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1 Resolvent and spectral properties of elliptic op-

erators

On a smooth bounded open set Ω of Rd, we consider elliptic second-order operator

P0 given by

P0 =
∑

1≤i,j≤d

Di(p
ij(x)Dj), with

∑

1≤i,j≤d

pij(x)ξiξj ≥ C|ξ|2. (1.1)
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where pij ∈ C ∞(Rd;R) with furthermore pij = pji, 1 ≤ i, j ≤ d. In addition we

shall impose Dirichlet boundary conditions, that is, the trace of the solution at the

boundary ∂Ω.

1.1 Basic properties of second-order elliptic operators

Here we recall some well-known facts on elliptic operators such as P0. In particu-

lar, in the case of homogeneous Dirichlet boundary conditions, we recall that P0 is

maximal monotone and has a spectral decomposition with a Hilbert basis of eigen-

functions.

We consider the following problem

P0u+ λu = f, for λ ∈ R.

Assume first f is smooth and there exists a smooth solution with u|∂Ω = 0. Picking

a second function v, also satisfying v|∂Ω = 0, upon multiplying the equation by v,

integrating over Ω, and performing integrations by part we find a(u, v) = (f, v)L2(Ω)

with the sesquilinear form a(., .) given by

a(u, v) =
∑

1≤i,j≤d

(pijDiu,Djv)L2(Ω) + λ(u, v)L2(Ω).

Invoking first the ellipticity of p and second the Poincaré inequality on H1
0 (Ω) we

have

∑

1≤i,j≤d

(pijDiv,Djv)L2(Ω) & ‖Dv‖2(L2(Ω))d & ‖v‖2H1(Ω). (1.2)

Thus there exists λ0 < 0 such that (u, v) 7→ a(u, v) is coercive on H1
0 (Ω) for λ >

λ0. The value λ0 is given by the best possible constant in the following Poincaré

inequality

∑

1≤i,j≤d

(pijDiv,Djv)L2(Ω) ≥ C‖v‖2L2(Ω). (1.3)

If now f ∈ H−1(Ω), as v 7→ 〈f, v〉H−1(Ω),H1
0
(Ω) is continuous on H1

0 (Ω), the Lax-

Milgram theorem (see e.g. [4, 2]), yields the existence and the uniqueness of a solution

u ∈ H1
0 (Ω) such that

a(u, v) = (f, v)L2(Ω), ∀v ∈ H1
0 (Ω). (1.4)

and we have

‖u‖H1
0
(Ω) h ‖f‖H−1(Ω),
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with the H1
0 -norm given by

‖u‖2H1
0
(Ω) =

∑

1≤i,j≤d

(pijDiu,Dju)L2(Ω). (1.5)

which is equivalent to the usual H1-norm,

‖u‖2H1(Ω) = ‖u‖2L2(Ω) +
∑

1≤i≤d

‖Diu‖2L2(Ω), (1.6)

by the Poincaré inequality.

One says that u is a weak solution of the elliptic problem

P0u+ λu = f, for λ > λ0, f ∈ H−1(Ω). (1.7)

Observe that (1.4) is the Euler-Lagrange equation associated with the minimisation

of the functional

J(u) =
1

2
a(u, u)− (f, u)L2(Ω),

over H1
0 (Ω). The weak formulation (1.4) is thus also called the variational formula-

tion of the elliptic problem.

If now f ∈ L2(Ω) in (1.4)–(1.7), and if the boundary is C 2 (which is the case

here), the solution u ∈ H1
0 (Ω) given above is in fact in H2(Ω). Moreover,

‖u‖H2(Ω) h ‖f‖L2(Ω). (1.8)

Hence, in the case f ∈ L2(Ω) the weak solution is in fact classical and satisfies

P0u+λu = f in L2(Ω). Finally, ifm ∈ N, if the boundary is C m+2 and if f ∈ Hm(Ω),

then u ∈ Hm+2(Ω) and we have

‖u‖Hm+2(Ω) h ‖f‖Hm(Ω). (1.9)

We refer to [4, Section 8.4] and [2, Section 9.6] for proofs.

We define the unbounded operator P0 : L2(Ω) → L2(Ω), with domain D(P0) =

H2(Ω) ∩H1
0 (Ω), given by

P0u = P0u, u ∈ D(P0).

From the elements reviewed above we see that the H2-norm, viz.,

‖u‖H2(Ω) =
(

‖u‖2L2(Ω) + ‖∇u‖2L2(Ω) +
∑

j,k

‖D2
jku‖

2

L2(Ω)

)1/2

,
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the graph norm, viz., ‖u‖D(P0)
=

(

‖u‖2L2(Ω) + ‖P0u‖2L2(Ω)

)1/2
, or simply the norm

‖P0u‖L2(Ω) are all equivalent on the space D(P0), that is,

‖u‖H2(Ω) h ‖u‖D(P0)
h ‖P0u‖L2(Ω), u ∈ D(P0), (1.10)

and they make it a Hilbert space. In particular, D(P0) is a closed subspace of H2(Ω).

Observe that C ∞
c (Ω) ⊂ D(P0). However, the closure of C ∞

c (Ω) for the H2-norm

is the space H2
0 (Ω), that is the H2-functions u on Ω such that the (well-defined)

traces u|∂Ω and ∂νu|∂Ω vanish. Since H2
0 (Ω) is strictly included in D(P0), we see

that the space C ∞
c (Ω) is not dense in D(P0). We recall that yet the space C ∞

c (Ω)

is dense in H1
0 (Ω) (see e.g. [1]).

We observe that we have (P0u, u)L2(Ω) ≥ 0 for all u ∈ D(P0). From the properties

gathered above we have the following result.

Proposition 1. The operator (P0, D(P0)) is maximal monotone.

Note that the domain of P0 is dense in L2(Ω) from general results on Sobolev

space. In fact, a general argument can also be invoked, as a maximal monotone

operator on a Hilbert space has a dense domain. Note also that P0 is a closed

operator from the estimation (1.8).

1.2 Spectral properties

From the symmetry of P0, viz.,

(P0u, v)L2(Ω) = (u,P0v)L2(Ω), u, v ∈ D(P0),

we have the following result by Proposition 28 in the notes on semigroup theory.

Lemma 2. The operator (P0, D(P0)) is selfadjoint on L
2(Ω).

From the elliptic results recalled above, the value 0 is in the resolvent set ρ(P0)

of P0: P0 is a bijection from D(P0) ⊂ L2(Ω) onto L2(Ω) and the map P
−1
0 : L2(Ω) →

D(P0) is bounded. We then set R0 = ι ◦ P
−1
0 where ι is the natural injection of

H2(Ω) into L2(Ω). As ι is a compact map by the Rellich-Kondrachov theorem [2,

Theorem 9.16], so is R0. We say that P0 has a compact resolvent on L2(Ω). In what

follows we shall often omit to write the map ι explicitly.

From the symmetry of P0, we conclude that R0 is selfadjoint on L2(Ω). As R0 is

injective, the spectral decomposition of compact selfadjoint operators on separable

Hilbert spaces yields the existence of a nonincreasing sequence of real eigenvalues

(mj)j∈N ⊂ (0,+∞) (counted with their multiplicity) that converges to 0 and an
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associated sequence of eigenfunctions, denoted by (φj)j∈N, that forms a Hilbert basis

of L2(Ω):

∀u ∈ L2(Ω), ∃(uj)j ∈ ℓ2(C), u =
∑

j∈N

ujφj in L2(Ω).

Moreover uj = (u, φj)L2(Ω), ‖u‖2L2(Ω) =
∑

j∈N |uj|2, and for u, v ∈ L2(Ω),

(u, v)L2(Ω) =
∑

j∈N

ujvj, uj = (u, φj)L2(Ω), vj = (v, φj)L2(Ω).

We have R0(φj) = mjφj. In particular φj ∈ D(P0) and equivalently we have φj =

mjP0φj. Note that we concluded above that the eigenvalues of R0 are positive

because of the injectivity of R0 and the nonnegativity of P0, viz. (P0u, u)L2(Ω) ≥ 0.

We have

R0u =
∑

j∈N

ujmjφj, for u =
∑

j∈N

ujφj ∈ L2(Ω).

As D(P0) is the range of R0 setting µj = m−1
j , j ∈ N, the domain D(P0) is charac-

terized by

D(P0) = H2(Ω) ∩H1
0 (Ω) =

{

v =
∑

j∈N

vjφj; (vjµj)j ∈ ℓ2(C)
}

,

and, with this characterization and the fact that P0 is closed, we then have

P0v =
∑

j∈N

µjvjφj, v =
∑

j∈N

vjφj ∈ D(P0). (1.11)

As a summary, we have here obtained the classical result of the existence of a

Hilbert basis (φj)j∈N ⊂ L2(Ω), formed by eigenfunctions of the operator P0, associ-

ated with the eigenvalues (µj)j∈N, sorted here as an nondecreasing sequence:

P0φj = µjφj, j ∈ N, with 0 < µ0 ≤ µ1 ≤ · · · ≤ µk ≤ · · · (1.12)

The following asymptotic result is known as the Weyl law for the sequence of eigen-

values (µj)j∈N.

Theorem 3 (Weyl law). Define Jµ = #{j ∈ N; µj ≤ µ}. We have

Jµ ∼ (2π)−dωd |Ω|µd/2, as r → ∞,

where ωd is the volume of the Euclidean unit ball, that is, ωd = πd/2/Γ(1 + d/2),

with Γ the gamma function.

We refer for example to [3, Chapter 6, Theorems 16 and 18] or to [5, Theorem

8.16].

Remark 4. An equivalent formulation is the following asymptotic formula:

µj ∼ (2π)2
(

ωd |Ω|
)−2/d

j2/d = 4π
(

Γ(1 + d/2)/|Ω|
)2/d

j2/d, as j → ∞. (1.13)
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1.3 A Sobolev scale and operator extensions

For the analysis of the semigroup generated by the operator (P0, D(P0)) (and some

of its extensions) carried out below the proper functional framework needs to be

introduced. To that purpose, we define some adapated spaces of Sobolev type.

