Université Paris 8

Année 2022–2023

M1 Mathématiques et applications, parcours ACC

Théorie de l'information – Feuille de TD 8

23/11/2022

Le corrigé de certains exercices sera disponible à l'adresse suivante :

www.math.univ-paris13.fr/ \sim lavauzelle/teaching/2022-23/theorie-information.html

 (\star) exercice fondamental $(\star\star)$ pour s'entraîner $(\star\star\star)$ pour aller plus loin \square sur machine

Exercice 1. \square (**) Implantation de l'algorithme LZW.

Question 1.– Implanter l'algorithme de codage LZW vu dans le cours. L'algorithme prendra en entrée le message à coder, ainsi que l'alphabet de la source.

(si besoin, on pourra commencer par supposer que l'alphabet est $\{0,1\}$)

Question 2.- Tester l'algorithme sur les instances et exemples présentés en cours.

Question 3.– Implanter une source X sans mémoire sur $\mathcal{X} = \{0,1\}$ telle que pour tout $n \in \mathbb{N}$, on a $p(X_n = 1) = 0.1$. Puis, calculer la longueur moyenne du codage d'une suite N bits par LZW (avec N grand), et comparer avec $\overline{H}(X)$.

Question 4.– Implanter une source binaire X markovienne (pas nécessairement stationnaire) de son choix. Puis, calculer la longueur moyenne du codage d'une suite N bits par LZW (avec N grand), et comparer avec $\overline{H}(X)$.

Exercice 2. $(\star\star)$ Entropie et codage par plage.

Soit $X = (X_1, ..., X_N)$ une séquence **finie** de $N \ge 1$ variables aléatoires binaires. On définit $R = (R_1, ..., R_M)$, où les variables R_m sont à valeurs sur \mathbb{N}^+ , comme la séquence des longueurs de plages de symboles identiques dans X. Notons que $M \le N$, et que la valeur de M dépend de la réalisation des X_n . Par exemple, si N = 13 et si X se réalise comme (1100010000111), alors la variable R vaut (2,3,1,4,3) et M = 5.

On note H(X) l'entropie de la variable conjointe des (X_1, \ldots, X_N) . De même, H(R) est l'entropie de la variable conjointe des (R_1, \ldots, R_M) .

Question 1.– Démontrer que $H(R, X_1) = H(X)$.

Question 2.– En déduire que $H(X) - H(X_1) \le H(R) \le H(X)$.

Exercice 3. $(\star\star)$ Longueurs de plages.

Soit $X = (X_n)_{n \ge 1}$ un processus stochastique sans mémoire, dont les variables X_n sont binaires et uniformes. On note N la variable aléatoire comptant la longueur de la première plage de symboles identiques, c'est-à-dire telle que

$$X_{N+1} \neq X_N$$
 et $\forall 2 \leq n \leq N, X_n = X_{n-1}$.

On note enfin $Y := (X_1, ..., X_N)$.

Question 1.– Déterminer le domaine des valeurs prises par les variables N et Y?

Question 2.– Déterminer la loi de *N*, la loi de *Y* conditionnée à *N* puis en déduire la loi de *Y*.

Question 3.- Démontrer que :

- 1. H(Y) = 3,
- 2. H(Y|N) = 1 (et interpréter),
- 3. I(Y; N) = 2.