Private information retrieval with codes

Julien Lavauzelle

LAGA, Université Paris 8 Vincennes – Saint-Denis

Seminario de Álgebra, Geometría algebraica y Singularidades La Laguna 31/10/2023

1. Private information retrieval

2. PIR schemes with low computation and storage

Transversal designs and codes A PIR scheme with transversal designs Collusion-resistant PIR schemes with weighted lifted codes

1. Private information retrieval

2. PIR schemes with low computation and storage

Transversal designs and codes A PIR scheme with transversal designs Collusion-resistant PIR schemes with weighted lifted code

Private information retrieval (PIR):

Consider a set of files F_1, \ldots, F_k , stored on a remote system. One wants to retrieve one file F_i **privately**, that is, by hiding the value of *i* to the system.

Is it possible?

Private information retrieval (PIR):

Consider a set of files F_1, \ldots, F_k , stored on a remote system. One wants to retrieve one file F_i **privately**, that is, by hiding the value of *i* to the system. Is it possible?

Applications: access to medical data, geoprivacy, ...

Private information retrieval (PIR):

Consider a set of files F_1, \ldots, F_k , stored on a remote system. One wants to retrieve one file F_i **privately**, that is, by hiding the value of *i* to the system. Is it possible?

Applications: access to medical data, geoprivacy, ...

Trivial solution: download all files.

- perfect privacy: no information
- bad download rate...

Introduced in: Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. **1995**. Generally, assume that *n* servers S_1, \ldots, S_n store (in some way) the files F_1, \ldots, F_k .

Introduced in: Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. **1995**. Generally, assume that *n* servers S_1, \ldots, S_n store (in some way) the files F_1, \ldots, F_k .

A Private Information Retrieval protocol is a set of algorithms (Q, A, R).

Introduced in: Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. **1995**. Generally, assume that *n* servers S_1, \ldots, S_n store (in some way) the files F_1, \ldots, F_k .

A **Private Information Retrieval protocol** is a set of algorithms (Q, A, R). In order to retrieve file F_i :

Introduced in: Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. **1995**. Generally, assume that *n* servers S_1, \ldots, S_n store (in some way) the files F_1, \ldots, F_k .

A **Private Information Retrieval protocol** is a set of algorithms (Q, A, R). In order to retrieve file F_i :

- 1. Query generation:

 $\boldsymbol{q} \coloneqq (q_1,\ldots,q_n) \leftarrow \mathcal{Q}(i)$

Send query q_i to server S_i .

Introduced in: Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. **1995**. Generally, assume that *n* servers S_1, \ldots, S_n store (in some way) the files F_1, \ldots, F_k .

A **Private Information Retrieval protocol** is a set of algorithms (Q, A, R). In order to retrieve file F_i :

1. Query generation:

 $\boldsymbol{q} \coloneqq (q_1,\ldots,q_n) \leftarrow \mathcal{Q}(i)$

Send query q_i to server S_i .

2. **Response:** server *S_j* computes and sends back a response

 $r_j \coloneqq \mathcal{A}(\boldsymbol{q}_j, F_{|\boldsymbol{S}_j})$

Introduced in: Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. **1995**. Generally, assume that *n* servers S_1, \ldots, S_n store (in some way) the files F_1, \ldots, F_k .

A **Private Information Retrieval protocol** is a set of algorithms (Q, A, R). In order to retrieve file F_i :

1. Query generation:

 $\boldsymbol{q} \coloneqq (q_1,\ldots,q_n) \leftarrow \mathcal{Q}(i)$

Send query q_i to server S_i .

2. **Response:** server *S_j* computes and sends back a response

 $r_j \coloneqq \mathcal{A}(\boldsymbol{q}_j, F_{|\boldsymbol{S}_j})$

3. Local reconstruction of the desired file:

$$F_i = \mathcal{R}(\boldsymbol{q}, \boldsymbol{r}, \boldsymbol{i})$$
.

n = 2 servers storing a replica of k = 5 files F_1, \ldots, F_5

Goal: retrieve file F_2 .

J. Lavauzelle

n = 2 servers storing a replica of k = 5 files $F_1, ..., F_5$ **Goal:** retrieve file *F*₂.

- 1. Query generation. Pick at random a subset
 - $I \subseteq \{1, \ldots, 5\}$, and define:

 - query $q_1 = I$ to server S_1 query $q_2 = I \Delta \{2\}$ to server S_2

n = 2 servers storing a replica of k = 5 files F_1, \ldots, F_5

Goal: retrieve file F_2 .

I. Lavauzelle

- 1. **Query generation.** Pick at random a subset $I \subseteq \{1, ..., 5\}$, and define:
 - query $q_1 = I$ to server S_1
 - query $q_2 = I \Delta \{2\}$ to server S_2
- 2. **Responses.** Each server receives a subset $J \subseteq \{1, ..., 5\}$, and computes the XOR (=bitwise sum) of files indexed by *J*.

n = 2 servers storing a replica of k = 5 files F_1, \ldots, F_5

Goal: retrieve file F_2 .

- 1. **Query generation.** Pick at random a subset $I \subseteq \{1, \ldots, 5\}$, and define:
 - query $q_1 = I$ to server S_1
 - query $q_2 = I \Delta \{2\}$ to server S_2
- 2. **Responses.** Each server receives a subset $J \subseteq \{1, ..., 5\}$, and computes the XOR (=bitwise sum) of files indexed by *J*.
- 3. **Reconstruction.** One gets file F_2 by XORing the two responses.

n = 2 servers storing a replica of k = 5 files F_1, \ldots, F_5

Goal: retrieve file F_2 .