With the above spectral family, the space H1
0 (Ω) is characterized by the following

proposition.

Proposition 5. We have the following equivalence

u ∈ H1
0 (Ω) ⇔ u ∈ L2(Ω) and (µ

1/2
j uj)j ∈ ℓ2(C), uj = (u, φj)L2(Ω).

In particular, the inner product (u, v) 7→ ∑

j∈N µjujvj gives the usual Hilbert space

structure on H1
0 (Ω), with vj = (v, φj)L2(Ω). We also have

‖Du‖2L2(Ω) h
∑

1≤i,j≤d

(pijDiu,Dju)L2(Ω) = ‖u‖2H1
0
(Ω) =

∑

j∈N

µj|uj|2, (1.14)

recalling (1.5).

Proof. As recalled in (1.6), theH1-norm is given by ‖u‖H1(Ω) = (‖u‖2L2(Ω)+‖Du‖2L2(Ω))
1/2.

On H1
0 (Ω) an equivalent norm is simply ‖Du‖L2(Ω) by the Poincaré inequality. In

(1.5) we defined the following norm

‖u‖2H1
0
(Ω) =

∑

1≤i,j≤d

(pijDiu,Dju)L2(Ω)

on H1
0 (Ω) that is equivalent to ‖Du‖L2(Ω).

Above we recalled that C ∞
c (Ω) ⊂ D(P0) ⊂ H1

0 (Ω) implying the density of D(P0)

in H1
0 (Ω). If u ∈ D(P0) one has P0u =

∑

j∈N µjujφj and

∑

1≤i,j≤d

(pijDiu,Dju)L2(Ω) = (P0u, u)L2(Ω) =
∑

j∈N

µj|uj|2. (1.15)

Hence, on D(P0), the norm ‖u‖H1
0
(Ω) is equivalent to that associated with the inner

product (u, v) 7→ ∑

j∈N ujvjµj.

Consider v ∈ H1
0 (Ω) and (v(n)) ⊂ D(P0) is such that v(n) → v in H1

0 (Ω). One

has

v =
∑

j∈N

vjφj, v(n) =
∑

j∈N

v
(n)
j φj,

with V (n) = (µ
1/2
j v

(n)
j )j∈N ∈ ℓ2(C), n ∈ N. With (1.15) we see that (V (n))n∈N is a

Cauchy sequence in ℓ2(C). Thus, there exists (wj)j∈N such that (µ
1/2
j wj)j∈N ∈ ℓ2(C)

and

∑

j∈N

µj|v(n)j − wj|2 → 0 as n→ ∞.
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In particular for each j ∈ N one has v
(n)
j → wj as n→ ∞. Yet, v

(n)
j = (v(n), φj)L2(Ω →

(v, φj)L2(Ω = vj meaning that vj = wj. Hence, v is such that (µ
1/2
j vj)j∈N ∈ ℓ2(C).

Let now v ∈ L2(Ω) be such that (µ
1/2
j vj)j∈N ∈ ℓ2(C). For n ∈ N, set v(n) =

∑

j≤n vjφj. One has v(n) ∈ D(P0). With the norm equivalence given in (1.15) one

finds that

‖v(n) − v(m)‖2H1
0
(Ω) h

m
∑

j=n+1

µj|vj|2, n ≤ m,

implying that (v(n))n∈N is a Cauchy sequence in H1
0 (Ω). Since it converges to v in

L2(Ω) it shows that v ∈ H1
0 (Ω). �

Remark 6. Note that the
√
µ0 coincides with the optimal constant in the Poincaré

inequality since we have

‖u‖2H1
0
(Ω) =

∑

j∈N

|uj|2µj ≥ µ0‖u‖2L2(Ω),

with equality in the case u = φ0.

With the description of H1
0 (Ω) by means of the spectral family (φj)j we can

recover classical characterizations of H1
0 (Ω) functions.

Proposition 7. Let u ∈ L2(Ω) be such that

|(u,P0v)L2(Ω)| ≤ L‖v‖H1
0
(Ω),

for some L > 0 and all v ∈ D(P0). Then, u ∈ H1
0 (Ω) and ‖u‖H1

0
(Ω) ≤ L.

Proof. We have u =
∑

j∈N ujφj with (uj)j ∈ ℓ2(C). For v ∈ D(P0), v =
∑

j∈N vjφj,

with (µjvj)j ∈ ℓ2(C) we have (u,P0v)L2(Ω) =
∑

j∈N µjujvj. Letting N ∈ N and

choosing vj = uj for j ∈ {0, . . . , N}, and vj = 0 for j ≥ N + 1, we find

∑

0≤j≤N

µj|uj|2 ≤ L‖v‖H1
0
(Ω) = L

(

∑

0≤j≤N

µj|uj|2
)1/2

.

This gives
(
∑

0≤j≤N µj|uj|2
)1/2 ≤ L, which yields the conclusion. �

The spaceH−1(Ω) denotes the dual space ofH1
0 (Ω). Instead of identifying H1

0 (Ω)

and H−1(Ω) by the Riesz theorem through the scalar product on H1
0 (Ω), one usually

uses the space L2(Ω) as a pivot space. This is possible because H1
0 (Ω) is dense in

L2(Ω). Then, we have

H1
0 (Ω) →֒ L2(Ω) →֒ H−1(Ω),
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where both injections have a dense range. We may then write, for u ∈ L2(Ω),

〈u, v〉H−1(Ω),H1
0
(Ω) = (u, v)L2(Ω) =

∑

j∈N

ujvj, v ∈ H1
0 (Ω).

If u ∈ H−1(Ω) we set uj = 〈u, φj〉H−1(Ω),H1
0
(Ω). Considering the norm given on H1

0 (Ω)

by Proposition 5, this leads to the following characterization of the space H−1(Ω).

Proposition 8. If u ∈ H−1(Ω) then (ujµ
−1/2
j )j ∈ ℓ2(C) and

u = lim
n→∞

n
∑

j=0

ujφj in H−1(Ω).

Conversely, if (wj)j ⊂ C is such that (wjµ
−1/2
j )j ∈ ℓ2(C) then the sequence of L2-

functions
(
∑n

j=0wjφj

)

n∈N
converges to some u in H−1(Ω) and wj = 〈u, φj〉H−1(Ω),H1

0
(Ω).

We thus write

H−1(Ω) =
{

u =
∑

j∈N

ujφj; (ujµ
−1/2
j )j ∈ ℓ2(C)

}

.

With the pivot space L2(Ω), the duality between H−1(Ω) and H1
0 (Ω) reads

〈u, v〉H−1(Ω),H1
0
(Ω) =

∑

j∈N

ujvj,

for u =
∑

j∈N ujφj ∈ H−1(Ω) and v =
∑

j∈N vjφj ∈ H1
0 (Ω), that is, (ujµ

−1/2
j )j ∈

ℓ2(C) and (vjµ
1/2
j )j ∈ ℓ2(C).

With the characterizations of H1
0 (Ω) and H

−1(Ω) given above through the spec-

tral family, we can introduce the unbounded operator P−1 : H−1(Ω) → H−1(Ω),

with domain D(P−1) = H1
0 (Ω), given by

P−1u =
∑

j∈N

µjujφj, u =
∑

j∈N

ujφj ∈ H1
0 (Ω).

From (1.11), P−1 is an extension of P0 to H−1(Ω). We have

‖P−1u‖H−1(Ω) = ‖u‖H1
0
(Ω), u ∈ H1

0 (Ω). (1.16)

For u ∈ H1
0 (Ω) the action of P0 makes no sense in general. However, P0u is well

defined in H−1(Ω) in the sense of distributions.

Proposition 9. Let u ∈ H1
0 (Ω). We have P0u = P−1 u in H−1(Ω).
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Proof. The proof uses that H−1(Ω) is a space of distributions since C ∞
c (Ω) is dense

in H1
0 (Ω). Let ϕ ∈ C ∞

c (Ω). On the one hand, we naturally have

〈P0u, ϕ〉D ′(Ω),C∞
c (Ω) = 〈u, P0ϕ〉D ′(Ω),C∞

c (Ω)

by the symmetry of P0. On the other hand, we write

〈P−1u, ϕ〉D ′(Ω),C∞
c (Ω) = 〈P−1u, ϕ〉H−1(Ω),H1

0
(Ω) = 〈u,P−1ϕ〉H1

0
(Ω),H−1(Ω)

= 〈u,P0ϕ〉L2(Ω),L2(Ω) = 〈u, P0ϕ〉D ′(Ω),C∞
c (Ω),

since ϕ ∈ D(P0). Hence, P0u = P−1u in D ′(Ω) and thus this equality holds in

H−1(Ω). �

With the above duality we may then write

(u, v)H1
0
(Ω) =

∑

1≤i,j≤d

(pijDiu,Djv)L2(Ω) =
∑

j∈N

µjujvj (1.17)

= 〈P−1u, v〉H−1(Ω),H1
0
(Ω) = 〈P0u, v〉H−1(Ω),H1

0
(Ω),

using Proposition 9.

Proposition 10. Let u ∈ H−1(Ω) be such that

|〈u, v〉H−1(Ω),H1
0
(Ω)| ≤ L‖v‖L2(Ω),

for some L > 0 and all v ∈ H1
0 (Ω). Then, u ∈ L2(Ω) and ‖u‖L2(Ω) ≤ L.

The proof can be adapted from that of Proposition 7.

For s ≥ 0, we introduce the unbounded operator P
s
0 : L2(Ω) → L2(Ω), with

domain

D(Ps
0) =

{

u =
∑

j∈N

ujφj; (µs
juj)j ∈ ℓ2(C)

}

⊂ L2(Ω),

given by

P
s
0u =

∑

j∈N

µs
jujφj, u =

∑

j∈N

ujφj ∈ D(Ps
0).

