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Here, X and Y will denote Banach spaces with their norms denoted by ‖.‖X ,

‖.‖Y , or simply ‖.‖ when there is no ambiguity.

1 Linear operators in Banach spaces

An operator A from X to Y is a linear map on its domain, a linear subspace of X , to

Y . One denotes by D(A) the domain of this operator. An operator from X to Y is

thus characterized by its domain and how it acts on this domain. Operators defined

this way are usually referred to as unbounded operators. One writes (A,D(A)) to

denote the operator along with its domain. The set of linear operators from X to

Y is denoted by L (X, Y ).

If D(A) is dense in X the operator is said to be densely defined. If D(A) = X

one says that the operator A is on X to Y .

The range of the operator is denoted by Ran(A), that is,

Ran(A) = {Ax; x ∈ D(A)} ⊂ Y,
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and its kernel, ker(A), is the set of all x ∈ D(A) such that Ax = 0.

The graph of A, G(A), is given by

G(A) = {(x,Ax); x ∈ D(A)} ⊂ X × Y.

We naturally endow X×Y with the norm ‖(x, y)‖2X×Y = ‖x‖2X +‖y‖2Y which makes

X × Y a Banach space. One says that A is a closed operator if its graph G(A) is a

closed subset of X × Y for this norm. The so-called graph norm on D(A) is given

by

‖x‖2D(A) = ‖x‖2X + ‖Ax‖2Y = ‖(x,Ax)‖2X×Y .

The operator A is closed if and only if the space D(A) is complete for the graph

norm ‖.‖D(A).

If a linear operator A from X to Y is injective, one can define the operator A−1

from Y to X such that

D(A−1) = Ran(A), Ran(A−1) = D(A), A−1A = IdD(A), AA−1 = IdRan(A) .

One says that A is invertible and A−1 is called the inverse operator.

If (A1, D(A1)), (A2, D(A2)) are two linear operators from X to Y one defines

that the operator B = A1 + A2 with domain D(A1) ∩D(A2).

2 Continuous and bounded operators

An linear operator A from X to Y is said to be continuous if it is continuous at

every x ∈ D(A) or equivalently if it continuous at x = 0. This is equivalent to

having M > 0 such that ‖Ax‖Y ≤ M‖x‖X for all x ∈ D(A). One says that A is a

bounded operator. The positive number

M = sup
x∈D(A)

x 6=0

‖Ax‖Y
‖x‖X

,

is called the bound of A, and denoted by ‖A‖
L (X,Y ) or simply ‖A‖.

Note that linear operator from X to Y that fails to be continuous are such that

sup
x∈D(A)

x 6=0

‖Ax‖Y
‖x‖X

= +∞.

This justifies the name unbounded for general linear operators from X to Y .

Theorem 1 (closed-graph theorem). Let A be such that D(A) is a closed linear

subspace in X. Then, A is bounded if and only if A is a closed operator.
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For a proof see for instance [4].

Remark 2. While one aspect of the proof of the closed-graph theorem is involved

and based on the Baire lemma, one can also easily prove the following statements: if

A is closed and A is bounded then D(A) is a closed linear subspace in X . Hence, if a

A is densely defined, closed and bounded then D(A) = X : the operator is bounded

on X to Y .

Note also that any bounded operator A with domain D(A) can be uniquely

extended to D(A), as a bounded operator with the same bound, thus leading to a

closed operator.

We shall denote by B(X, Y ) the set of bounded operators A on X to Y , that

is, such that D(A) = X . In the main text, if we speak of a bounded operator

A : X → Y without any mention of its domain, this means that D(A) = X , that is,

A is on X to Y .

Remark 3. Following the above remark assume that A is a closed linear operator

from X to Y that is invertible and such that A−1 is bounded. As A−1 is also closed

for obvious reasons we find that Ran(A) = D(A−1) is a closed subset of Y .

