OR LR OO
OCOROROROO

0
0
1
0
0
1
0
0
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The transversal design TD(3, 3) represented by:
codeword ¢ € ]F9

gives a code with the following parity-check matrix:

U

111 0 0 0 0 0 0
0 0 01 1.1 0 0 O
00000 0 1 1 1
10 0 0 01 0 10
H=| 01 0 1 0 0 0 0 1
0 0101 01 0 O
10 0 01 0 0 0 1
010 0 0 1 1 0O
0 0110 0 01 0

Dimension of the code?
» depends ong

» for instance, over IF3, we have rk(H) =6 dim(C) = 3.
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The PIR scheme

[% Private Information Retrieval from Transversal Designs. L.. IEEE-TIT. 2019.

LetC C quN be a code based on a TD(n,s), with N = ns.
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The PIR scheme

[% Private Information Retrieval from Transversal Designs. L.. IEEE-TIT. 2019.

LetC C IFLII\T be a code based on a TD(n,s), with N = ns.

o Initialisation. User U encodes F — ¢ € C, and gives G to server S]-.

e To recover F; = c;, withi € X:

1. User U randomly picks a block B € B containing i.
Then U defines:

= Qi) = unique € BNG; ifi ¢ G;
9= =Wi* =\ arandom pointin G;  otherwise.
2. Each server Sj sends back ey,
3. U recovers

G=— ) == ) G

J:igG; beB\{i}
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Privacy and parameters

Theorem. This PIR protocol is information-theoretically private.

Proof:
— the only server which holds F; received a random query;

— for each other server S;, query g; gives no information on the block B which has been
picked = no information leaks on i.
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Privacy and parameters

‘ Theorem. This PIR protocol is information-theoretically private. ‘

Proof:
— the only server which holds F; received a random query;

— for each other server S;, query g; gives no information on the block B which has been
picked = no information leaks on i.

Features.
» communication complexity: nlogs uploaded bits, nlog g downloaded bits

» computational complexity:

» only 1 read for each server (optimal)
» < nadditions over IF; for the user

> storage overhead: (ns — k) log g bits, where k = dim(C)

Question: transversal designs leading to large dimension codes?
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Instances with geometric designs

An example: the classical affine transversal design:

> X =) form>2, The code has:
» G a partition of X into g hyperplanes Gy, ..., Gy, — length ns = ¢",
> B = {affine lines L secant to each G;}. — “locality” n = q.
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rate k/N
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» G a partition of X into g hyperplanes Gy, ..., Gy, — length ns = ¢",
> B = {affine lines L secant to each G;}. — “locality” n = q.
rate k/N
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Outline

2. PIR schemes with low computation and storage

Collusion-resistant PIR schemes with weighted lifted codes
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Lifted codes

Definition. The (full-length) Reed-Solomon code of dimension k over I is:

RSy (k) = {evar(f) = (f(x1),..-.f(xq)) | deg(f) <k—1}.
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The code C = RS (k) is MDS: every codeword ¢ € C can be reconstructed from
any k-subset of coordinates of c.
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Lifted codes

Definition. The (full-length) Reed-Solomon code of dimension k over I is:

RS;(K) = {evpi () = (F(x1),.. f(xg)) | deg(f) < k—1}.

The code C = RS (k) is MDS: every codeword ¢ € C can be reconstructed from
any k-subset of coordinates of c.

Definition. The Reed-Muller code of order m and degree r over IFy is:

RM,(m, 1) == {evan(f) | f € Fy[X] and deg(f) < r}.
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Lifted codes

Definition. The (full-length) Reed-Solomon code of dimension k over I is:

RS;(K) = {evpi () = (F(x1),.. f(xg)) | deg(f) < k—1}.

The code C = RS (k) is MDS: every codeword ¢ € C can be reconstructed from
any k-subset of coordinates of c.

Definition. The Reed-Muller code of order m and degree r over IFy is:

RM,(m, 1) == {evan(f) | f € Fy[X] and deg(f) < r}.