We naturally equip the space D(Ps
0) with the following scalar product and associated

norm that endows it with a Hilbert space structure:

(u, v)D(Ps
0
) =

∑

j∈N

ujvjµ
s
j , ‖u‖2D(Ps

0
) =

∑

j∈N

|uj|2µs
j .
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This norm is equivalent to the graph norm on D(Ps
0). We have P

0
0 = IdL2(Ω) with

D(P0
0) = L2(Ω) and the case s = 1 is consistent with the domain of the operator P0

on L2(Ω). Note that D(P
1/2
0 ) = H1

0 (Ω) and

(u, v)H1
0
(Ω) = 〈P0u, v〉H−1(Ω),H1

0
(Ω) = (P

1/2
0 u,P

1/2
0 v)L2(Ω), u, v ∈ H1

0 (Ω). (1.18)

using (1.17), and

‖u‖2H1
0
(Ω) = 〈P0u, u〉H−1(Ω),H1

0
(Ω) = ‖P1/2

0 u‖2L2(Ω), u ∈ H1
0 (Ω). (1.19)

Note that this is precisely the norm defined in (1.5) by Proposition 5. Note also

that we have

(u, v)H1
0
(Ω) = (P0u, v)L2(Ω) if u ∈ D(P0), v ∈ H1

0 (Ω). (1.20)

In the case s = k ∈ N, Pk
0 and D(Pk

0) correspond to the iterated operators and

domains for the elliptic operator P0, that is, D(Pk+1
0 ) = {u ∈ D(Pk

0); P0u ∈ D(Pk
0)}.

Note that for the Hilbert basis (φj)j introduced above we have

φj ∈ ∩s≥0D(Ps
0), j ∈ N.

For s < 0 we can define the following bounded operator on L2(Ω):

P
s
0u =

∑

j∈N

µ−s
j ujφj, u =

∑

j∈N

ujφj ∈ L2(Ω).

In fact, if s < 0, the operator Ps
0 is compact. With this notation we have1 R0 = P

−1
0 .

We observe that P
−1/2
0 maps L2(Ω) onto H1

0 (Ω) = D(P
1/2
0 ) isometrically and we have

P
−1/2
0 = (P

1/2
0 )−1. Noting that ‖P−1/2

0 u‖L2(Ω) = ‖u‖H−1(Ω) we see also that P
−1/2
0 can

be (uniquely) extended to an isometry from H−1(Ω) onto L2(Ω).

Arguing as we did above for the H1
0 (Ω)-H

−1(Ω) duality with L2(Ω) as a pivot

space, we may then obtain the following result.

Proposition 11. Let s ≥ 0. We denote by D(Ps
0)

′ the dual of D(Ps
0). We have

D(Ps
0) →֒ L2(Ω) →֒ D(Ps

0)
′,

where both injections have a dense range. For u ∈ D(Ps
0)

′, if we set uj = 〈u, φj〉D(Ps
0
)′,D(Ps

0
),

the space D(Ps
0)

′ is characterized as follows

u ∈ D(Ps
0)

′ ⇔ (ujµ
−s
j )j ∈ ℓ2(C),

1Here, as we omit the operator ι defined above, in the case s = −1, we can identify P
s

0
and the

operator P−1

0
defined at the beginning of Section 1.2.
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and u =
∑

j∈N ujφj in D(Ps
0)

′. Finally, we have

〈u, v〉D(Ps
0
)′,D(Ps

0
) =

∑

j∈N

ujvj,

for u =
∑

j∈N ujφj ∈ D(Ps
0)

′(Ω) and v =
∑

j∈N vjφj ∈ D(Ps
0), that is, (ujµ

−s
j )j ∈

ℓ2(C) and (vjµ
s
j)j ∈ ℓ2(C).

Definition 12. For s ≥ 0, we set Ks(Ω) = D(P
s/2
0 ) and, for s < 0, we set Ks(Ω) =

D(P
−s/2
0 )′.

We have

Ks(Ω) →֒ Ks′(Ω) for s ≥ s′,

where the injection has a dense range. From what is presented above, for all s ∈ R,

we have

Ks(Ω) = {u =
∑

j∈N

ujφj; (µ
s/2
j uj)j ∈ ℓ2(C)}.

On Ks(Ω) the following inner product and associated norm

(u, v)Ks(Ω) =
∑

j∈N

µs
jujvj, ‖u‖2Ks(Ω) =

∑

j∈N

µs
j|uj|2 <∞,

with uj = 〈u, φj〉Ks(Ω),K−s(Ω) and vj = 〈v, φj〉Ks(Ω),K−s(Ω), yield a Hilbert space

structure. For s ≥ 0, if u ∈ L2(Ω) and v ∈ Ks(Ω), we recover the pivot rôle played

by L2(Ω):

〈u, v〉K−s(Ω),Ks(Ω) = (u, v)L2(Ω) =
∑

j∈N

ujvj.

For r ∈ R and s ≥ 0, with the spectral family (φj)j, we defined the unbounded

operator Ps
r : K

r(Ω) → Kr(Ω), with domain D(Ps
r) = Kr+2s(Ω) given by

P
s
ru =

∑

j∈N

µs
jujφj, u =

∑

j∈N

ujφj ∈ Kr+2s(Ω). (1.21)

We have

‖Ps
ru‖Kr(Ω) = ‖u‖Kr+2s(Ω), u ∈ Kr+2s(Ω). (1.22)

If r ≥ 0, the operator Ps
r is a restriction of Ps

0 to K
r(Ω) ⊂ K0(Ω) = L2(Ω). If r < 0,

the operator Ps
r is an extension of Ps

0 to Kr(Ω) ⊃ L2(Ω).

For r ∈ R and s < 0, we define the bounded operator Ps
r : K

r(Ω) → Kr(Ω) also

given by (1.21). We have

‖Ps
ru‖Kr+2|s|(Ω) = ‖u‖Kr(Ω).

We may then state the following results whose proof is elementary from what pre-

cedes.
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Proposition 13. Let r, s, σ ∈ R.

1. If s ≥ 0 and σ ≥ r+2s we have Kσ(Ω) ⊂ D(Ps
r) = Kr+2s(Ω) and P

s
r

(

Kσ(Ω)
)

=

Kσ−2s(Ω) ⊂ Kr(Ω). Moreover, we have

‖Ps
r(u)‖Kσ−2s(Ω) = ‖u‖Kσ(Ω), u ∈ Kσ(Ω).

2. If s < 0 and σ ≥ r we have Kσ(Ω) ⊂ D(Ps
r) = Kr(Ω) and P

s
r

(

Kσ(Ω)
)

=

Kσ+2|s|(Ω) ⊂ Kσ(Ω). Moreover, we have

‖Ps
r(u)‖Kσ+2|s|(Ω) = ‖u‖Kσ(Ω), u ∈ Kσ(Ω).

The selfadjointness property further extends to P
s
0.

Lemma 14. Let s ∈ R and let u, v ∈ D(Ps
0). We have

(Ps
0u, v)L2(Ω) = (u,Ps

0v)L2(Ω).

We also have the following results.

Lemma 15. Let r, s ∈ R and let u ∈ Kr+2s(Ω) and v ∈ K−r(Ω). We have

〈Ps
ru, v〉Kr(Ω),K−r(Ω) = 〈u,Ps

−r−2sv〉Kr+2s(Ω),K−r−2s(Ω).

Lemma 16. Let u ∈ Kr+2(Ω). We have

‖u‖2Kr+1(Ω) = (Pru, u)Kr(Ω).

We finish this section by further analyzing the properties of the functions in

Kk(Ω).

Proposition 17. Let k ∈ N. We have Kk(Ω) = D(P
k/2
0 ) ⊂ Hk(Ω) and

Kk(Ω) = {u ∈ Hk(Ω); P
j
0u ∈ H1

0 (Ω), j = 0, . . . , E[(k − 1)/2]},

Moreover, there exists C > 0 such that C−1‖u‖Hk(Ω) ≤ ‖u‖Kk(Ω) ≤ C‖u‖Hk(Ω). In

fact, Kk(Ω) is closed linear subspace of Hk(Ω).

Here, we denote by E[.] the integer part of a real number.

Proof. The property holds for k = 0, 1, 2. We proceed by induction and assume

that the property holds for k − 1 and k for some k ∈ N, with k ≥ 2. Let then

u ∈ Kk+1(Ω). We thus have P0u ∈ Kk−1(Ω) from the results given above. We thus

have P
j+1
0 u ∈ H1

0 (Ω) for j = 0, . . . , E[(k − 2)/2] = E[k/2]− 1, that is Pj
0u ∈ H1

0 (Ω)

12



for j = 1, . . . , E[k/2]. We also have u ∈ H1
0 (Ω), since u ∈ Kk(Ω) ⊂ K1(Ω) as k ≥ 2.

Moreover, we have P0u ∈ Hk−1(Ω). By (1.9), we have u ∈ Hk+1(Ω) and

‖u‖Hk+1(Ω) h ‖P0u‖Hk−1(Ω) h ‖P0u‖Kk−1(Ω) = ‖u‖Kk+1(Ω).

We have thus found

Kk+1(Ω) ⊂ {u ∈ Hk+1(Ω); P
j
0u ∈ H1

0 (Ω), j = 0, . . . , E[k/2]}.

Let now u ∈ Hk+1(Ω) be such that P
j
0u ∈ H1

0 (Ω), for j = 0, . . . , E[k/2]. Thus

u ∈ D(P0) and v = P0u ∈ Hk−1(Ω). As Pj
0v ∈ H1

0 (Ω), for j = 0, . . . , E[k/2] − 1 =

E[(k− 2)/2], we find that P0u ∈ Kk−1(Ω). This implies that u ∈ Kk+1(Ω) from the

results given above. This concludes the proof. �

Proposition 18. Let α ∈ C ∞(Ω). If u ∈ Kk(Ω), then αu ∈ Kk(Ω) for k = 0, 1, 2.