- 1. **Query generation.** Pick at random a subset $I \subseteq \{1, ..., 5\}$, and define:
 - query $q_1 = I$ to server S_1
 - query $q_2 = I \Delta \{2\}$ to server S_2
- 2. **Responses.** Each server receives a subset $J \subseteq \{1, ..., 5\}$, and computes the XOR (=bitwise sum) of files indexed by *J*.
- 3. **Reconstruction.** One gets file F_2 by XORing the two responses.

Upload: $2 \times 5 = 10$ bits to transmit to the servers **Download:** 2|F| bits to receive from the servers **Server computation:** XOR of $\frac{5}{2}|F|$ bits in average **Client computation:** XOR of 2|F| bits

4/31

Privacy

The adversary: a **collusion of servers** = a subset of servers $\{S_j : j \in T\}$, where $T \subset [1, n]$, which exchange information about queries.

```
t := \max\{|T|, T \subseteq [1, n] \text{ is a collusion}\} \ge 1
```

Privacy

The adversary: a **collusion of servers** = a subset of servers $\{S_j : j \in T\}$, where $T \subset [1, n]$, which exchange information about queries.

```
t := \max\{|T|, T \subseteq [1, n] \text{ is a collusion}\} \ge 1
```

• Information-theoretic (IT) privacy:

$$\mathbf{I}(i; \boldsymbol{q}_{|T}) = 0, \quad \forall T \subseteq [1, n], |T| \leq t.$$

• Computational privacy: by varying the index *i*, distributions of queries $q_{|T} = Q(i)_{|T}$ are computationally indistinguishable.

Privacy

The adversary: a **collusion of servers** = a subset of servers $\{S_j : j \in T\}$, where $T \subset [1, n]$, which exchange information about queries.

```
t := \max\{|T|, T \subseteq [1, n] \text{ is a collusion}\} \ge 1
```

• Information-theoretic (IT) privacy:

$$\mathbf{I}(i; \boldsymbol{q}_{|T}) = 0, \quad \forall T \subseteq [1, n], |T| \leq t.$$

• Computational privacy: by varying the index *i*, distributions of queries $q_{|T} = Q(i)_{|T}$ are computationally indistinguishable.

Theorem [CGKS95, CG97]. If t = n (in particular if n = 1 server), then:

- for **IT** privacy, **no better solution than full download**,
- computational privacy is possible, but remains expensive as of now.

Main parameters of PIR schemes

We focus on **IT-privacy** (hence we need $n \ge 2$ servers)

Parameters to be taken into account:

- communication complexity (upload and download)

Parameters to be taken into account:

- communication complexity (upload and download)
- computation complexity (client and servers)

Parameters to be taken into account:

- communication complexity (upload and download)
- computation complexity (client and servers)
- global server storage overhead

Parameters to be taken into account:

- communication complexity (upload and download)
- computation complexity (client and servers)
- global server storage overhead
- maximum size of collusions (*t*)

Parameters to be taken into account:

- communication complexity (upload and download)
- computation complexity (client and servers)
- global server storage overhead
- maximum size of collusions (*t*)

Several possible **settings**:

- replicated database vs. coded database
- unresponsive or **byzantine** servers
- small entries vs. large entries
- bounded vs. unbounded number of entries in the database
- dynamic database vs. static database

Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

16 files are replicated over 4 servers. Files are indexed by pairs $(i,j) \in \{1,2,3,4\}^2$ Assume one wants to retrieve file $F_{4,3}$.

7/31

Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

16 files are replicated over 4 servers. Files are indexed by pairs $(i,j) \in \{1,2,3,4\}^2$ Assume one wants to retrieve file $F_{4,3}$. Queries are Cartesian products $I \times J$. We add/remove indices *i* and *j* from *I* and *J* depending on the server.

Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

16 files are replicated over 4 servers. Files are indexed by pairs $(i,j) \in \{1,2,3,4\}^2$ Assume one wants to retrieve file $F_{4,3}$. Queries are Cartesian products $I \times J$. We add/remove indices *i* and *j* from *I* and *J* depending on the server.

7/31

Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

1st generalization: consider *k* files $F_{i,j}$ where $(i, j) \in [1, \ell]^2$ and $k = \ell^2$. Files are replicated over n = 4 servers $S_{00}, S_{01}, S_{10}, S_{11}$.

Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

1st generalization: consider *k* files $F_{i,j}$ where $(i, j) \in [1, \ell]^2$ and $k = \ell^2$. Files are replicated over n = 4 servers $S_{00}, S_{01}, S_{10}, S_{11}$. **Goal:** retrieve F_{i_1, i_2} , for $1 \le i_1, i_2 \le \ell$.

Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

1st generalization: consider *k* files $F_{i,j}$ where $(i, j) \in [1, \ell]^2$ and $k = \ell^2$. Files are replicated over n = 4 servers $S_{00}, S_{01}, S_{10}, S_{11}$. **Goal:** retrieve F_{i_1, i_2} , for $1 \le i_1, i_2 \le \ell$.

1. **Query generation:** pick at random two subsets X_1, X_2 of $[1, \ell]$. Then send:

1st generalization: consider *k* files $F_{i,j}$ where $(i, j) \in [1, \ell]^2$ and $k = \ell^2$. Files are replicated over n = 4 servers $S_{00}, S_{01}, S_{10}, S_{11}$. **Goal:** retrieve F_{i_1,i_2} , for $1 \le i_1, i_2 \le \ell$.

1st generalization: consider *k* files $F_{i,j}$ where $(i,j) \in [1, \ell]^2$ and $k = \ell^2$. Files are replicated over n = 4 servers $S_{00}, S_{01}, S_{10}, S_{11}$. **Goal:** retrieve F_{i_1,i_2} , for $1 \le i_1, i_2 \le \ell$.