Reed-Muller codes have the following property:

Ve =evan(f) € RMy(m,r) and V affineline L C A™,
evai(fir) € RSy(r+1).

(where f|; is the lowest-degree univariate polynomial interpolating f over L)
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A PIR scheme based on Reed—Muller codes
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PIR scheme based on Reed—Muller codes

y S1 Sy S3 Sy S5 S¢ S;  Sg

L L
/./ Database F in encoded with
/./ RMy(m,r), then distributed

/./ across the servers

/./ L is an affine line
/./ — no individual server
/./ can find whereis
] [ |
x
f\’ H B B B H B B ‘ received answer

decoding
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A PIR scheme based on Reed—Muller codes

y S1 Sy S3 Sy S5 S¢ S;  Sg

L L
/./ Database F in encoded with
/./ RMy(m,r), then distributed

/./ across the servers

/./ L is an affine line

/./ — no individual server
/./ can find whereis

A
| = the PIR scheme is
private

X

f\’. H B B H N .‘ received answer
decoding

\_/\’. H BB BB B .‘ — output F;
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Parameter of the Reed—Muller code-based PIR

Features with RM, (m, 1) of length g™

> communication complexity: (m — 1)qlog g uploaded bits, glogg
downloaded bits
> computational complexity:

> only 1 read for each server (optimal)
> a decoding procedure for RS;(r) for the user

> storage overhead: the rate of RM (1, 7) withr < g —11is

(r/q)nl .en

m!

~

= We need codes with the same properties, but larger dimension.
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Lifted codes

“Lifted” codes are the largest codes having the same property as Reed—Muller
codes.

% New affine-invariant codes from lifting. Guo, Kopparty, Sudan. ITCS. 2013.
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Lifted codes

“Lifted” codes are the largest codes having the same property as Reed—Muller
codes.

% New affine-invariant codes from lifting. Guo, Kopparty, Sudan. ITCS. 2013.

Definition. The m-th lifted Reed-Solomon code of degree r over [y is:

Lifty(m,r) = {evan(f) | f € Fg[X] and V affine line L C A™,deg(fi,) < r}.
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Lifted codes

“Lifted” codes are the largest codes having the same property as Reed—Muller
codes.

% New affine-invariant codes from lifting. Guo, Kopparty, Sudan. ITCS. 2013.

Definition. The m-th lifted Reed-Solomon code of degree r over [y is:

Lifty(m,r) = {evan(f) | f € Fg[X] and V affine line L C A™,deg(fi,) < r}.

Lifted codes contain Reed-Muller codes, sometimes properly.
Example. For g = 4, m = 2, r = 2, consider f(X,Y) = X?Y2.
f(aT+b,cT+d) = (Bd* + b’ T? + a®APT + b*d> mod (T* —T)

Hence,

ev(X?Y?) € Lifty(2,2) but ev(X?Y?) ¢ RM(2,2).
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Lifted codes

“Lifted” codes are the largest codes having the same property as Reed—Muller
codes.

% New affine-invariant codes from lifting. Guo, Kopparty, Sudan. ITCS. 2013.

Definition. The m-th lifted Reed-Solomon code of degree r over [y is:

Lifty(m,r) = {evan(f) | f € Fg[X] and V affine line L C A™,deg(fi,) < r}.

Lifted codes contain Reed-Muller codes, sometimes properly.
Example. For g = 4, m = 2, r = 2, consider f(X,Y) = X?Y2.
f(aT+b,cT+d) = (Bd* + b’ T? + a®APT + b*d> mod (T* —T)

Hence,
ev(X?Y?) € Lifty(2,2) but ev(X?Y?) ¢ RM(2,2).

Fact. For every m, lifted codes reach arbitrarily large information rates.
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Weighted lifted codes

Question: how to deal with collusions and byzantine errors?
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Weighted lifted codes

Question: how to deal with collusions and byzantine errors?

For convenience, here m = 2.

Definition. A t-curve is:

L ={(xg(x) € A? | g € Fy[X],deg(g) < t}
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Weighted lifted codes

‘ Question: how to deal with collusions and byzantine errors? ‘

For convenience, here m = 2.