This is a consequence of the following lemma that follows from the smoothness

of the coefficients of the operator P0.

Lemma 19. Let α ∈ C ∞(Ω) and let k ∈ N. If u ∈ Hk+2(Ω), we then have

v =
∑

1≤i,j≤dDi(p
ij(x)Dj)(αu) ∈ Hk(Ω) and ‖v‖Hk(Ω) ≤ C‖u‖Hk+2(Ω), where the

constant C only depends on α and the coefficients pij.

Next, we observe that if u ∈ K3(Ω) and α as above, we have αu ∈ D(P0) =

K2(Ω) by Proposition 18, and

P0(αu) = P0(αu) = αP0u+
(

∑

1≤i,j≤d

Di(p
ijDj)α

)

u+ 2
∑

1≤i,j≤d

pij(x)(Diα)(Dju).

While the first two term are in H1
0 (Ω), the last sum is in H1(Ω) but not in H1

0 (Ω)

in general, meaning then that αu /∈ K3(Ω) by Proposition 17. Yet, we note that,

at the boundary, ∇u is colinear to the normal vector to ∂Ω, n = (n1, . . . , nd), as u

vanishes at ∂Ω. Consequently, if we have

∑

1≤i,j≤d

pij(x)Diα|Ωnj = 0,

we find that P0(αu) vanishes at the boundary. Hence, in this case we have αu ∈
K3(Ω) by Proposition 17.

For higher orders in the Sobolev scale we may simply write the following result.

Lemma 20. If α ∈ C ∞(Ω) and if α is flat at all orders at ∂Ω then, for any k ∈ N

and u ∈ Kk(Ω) we have αu ∈ Kk(Ω) and ‖αu‖Kk(Ω) ≤ C‖u‖Kk(Ω), where the

constant C > 0 is only dependent upon the function α.
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2 The parabolic semigroup

The unbounded operator P0 on L2(Ω) with dense domain D(P0) = H2(Ω) ∩H1
0 (Ω)

is maximal monotone by Proposition 1. Then, with the Lumer-Philips theorem we

have the following result that states the well-posedness of the parabolic equation

associated with the operator P0.

Theorem 21. Let T ∈ R+ ∪ {+∞}. The operator P0 generates C0-semigroup of

contraction S(t) = e−tP0 on L2(Ω). If y0 ∈ D(P0), then y(t) = S(t)y0 is the unique

solution in

C
0([0, T ];D(P0)) ∩ C

1([0, T ];L2(Ω)),

such that y(0) = y0 and

d

dt
y(t) + P0y(t) = 0

holds in L2(Ω) for all 0 ≤ t ≤ T .

Here, [0, T ] means [0,+∞) if T = +∞.

We recall that Sobolev spaces Ks(Ω) as introduced in Section 1.3 are given by

Ks(Ω) = D(P
s/2
0 ) for s ≥ 0 and Ks(Ω) = D(P

−s/2
0 )′ for s < 0.

As P0 is moreover selfadjoint by Lemma 2, then, the stronger version of the

Lumer-Philips theorem adapted to Hilbert spaces yields the following result.

Theorem 22. Let T ∈ R+ ∪ {+∞}. The semigroup S(t) is analytic and for y0 ∈
L2(Ω), the function y(t) = S(t)y0 is in

C
0([0, T ];L2(Ω)) ∩ C

∞((0, T ];Ks(Ω)), s ∈ R,

and is such that

y(0) = y0 and
d

dt
y(t) + P0y(t) = 0 holds in L2(Ω) for 0 < t ≤ T. (2.1)

Moreover, y(t) = S(t)y0 is the unique solution of (2.1) in

C
0([0, T ];L2(Ω)) ∩ C

1((0, T ];L2(Ω)) ∩ C
0((0, T ];D(P0)).

Here, [0, T ] (resp. (0, T ]) means [0,+∞) (resp. (0,+∞)) if T = +∞. Observe

that the C0-semigroup S(t) is selfadjoint since the generator is selfadjoint.

The above theorems are consequences of general results on semigroups. Here,

in the particular case of the operator P0 and of the semigroup S(t) it generates,

using the spectral representation S(t) given in Section 2.1 by mean of the Hilbert

basis introduced in Section 1.2, we can recover all the results of Theorem 22 in

a quite elementary way, only invoking few aspects of semigroup theory. A reader

experienced with semigroup theory can readily skip this section. In Section 2.1 we

give however a spectral representation of the semigroup S(t).
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2.1 Spectral representation of the semigroup

We recall that the Hilbert basis of L2(Ω) introduced in Section 1.2 is composed

of eigenfunctions (φj)j∈N of P0, with (µj)j∈N ⊂ R for associated eigenvalues. In

particular, if u ∈ L2(Ω) we have u =
∑

j∈N ujφj, with uj = (u, φj)L2(Ω). It is quite

simple to obtain the form of the semigroup S(t) within this spectral family according

to the following lemma.

Lemma 23. Let T ∈ R+ ∪ {+∞}. Let y0 ∈ L2(Ω) and let

t 7→ y(t) ∈ C
0([0, T ];L2(Ω)) ∩ C

1((0, T ];L2(Ω)) ∩ C
0((0, T ];D(P0))

be such that y(0) = y0 and such that

d

dt
y(t) + P0y(t) = 0 holds in L2(Ω) for 0 < t ≤ T. (2.2)

If we set yj(t) = e−tµj(y0, φj)L2(Ω), for t ≥ 0 and j ∈ N, then (yj(t))j ∈ C 0([0, T ], ℓ2(C))

and

y(t) =
∑

j∈N

yj(t)φj, t ≥ 0,

with convergence in L2(Ω).

The action of the semigroup S(t) generated by P0 on L2(Ω) and given by Theo-

rems 21 and 22 is thus given by,

S(t)u =
∑

j∈N

e−tµj(u, φj)L2(Ω)φj, u ∈ L2(Ω), t ≥ 0, (2.3)

where the series convergence is to be understood in L2(Ω).

Note that the result of Lemma 23 is also to be understood as an uniqueness

result for the semigroup equation d
dt
y(t) + P0y(t) = 0.

Proof. Let t > 0. As P0y(t) ∈ L2(Ω) we have y(t) ∈ D(P0). We set zj(t) =

(y(t), φj)L2(Ω), for t ≥ 0. Then (zj(t))j ∈ C 0([0, T ], ℓ2(C)). We have, for t, t′ > 0

(t′ − t)−1
(

zj(t
′)− zj(t)

)

=
(

(t′ − t)−1
(

y(t′)− y(t)
)

, φj

)

L2(Ω)
.

As y ∈ C 1((0, T ];L2(Ω)), letting t′ → t, we find that zj(t) is differentiable for t > 0

and

d

dt
zj(t) = (

d

dt
y(t), φj)L2(Ω) = −(P0 y(t), φj)L2(Ω) = −(y(t),P0φj)L2(Ω),

by Lemma 2, as φj ∈ D(P0). Since P0φj = µjφj, we obtain

d

dt
zj(t) = −µj(y(t), φj)L2(Ω) = −µjzj(t).

Consequently zj(t) = yj(t) for any t ≥ 0, which concludes the proof. �
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2.2 Well-posedness: an elementary proof

As mentioned above, we provide here a simple proof of Theorems 21 and 22, based

on the decomposition (2.3) of the semigroup S(t) in the spectral family (φj)j∈N.

Lemma 23 is to be treated as the uniqueness part of both theorems.

With Lemma 23, for t ≥ 0, for u ∈ L2(Ω), we define the map

Σ(t)u =
∑

j∈N

e−µjtujφj, uj = (u, φj)L2(Ω).

As (uj)j ∈ ℓ2(C), so is (e−µjtuj)j, implying that Σ(t)u ∈ L2(Ω).

Lemma 24. The map Σ(t) is the strongly continuous contraction semigroup S(t)

generated by the unbounded operator (P0, D(P0)) on L
2(Ω).

Proof. Let u ∈ L2(Ω). We write u =
∑

j∈N ujφj with (uj) ∈ ℓ2(C). Observe that we

have ‖Σ(t)u‖2L2(Ω) =
∑

j∈N e
−2µjt|uj|2 ≤ ∑

j∈N |uj|2 = ‖u‖2L2(Ω), implying that Σ(t)

is in L (L2(Ω)) and moreover of contraction type. Observe also that Σ(t) satisfies

the following semigroup properties

Σ(0) = IdL2(Ω), Σ(t) ◦ Σ(t′) = Σ(t+ t′).

With u ∈ L2(Ω) as above, we write Σ(t)u − u =
∑

j∈N(e
−µjt − 1)ujφj, yielding

‖Σ(t)u− u‖2L2(Ω) =
∑

j∈N(1− e−µjt)2|uj|2. As for each j ∈ N, we have e−µjt − 1 → 0

as t→ 0+, and as 0 ≤ 1− e−µjt ≤ 1, the Lebesgue dominated-convergence theorem

(for the counting measure) implies that Σ(t)u → u in L2(Ω) as t → 0+ for all

u ∈ L2(Ω). Considering the definition of a C0-semigroup, we have obtained that

Σ(t) is such a semigroup.

We now prove that P0 with domain D(P0) = K2(Ω) is the generator of Σ(t). As

the map that associates a semigroup to its generator is injective this allows one to

conclude the Σ(t) is the C0-semigroup generated by (P0, D(P0)).

For the time being, we denote by A : L2(Ω) → L2(Ω), with D(A) ⊂ L2(Ω), the

generator of Σ(t). Let u ∈ L2(Ω) such that, moreover, the limit limt→0+(u−Σ(t)u)/t

exists in L2(Ω). We denote by v this limit and we have v =
∑

j∈N vjφj with (vj =

(v, φj))j ∈ ℓ2(C). Then, u ∈ D(A) and Au = v. We have

‖(u− Σ(t)u)/t− v‖2L2(Ω) =
∑

j∈N

∣

∣(1− e−µjt)uj/t− vj
∣

∣

2
.

