Université Paris 8, 2021/2022

mallein@math.univ-paris13.fr

Devoir Maison : Théorie de la mesure

À rendre le 19 novembre 2021

Exercice 1. Soit E un ensemble, un sous-ensemble A de $\mathcal{P}(A)$ est une algèbre sur E si

- $-E \in \mathcal{A}$:
- si $A \in \mathcal{A}$ alors $A^c \in \mathcal{A}$
- si $A_1, \ldots, A_n \in \mathcal{A}$ alors $A_1 \cup A_2 \cup \cdots \cup A_n \in \mathcal{A}$.
- a) Montrer que $\mathcal{R} = \{B \subset \mathbb{N} : \operatorname{Card}(B) < \infty \text{ ou } \operatorname{Card}(\mathbb{N} \setminus B) < \infty\}$, l'ensemble des parties finies de \mathbb{N} ou des parties dont le complémentaire est fini est une algèbre sur \mathbb{N} .
- b) Montrer que $\{2k, k \in \mathbb{N}\}$ n'appartient pas à \mathbb{N} . En déduire que \mathcal{R} n'est pas une tribu.
- c) Montrer que \mathcal{A} est une tribu sur E si et seulement si pour toute famille (A_n) d'éléments deux à deux disjoints de \mathcal{A} , on a $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}$.

Soit \mathcal{A} une algèbre sur E. On appelle une mesure σ -additive sur (E, \mathcal{A}) une fonction $\mu : \mathcal{A} \to \mathbb{R}_+$ telle que

- Pour tout A_1, \ldots, A_n ensembles deux à deux disjoints de \mathcal{A} , on a $\mu(\bigcup_{j=1}^n A_j) = \sum_{j=1}^n \mu(A_j)$.
- Pour toute suite (A_n) d'ensembles deux à deux disjoints tels que $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{A}$, on a $\mu(\bigcup_{n\in\mathbb{N}} A_n) \leq \sum_{n\in\mathbb{N}} \mu(A_n)$.
- d) Montrer que pour toute suite (A_n) d'ensembles deux à deux disjoints tels que $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}$, on a

$$\mu(\cup_{n\in\mathbb{N}}A_n)=\sum_{n\in\mathbb{N}} \mu(A_n).$$

e) Montrer que la mesure $\rho: B \in \mathcal{R} \mapsto +\infty \mathbb{1}_{\{\operatorname{Card}(B)=\infty\}}$ est une mesure finiment additive, mais pas σ -additive.

Exercice 2. Soit μ une mesure de probabilité sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On dit que la mesure μ est portée par S si $\mu(S^c) = 0$, et que $x \in \Omega$ est un atome ponctuel de μ si $\mu(\{x\}) > 0$. On dit qu'une mesure est diffuse si elle n'a pas d'atome ponctuel, qu'elle est purement atomique si elle est portée par l'ensemble de ses atomes ponctuels.

- a) Montrer que si μ est portée par \mathbb{N} , alors elle est purement atomique.
- b) Montrer que $\operatorname{Card}(\{x \in \mathbb{R} : \mu(\{x\}) > 1/n\}) \leq n$, i.e. qu'il y a au plus n atomes ayant une masse supérieure à 1/n.
- c) En déduire que l'ensemble des atomes d'une mesure de probabilité est dénombrable.
- d) On note $(x_n, n \in \mathbb{N})$ l'ensemble des atomes de la mesure μ , et $p = \sum_{j=1}^{\infty} \mu(\{x_j\})$. Montrer que $p \in [0, 1]$, et que μ est atomique si et seulement si p = 1.

e) On suppose p < 1, et on pose, pour tout $A \in \mathcal{B}(\mathbb{R})$

$$\rho(A) = \frac{1}{1-p} \left(\mu(A) - \sum_{j=1}^{\infty} \mu(\{x_j\}) \mathbb{1}_{\{x_j \in A\}} \right).$$

Montrer que ρ est une mesure de probabilité, puis que ρ est diffuse.

- f) En déduire que toute mesure de probabilité sur \mathbb{R} peut s'écrire sous la forme $p\mu_a+(1-p)\mu_d$, où μ_a est une mesure de probabilité purement atomique, et μ_d une mesure de probabilité diffuse.
- g) Montrer que la décomposition ci-dessus est unique.