1st generalization: consider *k* files $F_{i,j}$ where $(i, j) \in [1, \ell]^2$ and $k = \ell^2$. Files are replicated over n = 4 servers $S_{00}, S_{01}, S_{10}, S_{11}$. **Goal:** retrieve F_{i_1, i_2} , for $1 \le i_1, i_2 \le \ell$.

1st generalization: consider *k* files $F_{i,j}$ where $(i, j) \in [1, \ell]^2$ and $k = \ell^2$. Files are replicated over n = 4 servers $S_{00}, S_{01}, S_{10}, S_{11}$. **Goal:** retrieve F_{i_1, i_2} , for $1 \le i_1, i_2 \le \ell$.

Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

1st generalization: consider *k* files $F_{i,j}$ where $(i, j) \in [1, \ell]^2$ and $k = \ell^2$. Files are replicated over n = 4 servers $S_{00}, S_{01}, S_{10}, S_{11}$. **Goal:** retrieve F_{i_1, i_2} , for $1 \le i_1, i_2 \le \ell$.

- 1. **Query generation:** pick at random two subsets X_1, X_2 of $[1, \ell]$. Then send:
 - $\begin{array}{l} (X_1, X_2) \text{ to server } S_{00}, \\ (X_1 \Delta \{i_1\}, X_2) \text{ to server } S_{10}, \\ (X_1, X_2 \Delta \{i_2\}) \text{ to server } S_{01}, \\ (X_1 \Delta \{i_1\}, X_2 \Delta \{i_2\}) \text{ to server } S_{11}. \end{array}$
- 2. Answers: at reception of (Z_1, Z_2) , each server S_j computes $R_j = \bigoplus_{z \in Z_1 \times Z_2} F_z$ and sends back R_j .

Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

1st generalization: consider *k* files $F_{i,i}$ where $(i,j) \in [1, \ell]^2$ and $k = \ell^2$. Files are replicated over n = 4 servers S_{00} , S_{01} , S_{10} , S_{11} . **Goal:** retrieve F_{i_1,i_2} , for $1 \le i_1, i_2 \le \ell$.

- 1. Query generation: pick at random two subsets X_1, X_2 of $[1, \ell]$. Then send:
 - $-(X_1, X_2)$ to server S_{00} , - $(X_1\Delta\{i_1\}, X_2)$ to server S_{10} ,
 - $(X_1, X_2 \Delta \{i_2\})$ to server S_{01} , - $(X_1 \Delta \{i_1\}, X_2 \Delta \{i_2\})$ to server S_{11} .
- 2. Answers: at reception of (Z_1, Z_2) , each server S_i computes $R_i = \bigoplus_{z \in Z_1 \times Z_2} F_z$ and sends back R_i .
- 3. **Reconstruction:** compute the XOR of the 4 files R_i and retrieves F_{i_1,i_2} .

Features of the PIR scheme in [CGKS'95-98]

Correct, and secure if no collusion.

Correct, and secure if no collusion.

Quantitative results. Assume the *k* files have same size |F|. With n = 4 servers,

- **Communication:** $8\sqrt{k}$ uploaded bits, 4|F| downloaded bits,
- **Storage:** replication of all files over 4 servers,
- **Complexity:**

for each server: in average, XOR of $(\ell/2)^2 = k/4$ files for the user: XOR of 4 files.

Correct, and secure if no collusion.

Quantitative results. Assume the *k* files have same size |F|. With n = 4 servers,

- **Communication:** $8\sqrt{k}$ uploaded bits, 4|F| downloaded bits,
- **Storage:** replication of all files over 4 servers,
- Complexity:

for each server: in average, XOR of $(\ell/2)^2 = k/4$ files for the user: XOR of 4 files.

Generalizable to $n = 2^b$ servers:

- **Communication:** $b2^{b}k^{1/b} = n \log(n)k^{1/\log(n)}$ uploaded bits, n|F| downloaded bits,
- **Storage:** replication of all files over *n* servers,
- **Complexity:**
 - for each server: in average, XOR of k/n files
 - ▶ for the user: XOR of *n* files.

- 1995: first definition [CGKS95]
- 2000: reduction from smooth locally decodable codes [KT00]
- 2000-10's: many improvements
 - PIR with 3 servers and subpolynomial communication [Yek08, Efr09]
 - PIR with 2 servers and subpolynomial communication [DG16]
 - Iower storage overhead with PIR codes [FVY15]
- 2016-now: capacity-achieving schemes, schemes dedicated to storage systems
 - capacity of PIR [SJ17, BU18]
 - (nearly) capacity-achieving schemes [SRR14, CHY15, TR16, ...]

1. Private information retrieval

2. PIR schemes with low computation and storage

Transversal designs and codes A PIR scheme with transversal designs Collusion-resistant PIR schemes with weighted lifted codes

Context

Previous scheme:

- moderate communication complexity
- ► computationally inefficient (linear in |*F*|)
- ▶ huge storage overhead (replicas of |F|)

Context

Previous scheme:

- moderate communication complexity
- computationally inefficient (linear in |F|)
- huge storage overhead (replicas of |F|)

Our goal:

- moderate communication complexity
- optimal computation (one read for each server)
- **smaller storage overhead** thanks to a pre-encoding and a distribution of the database

Context

Previous scheme:

- moderate communication complexity
- computationally inefficient (linear in |F|)
- huge storage overhead (replicas of |F|)

Our goal:

- moderate communication complexity
- optimal computation (one read for each server)
- **smaller storage overhead** thanks to a pre-encoding and a distribution of the database

Tools: coding theory and combinatorics

- transversal designs and associated codes,
- "lifted" codes.

1. Private information retrieval

2. PIR schemes with low computation and storage

Transversal designs and codes

A PIR scheme with transversal designs Collusion-resistant PIR schemes with weighted lifted codes

Coding theory

A (linear) **code** C is a *k*-dimensional subspace of \mathbb{F}_q^n .