For all j ∈ N, we thus have (1 − e−µjt)uj/t − vj → 0 as t → 0+, meaning that

vj = µjuj. Hence, if u ∈ D(A) then u ∈ D(P0) and Au = P0u.

Conversely, let us consider u ∈ D(P0); we have (µjuj)j ∈ ℓ2(C). Then, P0u =
∑

j∈N µjujφj. We then have

‖(u− Σ(t)u)/t− P0u‖2L2(Ω) =
∑

j∈N

∣

∣(1− e−µjt)uj/t− µjuj
∣

∣

2
.
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As for each j ∈ N, we have (1−e−µjt)/t−µj → 0 as t→ 0+ and as (1−e−µjt)/t ≤ µj

for t > 0, the Lebesgue dominated-convergence theorem implies (u−Σ(t)u)/t→ P0u

in L2(Ω) as t → 0+ for all u ∈ D(P0). We thus conclude that the domain of the

generator A of Σ(t) is precisely D(P0) and that A coincides with P0. �

From semigroup properties, if y0 ∈ D(P0) and y(t) = Σ(t)y0 = S(t)y0, then
d
dt
y(t) + P0y(t) = 0 is satisfied in L2(Ω) for t ≥ 0, and y(t) ∈ C 0([0, T ];D(P0)) and

d
dt
y(t) ∈ C 0([0, T ];L2(Ω)). This concludes the second proof of Theorem 21.

The next lemma concludes the proof Theorem 22.

Lemma 25. Let y0 ∈ L2(Ω) and y(t) = S(t)y0 ∈ C ([0,+∞);L2(Ω)). For any

s ≥ 0, we have y(t) ∈ C ∞((0,+∞);Ks(Ω)) and d
dt
y(t) = −P0y(t) in Ks(Ω) for

t > 0. Moreover,
(

d
dt

)k
y(t) = (−P0)

ky(t) in Ks(Ω) for t > 0.

Proof. We write y0 =
∑

j∈N y
0
jφj with (y0j )j ∈ ℓ2(C). We pick s ≥ 0. First, let

us consider t > 0. We have ‖y(t)‖2Ks(Ω) =
∑

j∈N µ
s
je

−2µjt|y0j |2 ≤ Ct

∑

j∈N |y0j |2 =

Ct‖y0‖2L2(Ω), implying that y(t) ∈ ∩r∈RK
r(Ω). Second, let t > 0 and h ∈ R such

that t+h > 0. We write y(t+h)−y(t) = ∑

j∈N(e
−µjh−1)eµjty0jφj. As y(t+h)−y(h) ∈

Ks(Ω) we find

‖y(t+ h)− y(t)‖2Ks(Ω) =
∑

j∈N

(1− e−µjh)2µs
je

2µjt|y0j |2.

As (1 − e−µjh)2µs
je

2µjt converges to zero as h → 0 and is bounded by some con-

stant Cs,t independent of j, the Lebesgue dominated-convergence theorem (for the

counting measure) implies that ‖y(t+ h)− y(t)‖Ks(Ω) → 0 as h→ 0. We thus have

y ∈ C 0((0,+∞);Ks(Ω)) for any s ≥ 0.

We now proceed by induction and assume that y ∈ C k((0,+∞);Ks(Ω)), for any

s ≥ 0, for some k ∈ N. For t > 0, and h ∈ R such that t + h > 0, we write, in

Ks(Ω), for some s > 0,

‖h−1(y(t+ h)− y(t)) + P0y(t)‖2Ks(Ω) =
∑

j∈N

∣

∣h−1(e−µjh − 1) + µj

∣

∣

2
µs
je

−2µjt|y0j |2.

Note that P0y(t) ∈ Ks(Ω) as y(t) ∈ Ks+2(Ω) ⊂ D(P0) by the induction hypothesis

and Proposition 13. As we have |h−1(e−µjh−1)−µj| . µj, the Lebesgue dominated-

convergence theorem yields that d
dt
y(t) + P0y(t) = 0 in Ks(Ω) if t > 0. With the

induction hypothesis we have P0y ∈ C k((0,+∞);Ks(Ω)) for any s ≥ 0, implying

that y ∈ C k+1((0,+∞);Ks(Ω)). We thus have y ∈ C ∞((0,+∞);Ks(Ω)).

Similarly, we prove that ‖h−1(Pk
0y(t+ h)− P

k
0y(t)) + P

k+1
0 y(t)‖Ks(Ω) → 0 as h→

0, for any s ≥ 0, implying that d
dt
P
k
0y(t) + P

k+1
0 y(t) = 0 in Ks(Ω), which allows one

to concludes that
(

d
dt

)k
y(t) = (−P0)

ky(t), in Ks(Ω), for t > 0. �
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2.3 Additional properties of the parabolic semigroup

We have the following bounds for the semigroup, expressing in particular the natural

decay of the L2-norm of the solution.

Proposition 26. The semigroup S(t) maps L2(Ω) into L2(Ω) with

‖S(t)‖
L (L2(Ω)) ≤ e−µ0t, (2.4)

and moreover, for some C > 0, if t > 0,

‖S(t)‖
L (L2(Ω),H1

0
(Ω)) ≤ C/

√
t, ‖S(t)‖

L (L2(Ω),D(P0))
≤ C/t.

In addition, S(t) can be uniquely extended to H−1(Ω) and there exists C > 0 such

that ‖S(t)‖
L (H−1(Ω),L2(Ω)) ≤ C/

√
t if t > 0.

Proof. Let u ∈ L2(Ω), with u =
∑

j∈N ujφj. We have

‖S(t)u‖2L2(Ω) =
∑

j∈N

|uj|2e−2µjt ≤ e−2µ0t
∑

j∈N

|uj|2 = e−2µ0t‖u‖2L2(Ω).

We also have

‖S(t)u‖2H1
0
(Ω) =

∑

j∈N

µj|uj|2e−2µjt ≤ 1

t
sup

[0,+∞)

(xe−2x)‖u‖2L2(Ω).

The other operator norm estimates can be proven similarly. �

More generally, we have the following result.

Proposition 27. For r < 0 the semigroup S(t) can be uniquely extended as a map

from Kr(Ω) into itself. For r ≥ 0, the restriction of S(t) to Kr(Ω) ⊂ L2(Ω) maps

Kr(Ω) into itself.

For any r ∈ R, if u =
∑

j∈N ujφj ∈ Kr(Ω), that is, with (µ
r/2
j uj)j ∈ ℓ2(C), then

S(t)u =
∑

j∈N e
−µjtujφj ∈ Kr(Ω) for t ≥ 0 and S(t)u ∈ ∩s∈RK

s(Ω) for t > 0.

Moreover, if s ≥ 0, there exists Cs,r > 0 such that

‖S(t)‖
L (Kr(Ω),Kr+s(Ω)) ≤ Cs,r t

−s/2, t > 0.

If s = 0 then one has ‖S(t)‖
L (Kr(Ω)) ≤ e−µ0t, for all r ∈ R.

To avoid cumbersome notation the extension or restriction of the semigroup S(t)

to Kr(Ω) is also denoted by S(t), for all values of r ∈ R.
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Proof. We only prove that S(t) can be extended to Kr(Ω) if r < 0 and that, in this

case, S(t)u =
∑

j∈N e
−µjtujφj if u =

∑

j∈N ujφj with (µ
r/2
j uj)j ∈ ℓ2(C). The rest of

the proof is similar to that of Proposition 26.

Let thus r < 0. If u ∈ K0(Ω) = L2(Ω) we have u =
∑

j∈N ujφj, with uj =

(u, φj)L2(Ω), and S(t)u =
∑

j∈N e
−µjtujφj ∈ K0(Ω) for t ≥ 0. Observe that we have

and uj = 〈u, φj〉Kr(Ω),K−r(Ω) and

αj(t) = (S(t)u, φj)L2(Ω) = 〈S(t)u, φj〉Kr(Ω),K−r(Ω) = e−µjtuj.

We thus have (µ
r/2
j αj(t))j ∈ ℓ2(C) for t ≥ 0 and

‖S(t)u‖2Kr(Ω) =
∑

j∈N

µr
j |αj(t)|2 ≤

∑

j∈N

µr
j |uj|2 = ‖u‖2Kr(Ω).

As K0(Ω) is dense in Kr(Ω) (since r ≤ 0 here), we see that S(t) can be uniquely ex-

tended to Kr(Ω) and, if u =
∑

j∈N ujφj in K
r(Ω), we have S(t)u =

∑

j∈N e
−µjtujφj,

with convergence occurs in Kr(Ω). �

With the above results we see that the C0-semigroup S(t) is differentiable for

t > 0.

Arguing as in the proof of Lemma 24 we obtain the following result.

Lemma 28. Let r ∈ R. The bounded operator S(t) : Kr(Ω) → Kr(Ω) is a C0-

semigroup. It is generated by the unbounded operator (Pr, D(Pr)) on K
r(Ω).

We can state an equivalent version of Lemma 23 and Theorem 22.

Theorem 29. Let r ∈ R and y0 ∈ Kr(Ω). Let also T ∈ R+ ∪ {+∞}. The function

y(t) = S(t)y0 is in

C
0([0, T ];Kr(Ω)) ∩ C

∞((0, T ];Ks(Ω)), s ∈ R,

and is such that

y(0) = y0 and
d

dt
y(t) + Pr y(t) = 0 holds in Kr(Ω) for 0 < t ≤ T. (2.5)

Moreover, y(t) = S(t)y0 is the unique solution of (2.5) in

C
0([0, T ];Kr(Ω)) ∩ C

1((0, T ];Kr(Ω)) ∩ C
0((0, T ];Kr+2(Ω)).