Definition. A t-curve is:

L ={(xg(x) € A? | g € Fy[X],deg(g) < t}

Definition. The weighted lifted Reed-Solomon code of degree r and weight
t over IFy is:

WLift, (t,7) = {evpa:(f) | f € Fy[X, Y] and V t-curve £ C Az,deg(fw) <r}

Consequence: for every codeword c € WLift,(t,r) and every t-curve £, we
have:

C\ﬁ S RSq(T"r 1) .
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A PIR scheme based on weighted lifted codes
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A PIR scheme based on weighted lifted codes
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A PIR scheme based on weighted lifted codes

Si Sy S3 Si Ss Se¢ S; Ss

L

Database F in encoded with
WLift,(t,r), then distributed
across the servers

L is a t-curve

= no t-set of servers can
find whereis H
\\ /‘ — the PIR scheme is

n HE o t-private

X

f\’. H B B H N .‘ received answer
decoding

\_/\’. H BB BB B .‘ — output F;
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Parameters

[% Weighted Lifted Codes: Local Correctabilities and Application to Robust Private Information
Retrieval. L., Nardi. IEEE TIT. 2021.

Theorem. Let p be a prime number, > 1 and « > 2 be fixed integers. Then,
the information rate WLiftye (t, p° — &) grows to 1 when e — oo.

Corollary: we get PIR schemes with relative storage overhead — 0, for a
constant number of adversaries.
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[% Weighted Lifted Codes: Local Correctabilities and Application to Robust Private Information
Retrieval. L., Nardi. IEEE TIT. 2021.

Parameters

Theorem. Let p be a prime number, > 1 and « > 2 be fixed integers. Then,
the information rate WLiftye (t, p° — &) grows to 1 when e — oo.

Corollary: we get PIR schemes with relative storage overhead — 0, for a
constant number of adversaries.

Theorem. Let p be a prime number, t > 1 and ¢ > 1 be fixed integers. Let
¥ = 1—p~¢and C. = WLifty(t,7p°). Then, the information rate R, of C,
satisfies:

lim R, = Kype > 0
e—o0

Corollary: we get PIR schemes with constant relative storage overhead, for a
constant number of collusions and a constant fraction of errors.

23/33 J. Lavauzelle



Outline

3. PIR schemes for common storage systems
Distributed storage systems
A PIR scheme on RS-coded databases
A PIR scheme with regenerating codes
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3. PIR schemes for common storage systems
Distributed storage systems
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Storage systems use codes to cope with node failures.
> Before 2010: mostly replication or parity-check.
> 2010’s: MDS storage (e.g. [14,10] Reed-Solomon code for Facebook).
> Recently: codes with locality (e.¢. Hadoop Xorbas).
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Storage systems use codes to cope with node failures.
> Before 2010: mostly replication or parity-check.
> 2010’s: MDS storage (e.g. [14,10] Reed-Solomon code for Facebook).
> Recently: codes with locality (e.¢. Hadoop Xorbas).

Given a code C of length n:

51 5 Su
| | cgecC
| | el

| |CM6C
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Example: Reed-Solomon storage systems

Definition (Reed-Solomon code). Let x = (xq,...,%,) € lF;l, pairwise distinct.

RS, (k1) = {(f(x1),..., f(xn)).f € Bq[X], degf <k}
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Example: Reed-Solomon storage systems

Definition (Reed-Solomon code). Let x = (xq,...,%,) € lF;l, pairwise distinct.

RS, (k1) = {(f(x1),..., f(xn)).f € Bq[X], degf <k}

File storage:

afile F;€ X~ ]F’;S is encoded into ¢; € RS, (k, 1) ® Fys
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Example: Reed-Solomon storage systems

Definition (Reed-Solomon code). Let x = (xq,...,%,) € lF;l, pairwise distinct.

