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Jérôme Le Rousseau

February 5, 2019

We denote by P (x,D) a general second-order elliptic operator with a principal

part of the form

P0 =
∑

1≤i,j≤d

Di(p
ij(x)Dj), with

∑

1≤i,j≤d

pij(x)ξiξj ≥ C|ξ|2, (0.1)

where pij ∈ C ∞(Rd;R) is such that pij = pji, 1 ≤ i, j ≤ d. The elliptic operator

under consideration is then

P = P0 +
∑

1≤i≤d

bi(x)Di + c(x),

where bi, c ∈ L∞(Rd), 1 ≤ i ≤ d. We denote by p the principal symbol of P given

by

p(x, ξ) =
∑

1≤i,j≤d

pij(x)ξiξj.

We now consider a smooth function ψ defined in a neighborhood V of x0 and we

assume that dψ(x0) 6= 0 in V . We set

S = {x ∈ V ; ψ(x) = ψ(x0)}, V+ = {x ∈ V ; ψ(x) ≥ ψ(x0)}.

The hypersurface S is smooth in V .

Theorem 1. There exist X an open neighborhood of x0, Y an open neighborhood

of 0 in R
d, and a C ∞-diffeomorphism κ : X → Y , such that:

1. We have κ(x0) = 0 and

κ(V+ ∩X) = {y ∈ Y ; yd ≥ 0} and κ(S ∩X) = {y ∈ Y ; yd = 0}.
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Figure 1: Local normal geodesic coordinates for the Laplace operator ∆ = ∂21+ · · ·+
∂2d in R

d.

2. In the local coordinates y = κ(x), the operator P takes the form

P = D2

d +
d−1
∑

i,j=1

p̃ij(y)DiDj +
d
∑

i=1

b̃i(y)Di + c̃(y),

where the coefficients p̃ij are C ∞ in Y and the coefficients b̃i and c̃ are in

L∞(Y ).

3. Moreover there exists C > 0 such that

d−1
∑

i,j=1

p̃ij(y)ηiηj ≥ C|η′|2, η′ = (η1, . . . , ηd−1), y ∈ Y.

Proof of Theorem 1. The proof is made of several steps.

Preliminary remarks Each step of the proof is associated with the construction

of a change of variables, that is a smooth diffeomorphism. For simplicity, at each

step, the original and final variables with be denoted by x and y respectively. At each

step we shall start from an open neighborhood V of x0. The diffeomorphism κ that

will be built for that step will then map X , a possibly smaller open neighborhood

of x0, onto an open set Y of Rd.

If x 7→ y = κ(x) = (κ1(x), . . . , κd(x)) is the built change of variables we then

have the following relation Dxi
=

∑d
j=1

(∂xi
κj(x))Dyj . We denote by κ′(x) = dκ(x)

the differential of κ which can be identified with its Jacobian matrix of κ at x. If Q

denotes the differential operator P after the action of the change of variables1, that

is,

P (f ◦ κ) = (Qf) ◦ κ, f ∈ C
∞(Y ),

1In the course of the proof we shall not use the same letter for P and Q, as is commonly done,

for avoid any confusion.
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then if q(y, η) denotes the principal symbol of Q we have

q(κ(x), η) = p(x, tκ′(x)η), x ∈ X, η ∈ R
d.

In particular q(y, η) is a positive quadratic form, uniformly w.r.t. y ∈ Y . In the

course of the proof, at every step we shall ignore first- and zero-order terms as they

are only required to have bounded coefficients, which is, and as they do not appear

in the smooth principal symbols. At each step P0 will denote the principal part of

the operator obtained at the previous step, and Q0 will denote the principal part of

P after change of variables.

Step 1 By reordering the variables we can assume ∂dψ(x
0) 6= 0 in V . We then

define the following change of variables y = κ(x) by
{

yj = xj − x0j for j = 1, . . . , d− 1,

yd = ψ(x)− ψ(x0).

With the local diffeomorphism theorem, there exits an open neighborhood X of x0

such that κ is a smooth diffeomorphism of X onto Y = κ(X). Moreover we have

κ(x0) = 0 and

κ(V+ ∩X) = {y ∈ Y ; yd ≥ 0} and κ(S ∩X) = {y ∈ Y ; yd = 0}.

With this step we have preserved the assumptions of the theorem and we have

achieved the first point in the statement of the theorem. The next two steps will

not affect this property.

Step 2 We now have with x0 = 0, S = {x ∈ V ; xd = 0} and ψ(x) = xd.

For this second step, we aim to write P0 in the new variables under the form

Q0 = D2

yd
+ 2

d−1
∑

i=1

qid(y)DyiDyd +
d−1
∑

i,j=1

qij(y)DyiDyj .

If compared to the previous step, we thus want to also enforce q(y, ed) = 1, for

all y ∈ Y , where ed = (0, . . . , 0, 1), i.e.,

p(x, tκ′(x)ed) =
d
∑

i,j=1

pij(x)(∂iκd(x))(∂jκd(x)) = p(x, dκd(x)) = 1, x ∈ X. (0.2)

We thus obtain an equation that solely involves the coordinate function κd, in the

form of an Eikonal equation. Then, an admissible change of variables is for example

yj = κj(x) = xj for j = 1, . . . , d− 1, yd = κd(x),
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with κd solution to (0.2) and such that κd(x) = 0 if xd = 0 and ∂xd
κd(0) = pdd(0)−1/2.