3 Spectrum of a linear operator in a Banach space

We consider here a linear operator from X to itself. One says that λ ∈ C is

in the resolvent set ρ(A) of an linear operator A from X to X if the operator

λ Id−A is injective, and the inverse operator (λ Id−A)−1 has a dense domain

D
(

(λ Id−A)−1
)

= Ran(λ Id−A) in X and is bounded. If λ ∈ ρ(A) then we set

the resolvent operator as Rλ(A) = (λ Id−A)−1. The spectrum is then simply the

complement set of ρ(A) in C. We denote it by sp(A).

The spectrum of a linear operator is often separated in three disjoint sets:

1. The point spectrum that gathers all λ ∈ C such that the operator λ Id−A is

not injective. Such a complex number λ is called an eigenvalue of A and the

dimension of the the kernel ker(λ Id−A) is the geometric multiplicity associ-

ated with this eigenvalue. An element of ker(λ Id−A) is called an eigenvector

or, often, an eigenfunction in the case the Banach space X is a function space.

2. The continuous spectrum that gathers all λ ∈ C such that the operator λ Id−A

is injective, has a dense image, but its inverse (λ Id−A)−1 is not bounded.

3. The residual spectrum that gathers all λ ∈ C such that the operator λ Id−A

is injective but does not have a dense image.
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In the case A is a closed operator, if λ ∈ ρ(A) then D(Rλ(A)) = Ran(λ Id−A) =

X (see Remark 3). Hence, in this case, λ ∈ ρ(A) if and only if λ Id−A is injective

and Ran(λ Id−A) = X because of the closed graph theorem (Theorem 1). For

λ0 ∈ ρ(A), if we set L0 = (λ0 Id−A)
−1, then L0 is a bounded operator on X and we

may write

λ Id−A = (λ0 Id−A)
(

Id+(λ− λ0)L0

)

.

For |λ − λ0| < ‖L0‖
−1 one then finds that Id+(λ − λ0)L0 is itself invertible with

a bounded inverse. Consequently, the resolvent set is an open set in C and the

spectrum is closed. Moreover, one finds that on ρ(A), the map λ 7→ Rλ(A) is

holomorphic. We refer the reader for instance to Chapter 3.6 in [4].

4 Adjoint operator

If X ′ be the dual space of a Banach space X , that is, the linear space of bounded

linear forms on X , we equip X ′ with the strong topology associated with the norm

‖x∗‖X′ = sup
x∈X

‖x‖X≤1

|〈x∗, x〉|.

With this topology X ′ is a Banach space.

If A is a linear operator from X to Y densely defined, one sets

D(A∗) =
{

y∗ ∈ Y ′; ∃C > 0, ∀x ∈ D(A), |〈y∗, Ax〉Y ′,Y | ≤ C‖x‖X
}

.

If y∗ ∈ D(A∗), there exists a unique x∗ ∈ X ′ such that

〈y∗, Ax〉Y ′,Y = 〈x∗, x〉X′,X , x ∈ D(A).

Uniqueness follows from the density of D(A) in X . One then sets A∗y∗ = x∗, which

defines a linear operator A∗ from Y ∗ to X∗ with domain D(A∗).

Proposition 4. The operator (A∗, D(A∗)) is a closed operator.

Proposition 5. If the operator A is a bounded on X to Y then D(A∗) = Y ′ and

A∗ is a bounded operator on Y ′ to X ′. Moreover ‖A‖
L (X,Y ) = ‖A∗‖

L (Y ′,X′).

5 Fredholm operators

Let A be a linear closed operator from X to Y . The nullity of A, nulA, is defined

as the dimension of ker(A). The deficiency of A, def A, is defined as the dimension

of Y/Ran(A). Both nulA and def A take value in N ∪ {∞}.

4



Definition 6. A linear operator A from X to Y is said to be Fredholm if

1. it is closed;

2. Ran(A) is closed;

3. both nulA and def A are finite.

One then sets the index of A as ind(A) = nulA− def A.