Any code admits **parity-check matrices** $H \in \mathbb{F}_q^{(n-k) \times n}$ such that

$$\mathcal{C} = \{ \boldsymbol{c} \in \mathbb{F}_q^n \mid \boldsymbol{H}\boldsymbol{c} = \boldsymbol{0} \}.$$

Coding theory

A (linear) **code** C is a *k*-dimensional subspace of \mathbb{F}_q^n . Any code admits **parity-check matrices** $H \in \mathbb{F}_q^{(n-k) \times n}$ such that

```
\mathcal{C} = \{ \boldsymbol{c} \in \mathbb{F}_q^n \mid \boldsymbol{H}\boldsymbol{c} = \boldsymbol{0} \}.
```

Terminology:

- *h* ∈ RowSpan(*H*) is a **parity-check equation** for *C*.
- **Support:** supp $(h) := \{i \in \{1, ..., n\}, h_i = 0\}$
- Weight: $\operatorname{wt}(h) := |\operatorname{supp}(h)|.$

Coding theory

A (linear) **code** C is a *k*-dimensional subspace of \mathbb{F}_q^n . Any code admits **parity-check matrices** $H \in \mathbb{F}_q^{(n-k) \times n}$ such that

$$\mathcal{C} = \{ \boldsymbol{c} \in \mathbb{F}_q^n \mid \boldsymbol{H}\boldsymbol{c} = \boldsymbol{0} \}.$$

Terminology:

- *h* ∈ RowSpan(*H*) is a **parity-check equation** for *C*.
- **Support:** supp $(h) := \{i \in \{1, ..., n\}, h_i = 0\}$
- Weight: wt(h) := |supp(h)|.

Important remark. If r = wt(h) and $i \in supp(h)$, then for every $c \in C$, one can recover $c_i \in \mathbb{F}_q$ by accessing at most r - 1 other coordinates c_i of the codeword c:

$$c_i = -\frac{1}{h_i} \sum_{j \in \operatorname{supp}(h) \setminus \{i\}} h_j c_j$$

In that case we call supp(h) \ {i} a helper set for i.

Our goal. Design a code $C \subseteq \mathbb{F}_q^n$ such that, for every $i \in \{1, ..., n\}$, there exists a set of helper sets which uniformly covers $\{1, ..., n\}$.

Our goal. Design a code $C \subseteq \mathbb{F}_q^n$ such that, for every $i \in \{1, ..., n\}$, there exists a set of helper sets which uniformly covers $\{1, ..., n\}$.

- This will provide a way to recover c_i by accessing uniformly at random other coordinates of c.
- Querying these "random coordinates" will leak no information about *i* to the servers.

Our goal. Design a code $C \subseteq \mathbb{F}_q^n$ such that, for every $i \in \{1, ..., n\}$, there exists a set of helper sets which uniformly covers $\{1, ..., n\}$.

- This will provide a way to recover *c_i* by accessing uniformly at random other coordinates of *c*.
- Querying these "random coordinates" will leak no information about *i* to the servers.

Let's do this with **combinatorics**.

J. Lavauzelle

Transversal designs

A transversal design $TD(n, s) = (X, \mathcal{B}, \mathcal{G})$ is given by:

- \blacktriangleright X a set of *points*, |X| = N = ns,
- a partition of X into subsets $\mathcal{G} = \{G_j\}_{1 \le j \le n}$ called *groups*:

$$X = \prod_{j=1}^{n} G_j$$
 and $|G_j| = s$,

Transversal designs

A transversal design $TD(n, s) = (X, \mathcal{B}, \mathcal{G})$ is given by:

- X a set of *points*, |X| = N = ns,
- a partition of *X* into subsets $\mathcal{G} = \{G_j\}_{1 \le j \le n}$ called *groups*:

$$X = \coprod_{j=1}^{n} \frac{\mathbf{G}_{j}}{\mathbf{G}_{j}}$$
 and $|\mathbf{G}_{j}| = s$,

- ▶ a set of subsets of *X*, "incident" to \mathcal{G} , called *blocks* $B \in \mathcal{B}$:
 - $B \subset X \text{ and } |B| = n$
 - for all $\{i, j\} \subset X$, the pair $\{i, j\}$ lie either in a single group $G \in \mathcal{G}$, or in a unique block $B \in \mathcal{B}$

Example: a TD(3,3)

An example for a TD(3,3):

- -ns = 9 points
- -s = 3 groups G_1, G_2, G_3 of size 3
- ns = 9 blocks of n = 3 points, partitionned into 3 parallel classes $\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3$

Codes from designs

Let \mathcal{T} be a transversal design $\text{TD}(n,s) = (X, \mathcal{B}, \mathcal{G})$ with points $X = \{x_1, \dots, x_{ns}\}$, blocks $B = \{B_1, \dots, B_{ns}\}$ and groups $\mathcal{G} = \{G_1, \dots, G_n\}$.

Its **incidence matrix** *M*, of size $|\mathcal{B}| \times |X| = ns \times ns$, is defined by:

$$M_{i,j} = \begin{cases} 1 & \text{if } x_j \in B_i \\ 0 & \text{otherwise.} \end{cases}$$

Codes from designs

Let \mathcal{T} be a transversal design $\text{TD}(n,s) = (X, \mathcal{B}, \mathcal{G})$ with points $X = \{x_1, \dots, x_{ns}\}$, blocks $B = \{B_1, \dots, B_{ns}\}$ and groups $\mathcal{G} = \{G_1, \dots, G_n\}$.

Its **incidence matrix** *M*, of size $|\mathcal{B}| \times |X| = ns \times ns$, is defined by:

$$M_{i,j} = \left\{ egin{array}{cc} 1 & ext{if } x_j \in B_i \ 0 & ext{otherwise.} \end{array}
ight.$$

Definition. The **linear code** C **based on** T **over** \mathbb{F}_q is the \mathbb{F}_q -linear code having M as a parity-check matrix (*i.e.* C^{\perp} is generated by M).