RS, (k1) = {(f(x1),..., f(xn)).f € Bq[X], degf <k}

File storage:

afile F;€ X~ ]F’;S is encoded into ¢; € RS, (k, 1) ® Fys

Main assumption (can be discussed):

s>M

25/33
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3. PIR schemes for common storage systems

A PIR scheme on RS-coded databases
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Presentation

Usual goal (assuming s > M): a large PIR rate

Ll
Ir]

o:
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Presentation

Usual goal (assuming s > M): a large PIR rate

_ I
||

Next, we present a PIR scheme for RS-coded databases.
» Originally [TR16], then extended and reformulated [TGKFH18, TGR18].
» Optimal PIR rate for t =1 and M — co.
» PIR rate conjectured optimal for M — co.

B [TR16] PIR from MDS Coded Data in Distributed Storage Systems. Tajeddine, El
Rouayheb. ISIT. 2016.

% [TGKFH18] Robust PIR from Coded Systems with Byzantine and Colluding Servers.
Tajeddine, Gnilke, Karpuk, Freij-Hollanti, Hollanti. ISIT. 2018.

% [TGR18] PIR from MDS Coded Data in Distributed Storage Systems. Tajeddine, Gnilke, EI
Rouayheb. IEEE-TIT. 2018.
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The protocol: query generation

axb:= (a1by,...,anby)
CxC':={{cxd |ceC,d e}

Notation:
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The protocol: query generation

. axb:= (a1by,...,anby)
Notation: CxC = ({exd |ceC,d €C)) 51 Sy S

| o |

System parameters:
CC ]F;’ the storage code, C € CM the coded database
J € [1,n] an information set for C x D, and ] := [1,1] \ |

| ci “goal” |

| cu
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The protocol: query generation

axb:= (a1by,...,anby)

Notation: CxC'={{exd |celC,d el'}) %i S_"|
(5]
System parameters:
CC ]F;’ the storage code, C € CM the coded database | o goal |
J € [1,n] an information set for C x D, and ] := [1,1] \ | I
| e |

Queries: let D C ¥y be a query code of dual distance
dH(D)=t+1
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The protocol: query generation

. axb:= (a1by,...,anby)
Notation: CxC = ({exd |ceC,d €C)) 51 Sy S

| o |

System parameters:
CC ]F[’]’ the storage code, C € CM the coded database
J € [1,n] an information set for C x D, and ] := [1,1] \ |

| ci “goal” |

| cu |

Queries: let D C ¥y be a query code of dual distance
d-(D) =t+1 S S Sn

1. the user generates at random M words | d |
dq,...,dy € D and defines Q as follows:

2. the j-th column of Q is sent to server §; | e |

| d |
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The protocol: query generation

. axb:= (a1by,...,anby)
Notation: CxC = ({exd |ceC,d €C)) 51 Sy S

| o |

System parameters:
CC ]F[’]’ the storage code, C € CM the coded database
J € [1,n] an information set for C x D, and ] := [1,1] \ |

| ci “goal” |

| cu |

Queries: let D C ¥y be a query code of dual distance
dJ-(D) =t+1 S1 Sy S,
1. the user generates at random M words | d |
dq,...,dy € D and defines Q as follows:

2. the j-th column of Q is sent to server §; | e |

Remark: queries remain private against collusions of
servers of size < t.

| d |
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The protocol: server answers and reconstruction

server S]-
holds receives
Server answers: server S]- receives as a query a alj] amli]
column Q(]) € IF%VI of Q,
cumlf] qmj]
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The protocol: server answers and reconstruction

server S;
holds receives
Server answers: server S; receives as a query a aill [eliladi | [0
column QV) € FM of Q, and has to compute +
ri=(QY,cV) e F,. .
cml]) |em[ilamlil| |7 li]

=7
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The protocol: server answers and reconstruction

server S;
holds receives
Server answers: server S; receives as a query a aill [eliladi | [0
column QV) € FM of Q, and has to compute +
ri=(QY,cV) e F,. .
cml]) |em[ilamlil| |7 li]