5.1 Characterization of bounded Fredholm operators

We denote by FB(X, Y ) the space of Fredholm operators that are bounded on X

into Y . The following result states that those operators are the operators in B(X, Y )

that have an inverse up to remainder operators that are compact.

Theorem 7. Let A ∈ B(X, Y ). It is Fredholm if and only if there exists S ∈

B(Y,X) such that

SA = IdX +Kℓ, AS = IdY +Kr, (5.1)

where Kℓ ∈ B(X,X) and Kr ∈ B(Y, Y ) are compact operators. In particular, S is

Fredholm and ind(A) = − ind(S).

For the proof we shall need the following lemma.

Lemma 8. Let A ∈ B(X, Y ) and K ∈ B(X,X1) be compact, with X, Y and X1

Banach spaces, and C > 0 such that

‖x‖X ≤ C
(

‖Ax‖Y + ‖Kx‖X1

)

, (5.2)

for x ∈ X. Then, Ran(A) is closed.

Proof. Let (yn)n ⊂ Ran(A) be a converging sequence in Y . Set y = lim yn and

consider a sequence (xn)n ⊂ X such that Axn = yn. Set also X0 = kerA.

First, assume that dn = dist(xn, X0) is bounded, say dn ≤ R. Thus, for any

n ∈ N there exists x̃n ∈ X0 such that ‖xn − x̃n‖X ≤ R+1. Replacing xn by xn− x̃n
we have found (xn)n ⊂ X such that Axn = yn with (xn)n bounded.

Then, (Kxϕ(n))n converges in X1, for some increasing function ϕ : N → N.

With (5.2) we have

‖xϕ(n) − xϕ(m)‖X . ‖A(xϕ(n) − xϕ(m))‖Y + ‖K(xϕ(n) − xϕ(m))‖X1
,

implying that (xϕ(n))n is a Cauchy sequence in X complete. We denote by x its

limit and, as A is bounded, we find Ax = limAxϕ(n) = y.
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Second, we assume that dn = dist(xn, X0) is unbounded. By contradiction, we

prove that this second case does not occur, which yields the conclusion.

If fact, up to a subsequence we have dn ≥ 1 and lim dn = +∞. For any n ∈

N there exists x̃n ∈ X0 such that dn ≤ ‖xn − x̃n‖X ≤ dn + 1 and we set zn =

xn − x̃n. Naturally, we have dist(zn, X0) = dn. If we set un = zn/‖zn‖X we have

dist(un, X0) = dn/‖zn‖X yielding dist(un, X0) ≥ dn/(dn+1). Using that t 7→ t/(t+1)

is increasing on [0,+∞) we find that dist(un, X0) ≥ 1/2.

We now see that Aun = yn/‖zn‖X converges to 0 as lim ‖zn‖X = +∞ and that

(Kuψ(n))n converges in X1, for some increasing function ψ : N → N. With (5.2) we

have

‖uψ(n) − uψ(m)‖X . ‖A(uψ(n) − uψ(m))‖Y + ‖K(uψ(n) − uψ(m))‖X1
,

implying that (uψ(n))n is a Cauchy sequence in X . Set u = lim uψ(n). By continuity,

we have Au = 0, meaning that u ∈ X0 in contradition with dist(un, X0) ≥ 1/2

obtained above. �

Lemma 9. Let X be a Banach space andK ∈ B(X,X) be compact. Then ker(Id+K)

is finite dimensional.

Proof. If x ∈ ker(Id+K), we have x = −K(x). In particular, the unit ball in

ker(Id+K) is the image of bounded set by the compact operator K. It follows that

the unit ball of ker(Id+K) is compact and thus, by the Riesz theorem, ker(Id+K)

is finite dimensional. �

Proof of Theorem 7. First, assume that (5.1) holds. The first identity gives ker(A) ⊂

ker(Id+Kℓ), with the latter space finite dimenstional by Lemma 9.