- length(C) = |X| = ns,
- $-\dim(\mathcal{C})=\dim(\ker M),$
- − every block $B \in \mathcal{B}$ gives a parity-check equation $h \in C^{\perp}$, such that

$$\operatorname{supp}(\boldsymbol{h}) = \boldsymbol{B}$$
 and $\operatorname{wt}(\boldsymbol{h}_{|\boldsymbol{G}_i}) = 1, \quad \forall j = 1, \dots, n$

The transversal design TD(3,3) represented by:

The transversal design TD(3,3) represented by:

The transversal design TD(3,3) represented by:

The transversal design TD(3,3) represented by:

The transversal design TD(3,3) represented by:

gives a code with the following parity-check matrix:

 $H = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$ eristic

Dimension of the code?

depends on the characteristic,

▶ for instance, over
$$\mathbb{F}_3$$
, we have $\operatorname{rk}(H) = 6 \implies \operatorname{dim}(\mathcal{C}) = 3$.

1. Private information retrieval

2. PIR schemes with low computation and storage

Transversal designs and codes

A PIR scheme with transversal designs

Collusion-resistant PIR schemes with weighted lifted codes

Let $C \subseteq \mathbb{F}_q^N$ be a code based on a TD(n, s), with N = ns.

• Initialisation. Encode files $(F_1, \ldots, F_k) \mapsto c \in C$, and upload $c_{|G_i}$ on server S_j .

- Initialisation. Encode files $(F_1, \ldots, F_k) \mapsto c \in C$, and upload $c_{|G_i}$ on server S_j .
- To recover $F_i = c_i$, with $i \in X$:

- Initialisation. Encode files $(F_1, \ldots, F_k) \mapsto c \in C$, and upload $c_{|G_i}$ on server S_j .
- To recover $F_i = c_i$, with $i \in X$:
 - 1. User randomly picks a block $B \in \mathcal{B}$ containing *i*. Then, user defines queries:

$$q_j = \mathcal{Q}(i)_j \coloneqq \begin{cases} \text{unique point in } B \cap G_j & \text{if } i \notin G_j \\ \text{a random point in } G_j & \text{otherwise.} \end{cases}$$

- Initialisation. Encode files $(F_1, \ldots, F_k) \mapsto c \in C$, and upload $c_{|G_i}$ on server S_j .
- To recover $F_i = c_i$, with $i \in X$:
 - 1. User randomly picks a block $B \in \mathcal{B}$ containing *i*. Then, user defines queries:

$$q_j = \mathcal{Q}(i)_j \coloneqq \begin{cases} \text{unique point in } B \cap G_j & \text{if } i \notin G_j \\ \text{a random point in } G_j & \text{otherwise.} \end{cases}$$

Let $C \subseteq \mathbb{F}_q^N$ be a code based on a TD(n, s), with N = ns.

- Initialisation. Encode files $(F_1, \ldots, F_k) \mapsto c \in C$, and upload $c_{|G_i}$ on server S_j .
- To recover $F_i = c_i$, with $i \in X$:
 - 1. User randomly picks a block $B \in \mathcal{B}$ containing *i*. Then, user defines queries:

$$q_j = \mathcal{Q}(i)_j \coloneqq \begin{cases} \text{unique point in } B \cap G_j & \text{if } i \notin G_j \\ \text{a random point in } G_j & \text{otherwise.} \end{cases}$$

- 2. Each server S_i sends back c_{q_i}
- 3. User recovers

I. Lavauzelle

$$c_i = -\sum_{j: i \notin G_j} c_{q_j} = -\sum_{b \in B \setminus \{i\}} c_b$$

Theorem. This PIR protocol is information-theoretically private.

Proof:

- the only server which holds F_i received a random query;
- for each other server S_j , query q_j gives no information on the block *B* which has been picked \Rightarrow no information leaks on *i*.
Proof:

- the only server which holds F_i received a random query;
- for each other server S_j , query q_j gives no information on the block *B* which has been picked \Rightarrow no information leaks on *i*.

Features.

communication complexity: n log s uploaded bits, n log q downloaded bits

Proof:

- the only server which holds F_i received a random query;
- for each other server S_j , query q_j gives no information on the block *B* which has been picked \Rightarrow no information leaks on *i*.

Features.

- communication complexity: n log s uploaded bits, n log q downloaded bits
- computational complexity:
 - only 1 read for each server (optimal)
 - ▶ $\leq n$ additions over \mathbb{F}_q for the user

Proof:

- the only server which holds F_i received a random query;
- for each other server S_j , query q_j gives no information on the block *B* which has been picked \Rightarrow no information leaks on *i*.

Features.

- communication complexity: n log s uploaded bits, n log q downloaded bits
- computational complexity:

I. Lavauzelle

- only 1 read for each server (optimal)
- ▶ $\leq n$ additions over \mathbb{F}_q for the user
- storage overhead: $(ns k) \log q$ bits, where $k = \dim(\mathcal{C})$

Proof:

- the only server which holds F_i received a random query;
- for each other server S_j , query q_j gives no information on the block *B* which has been picked \Rightarrow no information leaks on *i*.

Features.

- communication complexity: n log s uploaded bits, n log q downloaded bits
- computational complexity:
 - only 1 read for each server (optimal)
 - $\leq n$ additions over \mathbb{F}_q for the user
- storage overhead: $(ns k) \log q$ bits, where $k = \dim(\mathcal{C})$

Question: transversal designs leading to large dimension codes?