If we set yj(t) = e−tµj〈y0, φj〉Kr(Ω),K−r(Ω), for t ≥ 0 and j ∈ N, then (µ
r/2
j yj(t))j ∈

C 0([0, T ], ℓ2(C)) and

y(t) =
∑

j∈N

yj(t)φj, t ≥ 0,

with convergence in Kr(Ω).

19



We recall that [0, T ] (resp. (0, T ]) means [0,+∞) (resp. (0,+∞)) if T = +∞.

Observe that if r, s ∈ R, then we have

P
s
rS(t)u = S(t)Ps

ru, u ∈ D(Ps
r), t ≥ 0. (2.6)

Above it was mentioned that S(t) is selfadjoint on L2(Ω). Similarly, using L2(Ω)

as a pivot space, with Proposition 27 we obtain the following result.

Proposition 30. Let s ∈ R, u ∈ Ks(Ω), and v ∈ K−s(Ω). We have, for t ≥ 0,

〈S(t)u, v〉Ks(Ω),K−s(Ω) = 〈u, S(t)v〉Ks(Ω),K−s(Ω).

If moreover t > 0, then for s, r ∈ R, u ∈ Ks(Ω), and v ∈ Kr(Ω), we have

〈S(t)u, v〉K−r(Ω),Kr(Ω) = 〈u, S(t)v〉Ks(Ω),K−s(Ω).

The second statement makes perfect sense by Proposition 27.

If S(t) is some semigroup on a Banach space X, for every x ∈ X, we have

S(t)x → x in X as t → 0+. Note that we do not have ‖S(t)− IdX ‖
L (X) → 0 in

general, as this is equivalent to having a bounded generator. In the present case

of the parabolic semigroup, we however have ‖S(t)− Id ‖
L (D(P0),L2(Ω)) = O(t) for

t > 0. This is stated in the following proposition in a more general form.

Proposition 31. Let r, s ∈ R with 0 ≤ s ≤ 2. There exists C > 0 such that

‖S(t)− Id ‖
L (Kr+s(Ω),Kr(Ω)) ≤ Cts/2, for t ≥ 0.

Proof. Let u ∈ Kr+s(Ω). Then u =
∑

j∈N ujφj with (µ
(r+s)/2
j uj)j ∈ ℓ2(C). For t > 0

we write S(t)u− u =
∑

j∈N(e
−µjt − 1)ujφj. Thus, we have

‖S(t)u− u‖2Kr(Ω) =
∑

j∈N

(1− e−µjt)2µr
j |uj|2 ≤ ts

∑

j∈N

µr+s
j |uj|2 = ts‖u‖2Kr+s .

as 0 ≤ 1− e−α ≤ αs/2 for α ≥ 0, as 0 ≤ s/2 ≤ 1. �

Further regularity results and bounds are given by the following proposition.

Proposition 32. Let r ∈ R. If y0 ∈ Kr(Ω) and y(t) = S(t)y0 then

y ∈ C ([0,+∞);Kr(Ω)) ∩ C
∞((0,+∞);Ks(Ω)), s ∈ R,

and y ∈ L2(0,+∞;Kr+1(Ω)) ∩ H1(0,∞;Kr−1(Ω)). Moreover, there exists C > 0

such that

‖y‖L2(0,+∞;Kr+1(Ω)) + ‖y‖H1(0,+∞;Kr−1(Ω)) ≤ C‖y0‖Kr(Ω).

In particular, the equation d
dt
y + Pr−1 y = 0 holds in L2(0,+∞;Kr−1(Ω)).
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Proof. One way to prove this result is to use the spectral representation (2.3) of the

semigroup. If y0 ∈ Kr(Ω) with y0 =
∑

j∈N y
0
jφj where (µ

r/2
j y0j )j∈N ∈ ℓ2(C) we have

y(t) = S(t)y0 =
∑

j∈N

e−µjty0jφj,

and by (1.14) we have

‖y‖2L2(0,+∞;Kr+1(Ω)) =
∑

j∈N

+∞

∫
0
µr+1
j e−2µjt|y0j |2dt =

1

2

∑

j∈N

µr
j |y0j |2 =

1

2
‖y0‖2Kr(Ω),

yielding y ∈ L2(0, T ;Kr+1(Ω)).

Alternatively, for t > 0, as y ∈ C ∞((0,+∞), Ks(Ω)) for any s ∈ R, we can

compute

0 =
( d

dt
y(t) + Pry(t), y(t)

)

Kr(Ω)
=

1

2

d

dt
‖y(t)‖2Kr(Ω) + (P0y(t), y(t))Kr(Ω).

For T > 0, integrating for t ∈ (0, T ), we find

1

2
‖y(T )‖2Kr(Ω) +

T

∫
0
(Pry(t), y(t))Kr(Ω) dt =

1

2
‖y0‖2Kr(Ω).

By Lemma 16 we write

1

2
‖y(T )‖2Kr(Ω) + ‖y‖2L2(0,T ;Kr+1(Ω)) =

1

2
‖y0‖2Kr(Ω).

We then let T → +∞ and, by the Kr-norm decay given by Proposition 27, we

obtain the same equality as above.

Now we write, as d
dt
y(t) + Pry(t) ∈ Kr(Ω) for t > 0,

‖y‖2H1(0,+∞;Kr−1(Ω)) = ‖y‖2L2(0,+∞;Kr−1(Ω)) +
∥

∥

d

dt
y
∥

∥

2

L2(0,+∞;Kr−1(Ω))

. ‖y‖2L2(0,+∞;Kr+1(Ω)) + ‖Pry‖2L2(0,+∞;Kr−1(Ω))

. ‖y‖2L2(0,+∞;Kr+1(Ω)) + ‖Pr−1y‖2L2(0,+∞;Kr−1(Ω))

. ‖y‖2L2(0,+∞;Kr+1(Ω))

by (1.22), which gives the second estimation from the previous one. We conclude

that y ∈ H1(0,+∞;Kr−1(Ω)). �

Remark 33. By abuse of notation one often writes that the equation d
dt
y+P0y = 0

holds in L2(0,+∞;Kr−1(Ω)).

Particular and important cases that are often used in practice are the following

ones (r = 0 and r = 1).
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Corollary 34. If y0 ∈ L2(Ω) and y(t) = S(t)y0 then

y ∈ C ([0,+∞);L2(Ω)) ∩ C
∞((0,+∞);Ks(Ω)), s ∈ R,

and

y ∈ L2(0,+∞;H1
0 (Ω)) ∩H1(0,+∞;H−1(Ω)).

Moreover, there exists C > 0 such that

‖y(t)‖L2(0,+∞;H1
0
(Ω)) + ‖y(t)‖H1(0,+∞;H−1(Ω)) ≤ C‖y0‖L2(Ω).

This implies in particular that the equation d
dt
y+P−1 y = 0 holds in L2(0,+∞;H−1(Ω)).

Corollary 35. If y0 ∈ H1
0 (Ω) and y(t) = S(t)y0 then

y ∈ C ([0,+∞);H1
0 (Ω)) ∩ C

∞((0,+∞);Ks(Ω)), s ∈ R,

and

y ∈ L2(0,+∞;D(P0)) ∩H1(0,∞;L2(Ω)).

Moreover, there exists C > 0 such that

‖y‖L2(0,+∞;D(P0))
+ ‖y‖H1(0,+∞;L2(Ω)) ≤ C‖y0‖L2(Ω).

In particular the equation d
dt
y + P0y = 0 holds in L2((0,+∞)× Ω).

We conclude this section with the following uniqueness result.

Proposition 36. Let T ∈ R+ ∪ {+∞} and let r ∈ R. If y is in

C
0([0, T ];Kr+1(Ω)) ∩ L2(0, T ;Kr+2(Ω)) ∩H1(0, T ;Kr(Ω))

and satisfies y(0) = 0 and

d

dt
y + Pry = 0 in L2(0, T ;Kr(Ω)),

then y = 0.

We recall that [0, T ] (resp. (0, T ]) means [0,+∞) (resp. (0,+∞)) if T = +∞.

Proof. We have Pry ∈ L2(0, T ;Kr(Ω)) ⊂ L2(0, T ;Kr−1(Ω)). Note that we have

Pry = Pr−1y ∈ C 0([0, T ];Kr−1(Ω)). We thus find that d
dt
y ∈ C 0([0, T ];Kr−1(Ω)).

This implies that y ∈ C 1([0, T ];Kr−1(Ω)).

As y ∈ C 1([0, T ];Kr−1(Ω)) ∩ C 0([0, T ];Kr+1(Ω)), the equation

d

dt
y(t) + Pr−1 y(t) = 0

holds in Kr−1(Ω) for 0 < t ≤ T . Since y(0) = 0, by the second part of Theorem 29

with r − 1 in place of r, we obtain the result. �
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3 The nonhomogeneous parabolic Cauchy prob-

lem

We now consider the nonhomogeneous parabolic equation

d

dt
y + P0y = f, y|t=0 = y0, (3.1)

The mild solution is given by the Duhamel formula

y(t) = S(t)y0 +
t

∫
0
S(t− σ)f(σ)dσ.

If f ∈ L1
loc(0,∞;D(P0)) The second term is called the Duhamel term.

3.1 Properties of the Duhamel term

Let r ∈ R. For f ∈ L2(0, T ;Kr(Ω)), with the properties of the semigroup S(t) on

Kr(Ω) we can define

Ψr(f)(t) =
t

∫
0
S(t− σ)f(σ) dσ, t ≥ 0. (3.2)

Theorem 37. Let T ∈ R
+ ∪ {+∞}. The map Ψr maps linearly and continuously

L2(0, T ;Kr(Ω)) into

C
0([0, T ];Kr+1(Ω)) ∩ L2(0, T ;Kr+2(Ω)) ∩H1(0, T ;Kr(Ω)).

If f ∈ L2(0, T ;Kr(Ω)) then

d

dt
Ψr(f) + Pr Ψr(f) = f.