The existence of a local smooth solution is given in Proposition 2 below, using that

p(0, pdd(0)−1/2ed) = 1 and ∂ξdp(0, ed) 6= 0 as pdd(0) > 0.

As ∂dκd(0) 6= 0, this holds in a neighborhood of 0. This implies, as in the first

step, with the local diffeomorphism theorem, that there exits an open neighborhood

X of x0 such that κ is a smooth diffeomorphism of X onto Y = κ(X). Note that the

sets {xd = 0} and {xd ≥ 0} are changed into {yd = 0} and {yd ≥ 0} respectively.

Note that this second step has preserved the assumptions of the theorem.

Step 3 Now we have x0 = 0, S = {xd = 0}, ψ(x) = xd and moreover P0 takes the

form

P0 = D2

xd
+ 2

d−1
∑

i=1

pid(x)Dxi
Dxd

+
d−1
∑

i,j=1

pij(x)Dxi
Dxj

.

We then write P0 in the following form

P0 = (Dxd
+

d−1
∑

i=1

pid(x)Dxj
)2 +

d−1
∑

i,j=1

qij(x)Dxi
Dxj

, (0.3)

where the coefficients qij are related to the coefficients pij in a smooth way that

needs not made explicit here. From the positivity of p(x, ξ) uniformly w.r.t. x in V

we find that there exists C > 0 such that

d−1
∑

i,j=1

qij(x)ξiξj ≥ C|ξ′|2 (0.4)

Now build a diffeomorphism x 7→ κ(x) = y so has to have

Dyd = Dxd
+

d−1
∑

i=1

pid(x)Dxj
,

and Dyi as a linear combination of Dx1
, . . . , Dxd−1

for i = 1, . . . , d − 1. In fact, we

shall built κ−1 by considering the following differential system
{

ẋi = pid(x), xj(0) = yj for i = 1, . . . , d− 1,

ẋd = 1, xd(0) = 0.
(0.5)

We denote the solution of System (0.5) by x(y′, t) with y′ = (y1, . . . , yd−1). We

define κ−1 by κ−1(y) = x(y′, yd) which is a local diffeomorphism that maps an open

neighborhood Y of 0 into an open neighborhoodX ⊂ V of 0 by the Cauchy-Lipschitz

theorem. Through this change of variables we have

Dyi =
d
∑

j=1

(∂yiκ
−1

j (y))Dxj
,
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which yields

Dyd =
d
∑

j=1

(∂ydκ
−1

j (y))Dxj
=

d
∑

j=1

∂ydxj(y
′, yd)Dxj

= Dxd
+

d−1
∑

i=1

pid(x)Dxj
,

and,

Dyi =
d
∑

j=1

(∂yixj(y
′; yd))Dxj

=
d−1
∑

j=1

(∂yixj(y
′; yd))Dxj

, i = 1, . . . , d− 1,

as ∂yixd(y
′, t) = 0 for i = 1, . . . , d− 1 since xd(y

′, t) = t.

Note that the matrix (∂yixj(y
′, yd))1≤i,j≤d−1 is the identity for yd = 0 according

to the initial conditions in System (0.5). Thus, for Y chosen sufficiently small it

remains invertible. The vector fields Dxi
, i = 1, . . . , d−1, are then transformed into

∑d−1

j=1
cij(y)Dyj .

Following (0.3), in the new variable y, P0 takes the form

Q0 = D2

yd
+

d−1
∑

i,j=1

p̃ij(y)DyiDyj .

Point 2 of the statement of the theorem is achieved. From the positivity of (qij(x))1≤i,j≤d−1

in (0.4) we deduce that a similar positivity holds for (p̃ij(y))1≤i,j≤d−1 which gives

point 3 of the statement of the theorem .

Finally, observe that since ẋd = 1 > 0 and xd(y
′, 0) = 0, we see that the sets

{xd = 0} and {xd > 0} are transformed in {yd = 0} and {yd > 0} respectively in a

neighborhood of 0. �

As above, we write x = (x′, xd) ∈ R
d−1 × R and similarly ξ = (ξ′, ξd) the

associated cotangent vectors.

Proposition 2. Let q(x, ξ) be a smooth real function defined in a neighborhood of

(0, η) in R
d × R

d such that q(0, η) = 0 and ∂ξdq(0, η) 6= 0. Let f ∈ C ∞(Rd−1) be

real valued and such that dx′f(0) = η′. Then, there exists a neighborhood U of (0, η)

and g ∈ C ∞(U), real valued, such that q(x, dg(x)) = 0, for x ∈ U , and the boundary

condition

g(x′, 0) = f(x′), for (x′, 0) ∈ U, and dg(0) = η.

For a proof we refer to [1, Theorem 6.4.5].
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