Instances with geometric designs

An example: the **classical affine transversal design**:

- $\blacktriangleright X = \mathbb{F}_q^m \text{ for } m \ge 2,$
- \mathcal{G} a partition of *X* into *q* hyperplanes G_1, \ldots, G_q ,
- $\blacktriangleright \mathcal{B} = \{ affine lines L secant to each <math>G_i \}.$

The code has:

- length $ns = q^m$,
- "locality" n = q.

Instances with geometric designs

An example: the **classical affine transversal design**:

- $\blacktriangleright X = \mathbb{F}_q^m \text{ for } m \ge 2,$
- \mathcal{G} a partition of *X* into *q* hyperplanes G_1, \ldots, G_q ,
- $\blacktriangleright \mathcal{B} = \{ affine lines L secant to each <math>G_i \}.$

The code has:

- length $ns = q^m$,
- "locality" n = q.

Information rate of affine geometry TD-based code depending on the length. Each curve corresponds to a value of $m \in \{2, 3, 4, 5\}$.

Instances with geometric designs

An example: the classical affine transversal design:

- $\blacktriangleright X = \mathbb{F}_q^m \text{ for } m \ge 2,$
- \mathcal{G} a partition of *X* into *q* hyperplanes G_1, \ldots, G_q ,
- $\blacktriangleright \mathcal{B} = \{ affine lines L secant to each <math>G_i \}.$

The code has:

- length $ns = q^m$,
- "locality" n = q.

Question: how to deal with collusions and errors?

Information rate of affine geometry TD-based code depending on the length. Each curve corresponds to a value of $m \in \{2, 3, 4, 5\}$.

1. Private information retrieval

2. PIR schemes with low computation and storage

Transversal designs and codes A PIR scheme with transversal designs

Collusion-resistant PIR schemes with weighted lifted codes

We have seen a **combinatorial** construction of codes for PIR, using **transversal designs**. Let's now see what we can do **algebraically**.

Reed-Solomon and Reed-Muller codes

Definition. The (full-length) **Reed–Solomon code** of dimension *k* over \mathbb{F}_q is:

$$\operatorname{RS}_q(k) := \left\{ \operatorname{ev}_{\mathbb{A}^1}(f) := (f(x_1), \dots, f(x_q)) \mid \operatorname{deg}(f) \leq k - 1 \right\}.$$

Reed-Solomon and Reed-Muller codes

Definition. The (full-length) **Reed–Solomon code** of dimension *k* over \mathbb{F}_q is:

$$\operatorname{RS}_q(k) := \left\{ \operatorname{ev}_{\mathbb{A}^1}(f) := (f(x_1), \dots, f(x_q)) \mid \operatorname{deg}(f) \leq k - 1 \right\}.$$

The code $C = RS_q(k)$ is **MDS**: every codeword $c \in C$ can be reconstructed from any *k*-subset of coordinates of *c*.

Reed–Solomon and Reed–Muller codes

Definition. The (full-length) **Reed–Solomon code** of dimension *k* over \mathbb{F}_q is:

 $\mathbf{RS}_q(k) \coloneqq \{ \mathbf{ev}_{\mathbb{A}^1}(f) \coloneqq (f(x_1), \dots, f(x_q)) \mid \deg(f) \le k-1 \}.$

The code $C = RS_q(k)$ is **MDS**: every codeword $c \in C$ can be reconstructed from any *k*-subset of coordinates of *c*.

Definition. The **Reed–Muller code** of order *m* and degree *r* over \mathbb{F}_q is:

 $\operatorname{RM}_q(m,r) := \{\operatorname{ev}_{\mathbb{A}^m}(f) \mid f \in \mathbb{F}_q[\mathbf{X}] \text{ and } \operatorname{deg}(f) \leq r\}.$

Reed–Solomon and Reed–Muller codes

Definition. The (full-length) **Reed–Solomon code** of dimension *k* over \mathbb{F}_q is:

 $\mathbf{RS}_q(k) \coloneqq \{ \mathbf{ev}_{\mathbb{A}^1}(f) \coloneqq (f(x_1), \dots, f(x_q)) \mid \deg(f) \le k-1 \}.$

The code $C = RS_q(k)$ is **MDS**: every codeword $c \in C$ can be reconstructed from any *k*-subset of coordinates of *c*.

Definition. The **Reed–Muller code** of order *m* and degree *r* over \mathbb{F}_q is:

$$\operatorname{RM}_q(m,r) \coloneqq \{\operatorname{ev}_{\mathbb{A}^m}(f) \mid f \in \mathbb{F}_q[X] \text{ and } \operatorname{deg}(f) \leq r\}.$$

Reed–Muller codes have the following property:

$$\begin{aligned} \forall \boldsymbol{c} &= \operatorname{ev}_{\mathbb{A}^m}(f) \in \operatorname{RM}_q(m,r) \quad \text{and} \quad \forall \text{ affine line } \boldsymbol{L} \subset \mathbb{A}^m, \\ & \operatorname{ev}_{\mathbb{A}^1}(f_{|\boldsymbol{L}}) \in \operatorname{RS}_q(r+1) \,. \end{aligned}$$

(where $f_{|L}$ is the lowest-degree univariate polynomial interpolating *f* over *L*)

Reed-Solomon and Reed-Muller codes

Definition. The (full-length) **Reed–Solomon code** of dimension *k* over \mathbb{F}_q is:

 $\mathbf{RS}_q(k) \coloneqq \{ \mathbf{ev}_{\mathbb{A}^1}(f) \coloneqq (f(x_1), \dots, f(x_q)) \mid \deg(f) \le k-1 \}.$

The code $C = RS_q(k)$ is **MDS**: every codeword $c \in C$ can be reconstructed from any *k*-subset of coordinates of *c*.