From the first equality in (5.1) we deduce

‖x‖X . ‖Ax‖Y + ‖Kℓx‖X .

By Lemma 8 this implies that Ran(A) is closed. As Y/Ran(A) ∼= Ran(A)⊥, prov-

ing codimRan(A) < ∞ amounts to proving that Ran(A)⊥ is finite dimensional.

From the second equality in (5.1) we have Ran(IdY +Kr) ⊂ Ran(A) and thus

Ran(A)⊥ ⊂ Ran(IdY +Kr)⊥. By Corollary 2.18 in [1] we have Ran(IdY +Kr)⊥ =

ker(IdY ′ +(Kr)∗) and the latter space is finite dimensional by Lemma 9.

Second, assume that A is Fredholm. As dim kerA <∞, there exists X̃ a closed

linear subspace of X that is a complementary subspace of kerA, that is, X̃⊕kerA =

X in the algebraic sense and moreover the projections associated with this direct

sum are continuous. Similarly, as codimRan(A) < ∞ and as Ran(A) is closed,

there exists also Z complementary subspace of Ran(A) in Y . We refer for instance [1,
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Section 2.4]. Observe that the projections ΠkerA onto kerA and ΠZ onto Z associated

with the above direct sums are compact since dim kerA <∞ and dimZ <∞.

We consider the bijective map Ã : X̃ → Ran(A) given by Ãx = Ax. As X̃ and

Ran(A) are Banach spaces if equipped with the norms inherited from X and Y , the

open map theorem shows that Ã is an isomorphism. We denote by S̃ its inverse

map and we set S = S̃(IdY −ΠZ) We then find that

AS = AS̃(IdY −ΠZ) = ÃS̃(IdY −ΠZ) = IdY −ΠZ .

We also write

SA = S̃A = S̃A(IdX −ΠkerA) = S̃Ã(IdX −ΠkerA) = IdX −ΠkerA,

which concludes the proof. �

Proposition 10. Let A ∈ B(X, Y ). It is Fredholm if and only if there exist K1 ∈

B(X,Z1) and K2 ∈ B(Y ′, Z2) both compact, with Z1 and Z2 Banach spaces, and

C > 0 such that

‖x‖X ≤ C
(

‖Ax‖Y + ‖K1x‖Z1

)

, ‖y∗‖Y ′ ≤ C
(

‖A∗y∗‖X′ + ‖K2y
∗‖Z2

)

,

for x ∈ X and y∗ ∈ Y ′.

Remark 11. The first part of the proof shows that one can use the compact op-

erators K1 = Kℓ ∈ B(X,X) and K2 = (Kr)∗ ∈ B(Y ′, Y ′), that are given by

Theorem 7. Then one has Z1 = X and Z2 = Y ′.

Proof. By Theorem 7, if A is Fredholm, there exists S bounded from Y to X such

that

SA = IdX +Kℓ, AS = IdY +Kr,

with Kℓ : X → X and Kr : Y → Y both compact operators. With the first identity

we obtain

‖x‖X . ‖Ax‖Y + ‖Kℓx‖X .

With the second identity we compute S∗A∗ = IdY ′ +(Kr)∗, yielding

‖y∗‖Y ′ . ‖A∗y∗‖X′ + ‖(Kr)∗y∗‖Y ′ .

Conversely, if ‖x‖X . ‖Ax‖Y + ‖K1x‖Z1
, for some K1 : X → Z1 compact,

we consider a sequence (xn)n ⊂ ker(A) such that ‖xn‖X = 1. Then, up to a

subsequence, (K1xn)n converges in Z1. Writing

‖xn − xm‖X . ‖K1xn −K1xm‖Z1
,

7



we find that (xn)n is a Cauchy sequence and thus converges as X is a complete. The

unit ball of ker(A) is thus compact; ker(A) is thus finite dimensional by the Riesz

theorem.