=7

Reconstruction:
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The protocol: server answers and reconstruction

server S]-
holds receives
Server answers: server S; receives as a query a allll Telai | [a0
column QV) € FM of Q, and has to compute +
ri=(QY,cV) e F,. .
cml]) |em[ilamlil| |7 li]
= r]‘
Reconstruction: The user collects
M I |
r=(r,...,tm) = Zd”,*cm + Ii*g | | |
m=1 _ \-\/—( | | |
7 L m|
{ 1 1
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The protocol: server answers and reconstruction

server S;
holds receives
Server answers: server S; receives as a query a allll Telai | [a0
column QV) € FM of Q, and has to compute +
ri=(QY,cV) e F,. .
cmll| (emlilgmlil] |amli]
= r]‘
Reconstruction: The user collects
M I
r=(r,...,tm) = Zd”,*cm + Ijxc | | |
m=1 N [ [ |
—— g —aon] : [ l
and interpolates on | to recover l 4 1
- YM ko, | Ty e |
— r= T
— then ¢[[]]. l 0 <71

28/33 J. Lavauzelle



Analysis

Features for 1 run of the protocol.
> download cost: n symbols over [Fgs
» upload cost: an (M x n)-matrix over IF; (negligible if s > M)
> retrieval of |J| = n — dim(C * D) symbols of the desired file

> the protocol is private against collusions of size < d* (D) — 1
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Features for 1 run of the protocol.

> download cost: n symbols over [Fgs
» upload cost: an (M x n)-matrix over IF; (negligible if s > M)
> retrieval of |J| = n — dim(C * D) symbols of the desired file

> the protocol is private against collusions of size < d* (D) — 1

For Reed-Solomon codes: C = RS;(k, 1) and D = RS;(t, n):

df(D)-1=t and CxD=RSjk+t—1n)=||=n—k—t+1

If (n —k —t+1) | k, then repeating several runs gives a (dlownload) PIR rate:

n—k—t+1 _ ktt-1

1

‘D:

n n
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Features for 1 run of the protocol.

> download cost: n symbols over [Fgs
» upload cost: an (M x n)-matrix over IF; (negligible if s > M)
> retrieval of |J| = n — dim(C * D) symbols of the desired file

> the protocol is private against collusions of size < d* (D) — 1

For Reed-Solomon codes: C = RS;(k, 1) and D = RS;(t, n):

df(D)-1=t and CxD=RSjk+t—1n)=||=n—k—t+1

If (n —k —t+1) | k, then repeating several runs gives a (dlownload) PIR rate:

nok—t+1l . ktt-1
n - n ’

‘D:

Otherwise, striping methods allow to achieve the same PIR rate.
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Outline

3. PIR schemes for common storage systems

A PIR scheme with regenerating codes
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Regenerating codes

!!I! Sorry for the notation !!!
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Regenerating codes

!!! Sorry for the notation !!!

Definition: C is an (1, k,d, «, B, B)-regenerating code if:
> C is a linear space of dimension B, consisting in (« x 1)-matrices over g,
> every c € C is fully determined by any k-subset of columns,

> every column of ¢ can be “repaired”, by downloading 8 < a symbols
from any d-subset of columns (hence df > «).
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Main bound (cut-set bound):

k-1

B< Y min(a, (d—i)B).

i=0
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Regenerating codes

!!! Sorry for the notation !!!

Definition: C is an (1, k,d, «, B, B)-regenerating code if:
> C is a linear space of dimension B, consisting in (« x 1)-matrices over g,
> every c € C is fully determined by any k-subset of columns,

> every column of ¢ can be “repaired”, by downloading 8 < a symbols
from any d-subset of columns (hence df > «).

Main bound (cut-set bound):

k-1

B< Y min(a, (d—i)B).

i=0

A particular optimal point (minimum-bandwidth repair, MBR): dp = a.

= (-5 0)

Then,
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Product-matrix MBR codes [RSK11]

[% Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via
a Product-Matrix Construction. Rashmi, Shah, Kumar. IEEE-TIT. 2011.

Weset p =1, hencea =d.
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Product-matrix MBR codes [RSK11]

[% Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via
a Product-Matrix Construction. Rashmi, Shah, Kumar. IEEE-TIT. 2011.