Definition. The **Reed–Muller code** of order *m* and degree *r* over \mathbb{F}_q is:

$$\operatorname{RM}_q(m,r) \coloneqq \{\operatorname{ev}_{\mathbb{A}^m}(f) \mid f \in \mathbb{F}_q[X] \text{ and } \operatorname{deg}(f) \leq r\}.$$

Reed–Muller codes have the following property:

$$\forall \boldsymbol{c} = \operatorname{ev}_{\mathbb{A}^m}(f) \in \operatorname{RM}_q(m, r) \quad \text{and} \quad \forall \text{ affine line } \boldsymbol{L} \subset \mathbb{A}^m, \\ \operatorname{ev}_{\mathbb{A}^1}(f_{|\boldsymbol{L}}) \in \operatorname{RS}_q(r+1) \,.$$

(where $f_{|L}$ is the lowest-degree univariate polynomial interpolating f over L)

In particular, if $r \le q - 2$, then $c_i = f(P_i)$ can be reconstructed by interpolating a polynomial of degree r on q - 1 other points of **any line** passing through P_i .

Database *F* is encoded with $RM_q(m, r)$, then distributed across the servers

Database *F* is encoded with $RM_q(m, r)$, then distributed across the servers

Assume one wants to extract file F_i .

Database *F* is encoded with $\operatorname{RM}_q(m, r)$, then distributed across the servers

Assume one wants to extract file F_i . Pick a line *L* through *i*,

Database *F* is encoded with $RM_q(m, r)$, then distributed across the servers

Assume one wants to extract file F_i . Pick a line *L* through *i*, query all files F_j except F_i ,

Database *F* is encoded with $RM_q(m, r)$, then distributed across the servers

Assume one wants to extract file F_i .

Pick a line *L* through *i*, query all files F_j except F_i , and interpolate the corresponding univariate polynomial.

Database *F* is encoded with $RM_q(m, r)$, then distributed across the servers

Assume one wants to extract file F_i .

Pick a line *L* through *i*, query all files F_j except F_i , and interpolate the corresponding univariate polynomial.

23/31

I. Lavauzelle

Database *F* is encoded with $\text{RM}_q(m, r)$, then distributed across the servers

Assume one wants to extract file F_i . Pick a line *L* through *i*, query all files F_j except F_i , and interpolate the corresponding univariate polynomial. \mathcal{L} is an affine line

 \implies no individual server can find where is

Private information retrieval with codes

23/31

I. Lavauzelle

Database *F* is encoded with $\text{RM}_q(m, r)$, then distributed across the servers

Assume one wants to extract file F_i . Pick a line *L* through *i*, query all files F_j except F_i , and interpolate the corresponding univariate polynomial. \mathcal{L} is an affine line

 \implies no individual server can find where is

 \implies the PIR scheme is private

Features with $\text{RM}_q(m, r)$ of length q^m .

- communication complexity: $(m 1)q \log q$ uploaded bits, $q \log q$ downloaded bits
- computational complexity:
 - only 1 read for each server (optimal)
 - a decoding procedure for $RS_q(r)$ for the user

▶ storage overhead: the **information rate** of $\text{RM}_q(m, r)$ with $r \leq q - 1$ is

$$\simeq \frac{(r/q)^m}{m!} \le \frac{1}{m!} \dots$$

 \implies We need codes with the same "recovery properties", and with larger dimension.

"Lifted" codes are the largest codes having the same property as Reed-Muller codes.

New affine-invariant codes from lifting. Guo, Kopparty, Sudan. ITCS. 2013.

"Lifted" codes are the largest codes having the same property as Reed-Muller codes.

New affine-invariant codes from lifting. Guo, Kopparty, Sudan. ITCS. 2013.

Definition. The *m*-th lifted Reed-Solomon code of degree *r* over \mathbb{F}_q is:

 $\operatorname{Lift}_q(m,r) \coloneqq \{\operatorname{ev}_{\mathbb{A}^m}(f) \mid f \in \mathbb{F}_q[\mathbf{X}] \text{ and } \forall \text{ affine line } L \subset \mathbb{A}^m, \operatorname{deg}(f_{|L}) \leq r\}.$

"Lifted" codes are the largest codes having the same property as Reed-Muller codes.

New affine-invariant codes from lifting. Guo, Kopparty, Sudan. ITCS. 2013.

Definition. The *m*-th lifted Reed-Solomon code of degree *r* over \mathbb{F}_q is:

 $\operatorname{Lift}_q(m,r) \coloneqq \{\operatorname{ev}_{\mathbb{A}^m}(f) \mid f \in \mathbb{F}_q[\mathbf{X}] \text{ and } \forall \text{ affine line } L \subset \mathbb{A}^m, \operatorname{deg}(f_{|L}) \leq r\}.$

Lifted codes contain Reed-Muller codes, **sometimes properly**.

"Lifted" codes are the largest codes having the same property as Reed-Muller codes.

New affine-invariant codes from lifting. Guo, Kopparty, Sudan. ITCS. 2013.

Definition. The *m*-th lifted Reed-Solomon code of degree *r* over \mathbb{F}_q is:

 $\operatorname{Lift}_q(m,r) \coloneqq \{\operatorname{ev}_{\mathbb{A}^m}(f) \mid f \in \mathbb{F}_q[\mathbf{X}] \text{ and } \forall \text{ affine line } L \subset \mathbb{A}^m, \operatorname{deg}(f_{|L}) \leq r\}.$

Lifted codes contain Reed-Muller codes, **sometimes properly**.