Similarly we find that ker(A∗) is finite dimensional. As Ran(A) is closed by

Lemma 8 we have Ran(A) = Ran(A) = ker(A∗)⊥ by Corollary 2.18 in [1] implying

that codimRan(A) <∞ as codimRan(A) = dim(X/Ran(A)) = dimker(A∗). �

Corollary 12. Let A ∈ FB(X, Y ) and F be a closed subspace of X. Then A(F ) is

closed.

Proof. As A ∈ FB(X, Y ), we have the estimations of Proposition 10 and the first

one applies to A|F . By Lemma 8 we conlude that Ran(A|F ) = A(F ) is closed in

Y . �

The set FB(X, Y ) of bounded Fredholm operators has some important topolog-

ical properties.

Theorem 13. The set FB(X, Y ) is open in B(X, Y ).

Proof. Let A ∈ FB(X, Y ). By Proposition 10 and Remark 11 we have

‖x‖X . ‖Ax‖Y + ‖Kℓx‖X , ‖y∗‖Y ′ . ‖A∗y∗‖X′ + ‖(Kr)∗y∗‖Y ′ .

with the compact operators Kℓ ∈ B(X,X) and Kr ∈ B(Y, Y ) given by Theorem 7.

With these two inequalities we see that there exists ε > 0 such that

‖x‖X . ‖(A+B)x‖Y + ‖Kℓx‖X , ‖y∗‖Y ′ . ‖(A+B)∗y∗‖X′ + ‖(Kr)∗y∗‖Y ′ .

for B ∈ (X, Y ) such that ‖B‖
L (X,Y ) ≤ ε. By Proposition 10 we then find that

A+B ∈ FB(X, Y ). �

Theorem 14. The maps FB(X, Y ) → N

nul : A 7→ dim ker(A) and def : A 7→ codimRan(A)

are both upper semi-continuous. Moreover, the index map, ind = nul− def, is con-

stant in each connected component of FB(X, Y ).

Proof. Let A ∈ FB(X, Y ). As we have nulA = dimker(A) < ∞, def A =

codimRan(A) < ∞, and Ran(A) is closed, there exists X̃ and Ỹ that are com-

plementary ker(A) and Ran(A) in X and Y respectively, that is,

X̃ ⊕ ker(A) = X and Ran(A)⊕ Ỹ = Y, (5.3)
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with moreover X̃ and Ỹ closed (see Section 2.4 in [1]). Set Z = X̃ ⊕ Ỹ . For

T ∈ B(X, Y ) we define κT ∈ B(Z, Y ) given by

κT (x+ y) = Tx+ y, x ∈ X̃, y ∈ Ỹ .

Observe that κA is bijective. Note that ‖κT1 − κT2‖L (Z,Y ) ≤ ‖T1 − T2‖L (X,Y ). Thus,

for T ∈ B(X, Y ) chosen such that ‖T − A‖
L (X,Y ) ≤ ε, the operator κT is also

bijective, since the set of bounded invertible operators from Z into Y is open in

B(Z, Y ), and T ∈ FB(X, Y ) by Theorem 13, for ε > 0 chosen sufficiently small.

Below, T is chosen such that ‖T −A‖
L (X,Y ) ≤ ε. We have κT (X̃×{0}) = T (X̃)

and, as κT is an isomorphism, we have

codimT (X̃) = codimκT (X̃ × {0}) = dim Ỹ . (5.4)

As T (X̃) ⊂ Ran(T ), we thus find that

def T = codimRan(T ) ≤ dim Ỹ = codimRan(A) = def A, (5.5)

meaning that the map T 7→ def T is upper semicontinuous at A.