Proof. We set G = L∞(0, T ;Kr+1(Ω))∩L2(0, T ;Kr+2(Ω))∩H1(0, T ;Kr(Ω)) equiped

with the norm

z 7→ ‖z‖L∞(0,T ;Kr+1(Ω)) + ‖z‖L2(0,T ;Kr+2(Ω)) + ‖z‖H1(0,T ;Kr(Ω)).

We first consider f ∈ C ([0, T ];Kr(Ω)) as this space is dense in L2(0, T ;Kr(Ω)).

Then, for all t ∈ [0, T ] we have f(t) =
∑

j∈N fj(t)φj with fj(t) = 〈f(t), φj〉Kr(Ω),K−r(Ω)

and (µ
r/2
j fj(t))j ∈ C ([0, T ]; ℓ2(C)). For N ∈ N, we set fN(t) =

∑N
j=0 fj(t)φj, we

have limN→∞ fN = f in L2(0, T ;Kr(Ω)). Hence, the space

E :=
{

g =
N
∑

j=0

gj(t)φj; N ∈ N, (µ
r/2
j gj(t))j ⊂ C ([0, T ]; ℓ2(C))

}
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is dense in L2(0, T ;Kr(Ω)). Note that we have

E ⊂
⋂

s∈R

C ([0, T ];Ks(Ω)),

Recalling that φj ∈ ∩s∈RK
s(Ω) (see Section 1.3). We consider g =

∑N
j=0 gj(t)φj ∈ E

and we set, for any s ∈ R,

z(t) = Ψs(g)(t) =
t

∫
0
S(t− σ)g(σ)dσ =

N
∑

j=0

t

∫
0
e(σ−t)µjgj(σ) dσ φj.

With the uniform continuity property of Proposition 31 we have S(t+ h)− S(t) =

O(h) in L (Ks+2(Ω), Ks(Ω)) for any s ∈ R. We then see that z ∈ C ∞([0, T ];Ks(Ω))

for any s ∈ R. Moreover, we find

d

dt
z(t) + Ps z(t) = g(t), t ≥ 0,

for any s ∈ R. We may thus write

1

2

d

dt
‖z(t)‖2Kr+1(Ω) + ‖z(t)‖2Kr+2(Ω) =

( d

dt
z(t), z(t)

)

Kr+1(Ω)
+ (Pr+1 z(t), z(t))Kr+1(Ω)

= (g(t), z(t))Kr+1(Ω)

≤ ‖g(t)‖Kr(Ω)‖z(t)‖Kr+2(Ω),

yielding, after integration with respect to time t, using that z(0) = 0,

1

2
‖z(t)‖2Kr+1(Ω) + ‖z‖2L2(0,t;Kr+2(Ω)) ≤

t

∫
0
‖g(σ)‖Kr(Ω)‖z(σ)‖Kr+2(Ω)dσ

≤ ‖g‖L2(0,t;Kr(Ω))‖z‖L2(0,t;Kr+2(Ω)), t ∈ [0, T ].

With the Young inequality we obtain

‖z‖L∞(0,T ;Kr+1(Ω)) + ‖z‖L2(0,T ;Kr+2(Ω)) . ‖g‖L2(0,T ;Kr(Ω)). (3.3)

From the equation satisfied by z,

d

dt
z(t) + Pr z(t) = g(t), t ≥ 0, (3.4)

we also have ‖z‖H1(0,T ;Kr(Ω)) . ‖g‖L2(0,T ;Kr(Ω)). From the density of E in L2(0, T ;Kr(Ω)),

these estimates show that Ψr maps L2(0, T ;Kr(Ω)) continuously into G .

If (fN)N ⊂ E converges to f ∈ L2(0, T ;Kr(Ω)), then Ψr(f
N) converges to Ψr(f)

in G . From (3.4) one finds that

d

dt
Ψr(f) + Pr Ψr(f) = f in L2(0, T ;Kr(Ω)).

As Ψr(f
N) ∈ C 0([0, T ];Kr+1(Ω)), the estimate in (3.3) shows that Ψr(f) ∈ C 0([0, T ];Kr+1(Ω)),

by uniform convergence. �
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We state the regularity result in the case r = 0.

Corollary 38. Let T ∈ R
+ ∪ {+∞}. The map Ψ0 given in (3.2) in the case r = 0

maps linearly and continuously L2((0, T )× Ω) into

C
0([0, T ];H1

0 (Ω)) ∩ L2(0, T ;H2(Ω) ∩H1
0 (Ω)) ∩H1(0, T ;L2(Ω)).

3.2 Abstract solutions of the nonhomogeneous semigroup

equations

Observe that the regularity of the Duhamel term Ψr(f) for f ∈ L2(0, T ;Kr(Ω)) given

by Theorem 37 coincides with that of the free evolution term S(t)y0 if y0 ∈ Kr+1(Ω)

according to Theorem 29 and Proposition 32:

S(t)y0 ∈ C ([0,+∞);Kr+1(Ω)) ∩ L2(0,+∞;Kr+2(Ω)) ∩H1(0,∞;Kr(Ω)).

However, the Duhamel term does not exhibit the same degree of regularization as

the term S(t). In general, Ψr(f) /∈ C ∞((0,+∞);Ks(Ω)).

This observation gives a natural regularity level for both the initial condition y0

and the source term to state an existence and uniqueness result for a solution of the

equation d
dt
y + Pry = f , for some r ∈ R.

Theorem 39. Let T ∈ R
+ ∪ {+∞} and r ∈ R. Let f ∈ L2(0, T ;Kr(Ω)) and y0 ∈

Kr+1(Ω). There exists a unique function y ∈ C 0([0, T ];Kr+1(Ω))∩L2(0, T ;Kr+2(Ω))∩
H1(0, T ;Kr(Ω)) that is solution of the parabolic equation

d

dt
y + Pry = f

in L2(0, T ;Kr(Ω)) and satisfies moreover y(0) = y0. The solution is given by

y(t) = S(t)y0 +
t

∫
0
S(t− σ)f(σ)dσ.

Moreover, there exists C > 0 such that

‖y‖L∞(0,T ;Kr+1(Ω)) + ‖y‖L2(0,T ;Kr+2(Ω)) +
∥

∥

d

dt
y
∥

∥

L2(0,T ;Kr(Ω))

≤ C
(

‖y0‖Kr+1(Ω) + ‖f‖L2(0,T ;Kr(Ω))

)

.

Remark 40. Let s ∈ R and s′ > 0. If y0 ∈ Ks+s′+1(Ω) and f ∈ L2([0, T ];Ks+s′(Ω))

then Theorem 39 applies both in the cases r = s and r = s + s′. Uniqueness

shows that the two obtained solutions coincide. If fact, both are given by the same

Duhamel formula.
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Proof of Theorem 39. First, we address uniqueness. Assume that there are two

solutions in C 0([0, T ];Kr+1(Ω))∩L2(0, T ;Kr+2(Ω))∩H1(0, T ;Kr(Ω)). Then, their

difference z(t) lies in that space and is solution to d
dt
z + Prz = 0 in L2(0, T ;Kr(Ω))

and z(0) = 0. By Proposition 36 we find that z = 0.

Second, we address existence. If we set

y(t) = S(t)y0 +Ψr(f)(t),

we see by Theorem 29, Proposition 32, and Theorem 37, using the linearity of the

equation, that

y ∈ C
0([0, T ];Kr+1(Ω)) ∩ L2(0, T ;Kr+2(Ω)) ∩H1(0, T ;Kr(Ω))

and that

d

dt
y + Pry = f

holds in L2(0, T ;Kr(Ω)). �

3.3 Strong solutions

In general, one calls a strong solution a function y ∈ C 0([0, T ];H1
0 (Ω))∩L2(0, T ;D(P0))∩

H1(0, T ;L2(Ω)) that solves the equation

d

dt
y + P0y = f

in L2((0, T ) × Ω). Its definition does not require the use of the Sobolev scale
(

Kr(Ω)
)

r∈R
of Section 1.3. All terms in the equation are functions in Ω. The

uniqueness and the existence of such strong solution under regularity assumptions

for the initial condition y0 and the source term f are given by Theorem 39 in the

case r = 0, which we write explicitly in the following corollary.

Corollary 41 (strong solutions - first version). Let T ∈ R
+ ∪ {+∞}. Let f ∈

L2((0, T )×Ω) and y0 ∈ H1
0 (Ω). There exists a unique function y ∈ C 0([0, T ];H1

0 (Ω))∩
L2(0, T ;D(P0)) ∩H1(0, T ;L2(Ω)) that is solution of the parabolic equation

d

dt
y + P0y = f

in L2((0, T )× Ω) and satisfies moreover y(0) = y0. The solution is given by

y(t) = S(t)y0 +
t

∫
0
S(t− σ)f(σ)dσ.
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Moreover, there exists C > 0 such that

‖y‖L∞(0,T ;H1
0
(Ω)) + ‖y‖L2(0,T ;D(P0))

+
∥

∥

d

dt
y
∥

∥

L2((0,T )×Ω)

≤ C
(

‖y0‖H1
0
(Ω) + ‖f‖L2((0,T )×Ω)

)

.

The term “strong solution” is sometimes used for more regular solutions, namely

solution that lie in C 0([0, T ];D(P0)). They are given by Theorem 39 in the case

r = 1.

Corollary 42 (strong solutions - second version). Let T ∈ R
+ ∪ {+∞}. Let f ∈

L2(0, T ;H1
0 (Ω)) and y

0 ∈ D(P0). There exists a unique function y ∈ C 0([0, T ];D(P0))∩
L2(0, T ;K3(Ω)) ∩H1(0, T ;H1

0 (Ω)) that is solution of the parabolic equation

d

dt
y + P0y =

d

dt
y + P1y = f

in L2(0, T ;H1
0 (Ω)) and satisfies moreover y(0) = y0. The solution is given by

y(t) = S(t)y0 +
t

∫
0
S(t− σ)f(σ)dσ.