Example. For q = 4, m = 2, r = 2, consider $f(X, Y) = X^2 Y^2$ and an affine line *L* with equation (aT + b, cT + d). Then,

$$f(aT+b,cT+d) \equiv (a^2d^2+b^2c^2)T^2+a^2c^2T+b^2d^2 \mod (T^4-T)$$

corresponds to a degree–2 polynomial in *T*. Hence,

$$ev(X^2Y^2)\in Lift_4(2,2) \quad but \quad ev(X^2Y^2)\notin RM_4(2,2)\,.$$

Lifted codes: application to PIR

Theorem (Guo, Kopparty, Sudan '13). For every fixed *m*, and for growing alphabet and length, lifted codes reach arbitrarily large information rates.

Black squares: pairs (i, j) such that $ev(X^i Y^j) \in Lift_q (m = 2, r = q - 2)$. q = 4 q = 8q = 16

Corollary. For a sufficiently large number of servers, we have PIR with storage overhead $\rightarrow 0$.

26/31 J. Lavauzelle

Question: how to deal with collusions and byzantine errors?

Question: how to deal with collusions and byzantine errors?

For convenience, here m = 2.

Definition. A *t*-curve is:

$$\mathcal{L} = \{(x, g(x)) \in \mathbb{A}^2 \mid g \in \mathbb{F}_q[X], \deg(g) \le t\}$$

Question: how to deal with collusions and byzantine errors?

For convenience, here m = 2.

Definition. A *t*-curve is:

$$\mathcal{L} = \{ (x, g(x)) \in \mathbb{A}^2 \mid g \in \mathbb{F}_q[X], \deg(g) \le t \}$$

Definition. The weighted lifted Reed-Solomon code of degree *r* and weight *t* over \mathbb{F}_q is:

WLift_q(*t*, *r*) := { $ev_{\mathbb{A}^2}(f) \mid f \in \mathbb{F}_q[X, Y]$ and $\forall t$ -curve $\mathcal{L} \subset \mathbb{A}^2$, $deg(f_{\mid \mathcal{L}}) \leq r$ }

Consequence: for every codeword $c \in WLift_q(t, r)$ and every *t*-curve \mathcal{L} , we have:

 $c_{|\mathcal{L}} \in \mathrm{RS}_q(r+1)$.

Database *F* in encoded with $WLift_q(t, r)$, then distributed across *q* servers

Database *F* in encoded with $WLift_q(t, r)$, then distributed across *q* servers

Database *F* in encoded with $WLift_q(t, r)$, then distributed across *q* servers

Database F in encoded with WLift_q(t, r), then distributed across q servers

Database *F* in encoded with $WLift_q(t, r)$, then distributed across *q* servers

Seminario Gasiull
A PIR scheme based on weighted lifted codes

Database F in encoded with $WLift_q(t, r)$, then distributed across q servers

A PIR scheme based on weighted lifted codes

- Private information retrieval with codes -

I. Lavauzelle

Database *F* in encoded with $WLift_q(t, r)$, then distributed across q servers

Seminario Gasiull

A PIR scheme based on weighted lifted codes

Database *F* in encoded with $WLift_q(t, r)$, then distributed across q servers

- \implies no *t*-set of servers can find where is
- \implies the PIR scheme is *t*-private

Parameters

Weighted Lifted Codes: Local Correctabilities and Application to Robust Private Information Retrieval. L., Nardi. IEEE TIT. 2021.

Theorem. Let *p* be a prime number, $t \ge 1$ and $\alpha \ge 2$ be fixed integers. Then, the information rate WLift_{*p*^{*e*}}(*t*, *p*^{*e*} - α) grows to 1 when $e \to \infty$.

Corollary: we get PIR schemes with relative storage overhead $\rightarrow 0$, for a constant number of adversaries.

Weighted Lifted Codes: Local Correctabilities and Application to Robust Private Information Retrieval. L., Nardi. IEEE TIT. 2021.

Theorem. Let *p* be a prime number, $t \ge 1$ and $\alpha \ge 2$ be fixed integers. Then, the information rate WLift_{*p*^{*e*}(*t*, *p*^{*e*} - α) grows to 1 when $e \to \infty$.}

Corollary: we get PIR schemes with relative storage overhead $\rightarrow 0$, for a constant number of adversaries.

Theorem. Let *p* be a prime number, $t \ge 1$ and $c \ge 1$ be fixed integers. Let $\gamma = 1 - p^{-c}$ and $C_e = \text{WLift}_{p^e}(t, \gamma p^e)$. Then, the information rate R_e of C_e satisfies:

$$\lim_{e\to\infty}R_e=K_{t,p,c}>0$$

Corollary: we get PIR schemes with **constant relative storage overhead**, for a **constant number of collusions** and a **constant fraction of errors**.

Other works. PIR has been a hot topic during for few years.

- ► Notion of PIR capacity: achievable bounds on the download rate of PIR schemes. → requires lot of comuttation of the server side
- **Optimal** constructions over given distributed storage systems:
 - ightarrow data is already encoded by the storage system
 - \rightarrow we can avoid re-encoding and still do PIR

SJ17] *The Capacity of Private Information Retrieval*. Sun, Jafar. IEEE-TIT. **2017**.

TGR18] *PIR from MDS Coded Data in Distributed Storage Systems*. Tajeddine, Gnilke, El Rouayheb. IEEE-TIT. **2018**.

[TGKFH18] *Robust PIR from Coded Systems with Byzantine and Colluding Servers*. Tajeddine, Gnilke, Karpuk, Freij-Hollanti, Hollanti. ISIT. **2018**.

Private Information Retrieval Schemes With Product-Matrix MBR Codes. L., Tajeddine, Freij-Hollanti, Hollanti. IEEE IFS. 2021.

Open questions / future works.

- 1. Combinatorial bounds on the parameters.
- 2. Updatable files?
- 3. Extension to peer-to-peer storage systems (codes on random graphs).

Open questions / future works.

- 1. Combinatorial bounds on the parameters.
- 2. Updatable files?
- 3. Extension to peer-to-peer storage systems (codes on random graphs).

Thank you for your attention!