As κT is an isomorphism, we find that ker(T ) ∩ X̃ = {0}. Since ker(T ) is

finite dimensional, codim X̃ < ∞, and X̃ closed, there exists a finite dimensional

complementary subspace X̂ of X̃ ⊕ ker(T ), that is,

X = X̂ ⊕ X̃ ⊕ ker(T ). (5.6)

Note that T (X̂ ⊕ X̃) = T (X̂)⊕ T (X̃) = T (X) yielding

codimT (X) + dim T (X̂) = codimT (X̃),

that is, def T + dim X̂ = def A, since X̂ ∩ ker T = {0} and using (5.4)–(5.5). In

turn, from (5.3) and (5.6) we conclude that nulT +dim X̂ = nulA. Together, these

last two equalities show that ind(T ) = ind(A).

Finally, as we now have nulA−nul T = def A−def T , we also conclude that the

map T 7→ nulT is upper semicontinuous at A. �

Given a bounded operator A ∈ FB(X, Y ), we saw above that small perturba-

tions B ∈ B(X, Y ) neither affect its Fredholm property nor its index as one remains

in the connected component of A in FB(X, Y ). The following Proposition shows if

K ∈ B(X, Y ) is compact, then A+K also remains in the connected component of

A, without any size assumption on K.

Theorem 15. Let A ∈ FB(X, Y ) and K ∈ B(X, Y ) be compact. Then A +K ∈

FB(X, Y ) and ind(A+K) = ind(A).
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Proof. As A is Fredholm, by Proposition 10 there exist K1 ∈ B(X,Z1) and K2 ∈

B(Y ′, Z2) both compact, with Z1 and Z2 Banach spaces, and C > 0 such that

‖x‖X . ‖Ax‖Y + ‖K1x‖Z1
, ‖y∗‖Y ′ . ‖A∗y∗‖X′ + ‖K2y

∗‖Z2
.

We thus have

‖x‖X . ‖(A+K)x‖Y + ‖Kx‖Y + ‖K1x‖Z1
,

‖y∗‖Y ′ . ‖(A+K)∗y∗‖X′ + ‖K∗y∗‖X′ + ‖K2y
∗‖Z2

.

We then define

K̃1 : X → Y ⊕ Z1 K̃2 : Y
′ → X ′ ⊕ Z2

given by K̃1(x) = K(x) +K1(x) and K̃2(y
∗) = K∗(y∗) +K2(y

∗). Both are compact

and we have

‖x‖X . ‖(A+K)x‖Y ‖K̃1x‖Y⊕Z1
, ‖y∗‖Y ′ . ‖(A+K)∗y∗‖X′ + ‖K̃2y

∗‖X′⊕Z2
.

We thus find that A+K is Fredholm by the converse part of Proposition 10.

Next, for the same reason A + tK ∈ FB(X, Y ) for any t ∈ [0, 1]. This implies

that A+K and A lie in the same connected component of FB(X, Y ). Their index

is thus the same by Theorem 14. �

6 Linear operators in Hilbert spaces

Let H be a Hilbert space. By the Riesz theorem there exists an isomorphism J :

H ′ → H such that

〈u∗, u〉H′,H = (Ju∗, u)H, u∗ ∈ H ′, u ∈ H,

which allows one to identify H ′ with H .

Let H1 and H2 be two Hilbert spaces. For an unbounded operator A from H1

to H2 with dense domain, its adjoint operator, as defined in Section 4, can then be

uniquely identified with an operator from H2 to H1, that we also denote by A∗, with

domain

D(A∗) =
{

v ∈ H2; ∃C > 0, ∀u ∈ D(A), |(v, Au)H2| ≤ C‖u‖H1

}

⊂ H2,

and such that

(Au, v)H2 = (u,A∗v)H1, u ∈ D(A) ⊂ H1, v ∈ D(A∗) ⊂ H2.

As a Hilbert space is reflexive we have the following result (see e.g. Theorem III.5.29

in [4]).
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Proposition 16. Let (A,D(A)) be a closed and densely defined operator from H1

to H2. Then, the operator (A∗, D(A∗)) from H2 to H1 is also closed and densely

defined. Moreover A∗∗ = A.

We also have the following result (see Theorem III.5.30 in [4]).