Moreover, there exists C > 0 such that

‖y‖L∞(0,T ;D(P0))
+ ‖y‖L2(0,T ;K3(Ω)) +

∥

∥

d

dt
y
∥

∥

L2(0,T ;H1
0
(Ω))

≤ C
(

‖y0‖D(P0)
+ ‖f‖L2(0,T ;H1

0
(Ω))

)

.

If one further assumes that f ∈ C 0((0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)), since y ∈

C 0([0, T ];D(P0)) the semigroup equation further gives that y ∈ C 1((0, T ];L2(Ω)).

We then obtain a classical solution for an abstract nonhomogeneous semigroup equa-

tion.

3.4 Weak solutions

For a regularity lower than that of strong solutions as introduced in Section 3.3, with

y0 ∈ L2(Ω) and f ∈ L2(0, T ;H−1(Ω)), Theorem 39 for r = −1 yields the existence

and uniqueness of solution in C 0([0, T ];L2(Ω))∩L2(0, T ;H1
0 (Ω))∩H1(0, T ;H−1(Ω)).

One is often inclined to use a weak formulation to characterize these solutions.

Definition 43. Let T ∈ R+ ∪ {+∞}. Let y0 ∈ L2(Ω) and f ∈ L2(0, T ;H−1(Ω)).

One says that y ∈ C 0([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) is a weak solution to the

parabolic equation

d

dt
y + P0y = f, y(0) = y0,
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if we have

(y(t), ψ)L2(Ω) + (y, ψ)L2(0,t;H1
0
(Ω)) = (y0, ψ)L2(Ω) +

t

∫
0
〈f(σ), ψ〉H−1(Ω),H1

0
(Ω) dσ,

for all ψ ∈ H1
0 (Ω) and for all t ∈ [0, T ].

We recall that the H1
0 -norm is given by (1.19), yielding

(y, ψ)L2(0,t;H1
0
(Ω)) =

t

∫
0
(P

1/2
0 y(σ),P

1/2
0 ψ)L2(Ω) dσ

=
t

∫
0
〈P0 y(σ), ψ〉H−1(Ω),H1

0
(Ω) dσ =

t

∫
0
〈y(σ), P0 ψ〉H−1(Ω),H1

0
(Ω) dσ

In fact, it is equivalent if one chooses ψ ∈ D(P0) yielding the form

(y(t), ψ)L2(Ω) + (y, P0ψ)L2((0,t)×Ω) = (y0, ψ)L2(Ω) +
t

∫
0
〈f(σ), ψ〉H−1(Ω),H1

0
(Ω) dσ,

for all t ∈ [0, T ].

Theorem 44. Let T ∈ R+ ∪ {+∞}. Let y0 ∈ L2(Ω) and f ∈ L2(0, T ;H−1(Ω)).

There exists a unique weak solution y to the parabolic equation

d

dt
y + P0y = f, y(0) = y0,

in the sense of Definition 43. It coincides with the solution of the semigroup equation

d

dt
y + P−1 y = f, y(0) = y0,

given by Theorem 39 in the case r = −1. In particular we have

y ∈ C
0([0, T ];L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;H−1(Ω)).

By Remark 40 we see that a weak solution associated with data with the following

regularity, y0 ∈ H1
0 (Ω) and f ∈ L2((0, T )× Ω), is in fact a strong solution as given

by Corollary 41.

Proof. First, we address uniqueness. Assume that there are two solutions in C 0([0, T ];L2(Ω))∩
L2(0, T ;H1

0 (Ω)). Then, their difference z(t) lies in that space and is solution to

(z(t), ψ)L2(Ω) + (z, ψ)L2(0,t;H1
0
(Ω)) = 0, ψ ∈ H1

0 (Ω), t ∈ [0, T ],

which we write

0 = (z(t), ψ)L2(Ω) +
t

∫
0
〈P−1z(σ), ψ〉H−1(Ω),H1

0
(Ω) dσ

=
〈

z(t) +
t

∫
0
P−1 z(σ) dσ, ψ

〉

H−1(Ω),H1
0
(Ω)
.
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As a result, we have, in H−1(Ω),

z(t) +
t

∫
0
P−1 z(σ) = 0, 0 ≤ t ≤ T.

As P−1 z ∈ L2(0, T ;H−1(Ω)) we find that z ∈ H1(0, T ;H−1(Ω)) and d
dt
z+P−1 z = 0

holds in L2(0, T ;H−1(Ω)). With Proposition 36 we conclude that z = 0.

Second, we address existence. Let

y ∈ C
0([0, T ];L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;H−1(Ω))

be the solution to d
dt
y + P−1 y = f in L2(0, T ;H−1(Ω)) and y(0) = y0, as given by

Theorem 39. We then see that

〈 d

dt
y(t), ψ

〉

H−1(Ω),H1
0
(Ω)

+ 〈P−1 y(t), ψ〉H−1(Ω),H1
0
(Ω) = 〈f(t), ψ〉H−1(Ω),H1

0
(Ω)

holds in L2(0, T ). As y ∈ L2(0, T ;H1
0 (Ω)), we observe that for almost every t ∈ (0, T )

〈P−1 y(t), ψ〉H−1(Ω),H1
0
(Ω) = (y(t), ψ)H1

0
(Ω).

Since 〈y, ψ〉H−1(Ω),H1
0
(Ω) ∈ H1(0, T ) and d

dt
〈y, ψ〉H−1(Ω),H1

0
(Ω) =

〈

d
dt
y(t), ψ

〉

H−1(Ω),H1
0
(Ω)

we find that, for all t ∈ (0, T ),

〈y(t), ψ〉H−1(Ω),H1
0
(Ω) − 〈y(0), ψ〉H−1(Ω),H1

0
(Ω) +

t

∫
0
(y(σ), ψ)H1

0
(Ω) dσ

=
t

∫
0
〈f(σ), ψ〉H−1(Ω),H1

0
(Ω) dσ.

Since y(t) ∈ C ([0, T ], L2(Ω)) we find that 〈y(t), ψ〉H−1(Ω),H1
0
(Ω) = (y(t), ψ)L2(Ω) im-

plying that y is a weak solution in the sense of Definition 43. �

We observe that one can simply use solutions in the sense of distributions to

define weak solutions.

Proposition 45. Let T ∈ R+ ∪ {+∞}. Let y0 ∈ L2(Ω) and f ∈ L2(0, T ;H−1(Ω)).

There exists a unique y ∈ C 0([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) such that

∂ty + P0y = f in D
′((0, T )× Ω), y(0) = y0. (3.5)

It coincides with the unique solution of the semigroup equation

d

dt
y + P−1 y = f, y(0) = y0,

given by Theorem 39 (in the case r = −1) and thus with the unique weak solution

given in Theorem 44.
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Note that in (3.5) the occurence of the operator P0 acting on y in the sense of

distribution, not to be confused with the unbounded operator P0.

Proof. We first treat uniqueness. Let y ∈ C 0([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) be

such that

d

dt
y + P0y = 0 in D

′((0, T )× Ω), y(0) = 0.

As we have y ∈ L2(0, T ;H1
0 (Ω)) we have P0y = P−1y ∈ L2(0, T ;H−1(Ω)), yielding

∂ty ∈ L2(0, T ;H−1(Ω)) and thus y ∈ H1(0, T ;H−1(Ω)). Thus d
dt
y + P−1y = 0. As

y|t=0 = 0, the uniqueness part of Theorem 39 in the case r = −1 gives y ≡ 0.

Conversely, if y is the solution given by Theorem 39 we have d
dt
y + P−1y =

f ∈ L2(0, T ;H−1(Ω)). As P−1y(t) = P0y(t) for allmost all t ∈ (0, T ) we have

∂ty + P0y = f in D ′((0, T )× Ω). �

Weak solutions are also called solutions by transposition because of the alterna-

tive formulation given in the following proposition.

Proposition 46. Let T ∈ R+ ∪ {+∞}. Let y0 ∈ L2(Ω) and f ∈ L2(0, T ;H−1(Ω)).

There exists a unique y ∈ C 0([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) such that

(y(t), ϕ(t))L2(Ω) +
t

∫
0
〈y(σ), (−∂σ + P−1)ϕ(σ)〉H1

0
(Ω),H−1(Ω)dσ

= (y0, ϕ(0))L2(Ω) +
t

∫
0
〈f(σ), ϕ(σ)〉H−1(Ω),H1

0
(Ω) dσ, (3.6)

for all ϕ ∈ C 0([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) ∩ H1(0, T ;H−1(Ω)) and for all t ∈

[0, T ]. It coincides with the unique solution of of the semigroup equation

d

dt
y + P−1 y = f, y(0) = y0,

given by Theorem 39 (in the case r = −1) and thus with the unique weak solution

given in Theorem 44.

Proof. First, we treat uniqueness. Let y ∈ C 0([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) be

such that (3.6) holds. But choosing ϕ constant with respect to t we find that

the property of Definition 43 is fulfilled. Hence, y is the weak solution given in

Theorem 44.

Conversely, let y be the solution given by Theorem 39 in the case r = −1. We

then see that

〈 d

dt
y(t), ϕ(t)

〉

H−1(Ω),H1
0
(Ω)

+ 〈P−1 y(t), ϕ(t)〉H−1(Ω),H1
0
(Ω) = 〈f(t), ϕ(t)〉H−1(Ω),H1

0
(Ω)
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holds in L2(0, T ). As the identity

〈 d

dt
y(t), ϕ(t)

〉

H−1(Ω),H1
0
(Ω)

=
d

dt

〈

y(t), ϕ(t)
〉

L2(Ω),L2(Ω)
−

〈

y(t),
d

dt
ϕ(t)

〉

H1
0
(Ω),H−1(Ω)

holds in L2(0, T ). We see that an adaptation of the proof of Theorem 44 shows that

y is indeed a solution of (3.6). �
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