Weset p =1, hencea =d.
1. Message symbols are arranged in a I
k

(d x d)-matrix

A:@ T0> 0
>

where S is (k x k)-symmetric.
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Product-matrix MBR codes [RSK11]

[% Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via
a Product-Matrix Construction. Rashmi, Shah, Kumar. IEEE-TIT. 2011.

Weset p =1, hencea =d.

1. Message symbols are arranged in a

(d x d)-matrix
(s T
= %)

where S is (k x k)-symmetric.

2. Let G be a (d x n) generator matrix for e"(lg
RS, (d,n), echelonized in degree (i.e. a
Vandermonde matrix). Codewords are then:

c:AGemyf
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Product-matrix MBR codes [RSK11]

[% Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via
a Product-Matrix Construction. Rashmi, Shah, Kumar. IEEE-TIT. 2011.

Weset p =1, hencea =d.

1. Message symbols are arranged in a
(d x d)-matrix

=0
—

where S is (k x k)-symmetric.

2. Let G be a (d x n) generator matrix for e"(lg
RS, (d,n), echelonized in degree (i.e. a
Vandermonde matrix). Codewords are then:

c:AGeIFgX”.

Remark: row G of Cis a word of a RS code
- of dimension k, if j > k,

— of dimension d > k otherwise.
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PIR scheme on PM-MBR codes with no collusio

% Private Information Retrieval Schemes With Product-Matrix MBR Codes. L., Tajeddine,
Freij-Hollanti, Hollanti. IEEE IFS. 2021.

PIR scheme with no collusion (¢t = 1).
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PIR scheme with no collusion (¢t = 1).

e Forrow j = d down to k + 1:

— Run a RS(k)-coded PIR scheme with )
randomness D. ez )

- Interpolate random values Y- dy x Cj ;- v

— Recover row C]-, then row Aj.
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PIR scheme with no collusion (¢t = 1).

e Forrow j = d down to k + 1:

— Run a RS(k)-coded PIR scheme with
randomness D.

ev(l)
ev(x)

- Interpolate random values Y- dy x Cj ;- k1)

ev(x

— Recover row C]-, then row Aj.

Retrieval rate: 1 — %
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PIR scheme with no collusion (¢t = 1).

e Forrow j = d down to k + 1:
— Run a RS(k)-coded PIR scheme with

randomness D. 38
- Interpolate random values Y- dy x Cj ;- v
— Recover row C]-, then row Aj.
0 <,
Retrieval rate: 1 — %

32/33 J. Lavauzelle



PIR scheme on PM-MBR codes with no collusion

% Private Information Retrieval Schemes With Product-Matrix MBR Codes. L., Tajeddine,
Freij-Hollanti, Hollanti. IEEE IFS. 2021.

PIR scheme with no collusion (¢t = 1).

e Forrow j = d down to k + 1:
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randomness D. 38
- Interpolate random values Y- dy x Cj ;-
— Recover row C]-, then row Aj. ev(@-1)
o For row j = k down to 1:
— Run a RS(j)-coded PIR scheme with
randomness D.
— Use symmetry of A and previously recovered 0 <

data for the reconstruction (high-degree terms
can be eliminated).

- Interpolate random values Y dy x Cj ;-

— Recover row C]-, then row Aj.
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Retrieval rate: 1 — £
- Interpolate random values ) dy x Cj - n
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— Recover row C]-, then row Aj. ev(-1)
e For row j = k down to 1: |_|
— Run a RS(j)-coded PIR scheme with E
randomness D.
— Use symmetry of A and previously recovered 0 <

data for the reconstruction (high-degree terms

can be eliminated). k-1

Retrieval rate: 1 —
- Interpolate random values Y dy x Cj ;- n

— Recover row C i then row A/.
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PIR scheme on PM-MBR codes

We get a PIR rate:
1-k k
— n
P= ey =
nB
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PIR scheme on PM-MBR codes

We get a PIR rate:

1-k k
o= > 1——
1 _ k) (=1) 7
nB
1 T T
—e— Our scheme
®*eeeccsoccecs
0.8 |- |
L 06] 1.
= o4l 4 &
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