Proposition 17. Let (A,D(A)) be a closed and densely defined operator from H1

to H2. If A
−1 exists and is bounded on H2 to H1, then (A∗)−1 exists and is bounded

on H1 to H2 and (A∗)−1 = (A−1)∗. Moreover, ‖(A∗)−1‖
L (H1,H2)

= ‖A−1‖
L (H2,H1)

.

If A is an unbounded operator from a Hilbert space H into itself, the operator

is said to be symmetric if one has

(Au, v)H = (u,Av)H, u, v ∈ D(A).

If its domain is dense, A∗ is well defined, D(A) ⊂ D(A∗) and A∗ coincides with A on

D(A). One usually writes (A,D(A)) ⊂ (A∗, D(A∗)). The operator A is furthermore

said to be selfadjoint if D(A) = D(A∗): we then have (A,D(A)) = (A∗, D(A∗)).

Observe that a symmetric operator may not be selfadjoint. Consider for instance

the operator A given by Au = ∆u with domain D(A) = C ∞
c (Ω) ⊂ H = L2(Ω), for

Ω a bounded open set in Rd. The operator A is symmetric as one has (Au, v)L2 =

(u,Av)L2, for all u, v ∈ D(A). One sees readily that H2(Ω) ⊂ D(A∗). The operator

is not selfadjoint. A useful criterium is the following result; we refer to [5, Theorem

8.3] for a proof.

Theorem 18. Let (A,D(A)) with dense domain be a symmetric linear operator on

a Hilbert space H. The following three statements are equivalent:

1. (A,D(A)) is selfadjoint.

2. A is closed and ker(A∗ + i) = ker(A∗ − i) = {0}.

3. Ran(A+ i) = Ran(A− i) = H.

For a bounded operator A on a Hilbert space H , its adjoint operator yields a

bounded operator on H by what precedes and Proposition 5.

The following lemma due to [3, 2] is based on the closed-graph theorem and

allows one to quantify the inclusion of the ranges of two operators.

Lemma 19. Let K1 : H1 → H and K2 : H2 → H with H, H1, and H2 Hilbert

spaces and K1 and K2 linear and bounded. The following statements are equivalent:

1. We have Ran(K1) ⊂ Ran(K2);
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2. There exists a bounded linear map Φ : H1 → H2 such that K1 = K2 ◦ Φ;

3. There exists C0 ≥ 0 such that

‖K∗
1z‖H1

≤ C0‖K
∗
2z‖H2

, z ∈ H. (6.1)

Moreover, if the second statement holds, then one can choose C0 = ‖Φ‖
L (H1,H2)

in (6.1). Conversely, if C0 ≥ 0 is the best possible constant for which (6.1) holds,

then there exists Φ as in the second statement such that ‖Φ‖
L (H1,H2)

= C0.

Proof. We start by proving that the first statement implies the second statement.

Note that the converse is obvious.

We thus assume that Ran(K1) ⊂ Ran(K2). Let u1 ∈ H1. Then

L(u1) = {u ∈ H2; K1(u1) = K2(u)}

is a nonempty closed affine subspace of H2. We denote by Φ(u1) the orthogonal

projection of 0 onto L(u1), characterized as the unique element w of L(u1) such that

∀v ∈ L(u1), (w, v − w)H2 = 0. (6.2)

Observe that L(u1) = Φ(u1) + ker(K2) and (6.2) means that Φ(u1) is orthogonal to

ker(K2).

The operator Φ : H1 → H2 is linear and we prove that the graph of Φ is closed.

In fact, consider two sequences (u
(n)
1 )n ⊂ H1, (u

(n)
2 )n ⊂ H2 such that

u
(n)
2 = Φ(u

(n)
1 ), u

(n)
1 →

n→∞
u1 in H1, u

(n)
2 →

n→∞
u2 in H2.

Then K1(u
(n)
1 ) = K2(u

(n)
2 ) giving in the limit K1(u1) = K2(u2). Moreover u

(n)
2 is

orthogonal to ker(K2) giving in the limit u2 orthogonal to ker(K2). Hence u2 =

Φ(u1), that is the graph of Φ is closed. The closed graph theorem then implies that

Φ is a bounded operator. There exists C0 > 0 such that ‖Φ(u1)‖H2
≤ C0‖u1‖H1

.

Having proven the equivalence of the first two statements, we now show that

they imply the inequality of the third statement. Note that having K2(u2) = K1(u1)

implies

(u1, K
∗
1 (z))H1 = (u2, K

∗
2(z))H2 , z ∈ H.

For z ∈ H we set u1 = K∗
1(z) and set u2 = Φ(u1), with Φ as defined above. This

gives

‖K∗
1(z)‖

2
H1

≤ ‖Φ(u1)‖H2
‖K∗

2(z)‖H2
≤ C0‖K

∗
1 (z)‖H1

‖K∗
2(z)‖H2

,
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which gives ‖K∗
1 (z)‖H1

≤ C0‖K
∗
2(z)‖H2

for z ∈ H .

Finally, we prove that the third statement implies the second one. We thus

assume that there exists C0 > 0 such that

∀z ∈ H, ‖K∗
1(z)‖H1

≤ C0‖K
∗
2 (z)‖H2

. (6.3)

Let u1 ∈ H1. We define the linear map

Ψ : Ran(K∗
2) ⊂ H2 → C

K∗
2 (z) 7→ (K∗

1 (z), u1)H1 .

This map is well defined. In fact if w = K∗
2 (z) = K∗

2 (z
′) then K∗

1(z) = K∗
1(z

′) by

(6.3). We have, for w = K∗
2(z),

|Ψ(w)| ≤ ‖K∗
1(z)‖H1

‖u1‖H1
≤ C0‖w‖H2

‖u1‖H1
,

that is, the map Ψ is bounded and ‖Ψ‖ ≤ C0‖u1‖H1
. We then denote by Ψ̃ the map

Ran(K∗
2) → C that uniquely extends Ψ to the Hilbert space Ran(K∗

2 ) endowed with

the inner product on H2. We have ‖Ψ̃‖ = ‖Ψ‖ ≤ C0‖u1‖H1
. By the Riesz theorem,

there exists u2 ∈ Ran(K∗
2 ) such that ‖u2‖H2

= ‖Ψ‖ ≤ C0‖u1‖H1
and

Ψ̃(w) = (w, u2)H2 , w ∈ Ran(K∗
2).

We define the map Φ : H1 → H2 by u2 = Φ(u1). It is linear and bounded. For

z ∈ H , we set w = K∗
2 (z) and we obtain

(K∗
1 (z), u1)H1 = (K∗

2(z),Φ(u1))H2,

and thus for all z ∈ H we have (z,K1(u1))H = (z,K2(Φ(u1)))H . That is, K1(u1) =

K2(Φ(u1)). The proof is complete. �

A corollary is the following result that characterizes the surjectivity of a bounded

operator.

Corollary 20. Let K : H1 → H with H1, H Hilbert spaces and K linear and

bounded. The following statements are equivalent.

1. We have Ran(K) = H;

2. There exists a bounded linear map Φ : H → H1 such that IdH = K ◦ Φ.

3. There exists C0 ≥ 0 such that

‖x‖H ≤ C0‖K
∗x‖H1

. (6.4)
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Moreover, if the second statement holds, then one can choose C0 = ‖Φ‖
L (H,H2)

in (6.4). Conversely, if C0 ≥ 0 is the best possible constant for which (6.4) holds,

then there exists Φ as in the second statement such that ‖Φ‖
L (H,H2)

= C0.

Remark 21. Note that if we decide to not identify the Hilbert spaces H and H1

with their respective dual spaces we then obtain the characterization

‖x‖H′ ≤ C0‖K
∗x‖H′

1
. (6.5)

We may also decide to identify H1 with its dual and not H and vice versa.
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