Ranges of randomly biased random walks on trees

Alexis Kagan

Institut Denis Poisson, Université d'Orléans

Random Networks and Interacting Particle Systems
September 10, 2021

Marked trees

Let

$$\mathscr{U} := \bigcup_{n \in \mathbb{N}} (\mathbb{N}^*)^n.$$

By convention, $(\mathbb{N}^*)^0 = \{e\}$, e is the sequence with length 0. A tree ω is a subset of \mathscr{U} such that

- $e \in \omega$,
- \blacksquare $uv \in \omega \Longrightarrow u \in \omega$,
- for any $u \in \omega$, there exists $N_u \in \mathbb{N}$ such that $uj \in \omega$ if and only if $j \in \{1, \dots, N_u\}$.

For a tree ω , $(\omega, (A_u; u \in \omega))$ is called a marked tree where $A_u > 0$ for all $u \in \omega$.

Notations: For $u \in \omega$

- $|u| = d_{\omega}(e, u)$ is the generation of u,
- for all $v \in \omega$, $v \le u$ if and only if v is an ancestor of u and u_n is the only ancestor of u such that |u| = n,
- u^* is the parent of u, the most recent ancestor of u.

Let V(z) be the branching potential:

$$V(z) := -\sum_{u \le z} \log A_u = -\sum_{i=1}^{|z|} \log A_{z_i}$$

Galton-Watson marked tree $\mathbb T$

N with law $(p_k)_{k\in\mathbb{N}}$ on \mathbb{N} such that $\sum_{k\geq 0} kp_k > 1$ and A random variable on $(0,\infty)$.

- Generation 0: one individual (e,1).
- Generation $n \ge 1$: generation n-1 empty \Rightarrow generation n empty. Otherwise, given generation n-1, each individual (u,A_u) of generation n-1 gives birth to N_u individuals (u^i,A_{u^i}) , $i \in \{1,\ldots,N_{u^i}\}$, independently according to (N,A).

 \mathbb{T} : the genealogical tree of this population with root e.

Random environment: the random marked tree $(\mathbb{T}, A_u; u \in \mathbb{T})$.

 $\mathbf{P} = \mathsf{law} \ \mathsf{of} \ (\mathbb{T}, A_u; u \in \mathbb{T}) \ \mathsf{and} \ \mathbf{P}^* := \mathbf{P}(\cdot| \ \mathrm{non\text{-}extinction} \).$

Random walk on Galton-Watson tree $\mathbb T$

Given $\mathscr{E} = (\omega, A(u); u \in \omega)$, $X = (X_m)$ is a random walk under $\{\mathbb{P}_z^{\mathscr{E}}; z \in \omega\}$ on ω with $X_0 = e$ and probability transition:

$$\begin{cases} p^{\mathscr{E}}(u, u^{*}) &= \frac{1}{1 + \sum_{k=1}^{N_{u}} A(u^{k})} = \frac{e^{-V(u)}}{e^{-V(u)} + \sum_{k=1}^{N_{u}} e^{-V(u^{k})}}, \\ p^{\mathscr{E}}(u, u^{i}) &= \frac{A(u^{i})}{1 + \sum_{k=1}^{N_{u}} A(u^{k})} = \frac{e^{-V(u^{i})}}{e^{-V(u)} + \sum_{k=1}^{N_{u}} e^{-V(u^{k})}}. \end{cases}$$

$$\mathbb{P}(\cdot) := \int_{\mathscr{E}} \mathbb{P}^{\mathscr{E}}(\cdot) \mathbf{P}(d\mathscr{E})^{u^{*}} \text{ and } \mathbb{P}^{*}(\cdot) := \int_{\mathscr{E}} \mathbb{P}^{\mathscr{E}}(\cdot) \mathbf{P}^{*}(d\mathscr{E})$$

The slow random walk on Galton-Watson tree ${\mathbb T}$

log-Laplace transform: $\psi(t) := \log \mathbf{E} \Big[\sum_{|z|=1} e^{-tV(z)} \Big]$. Boundary case for the branching potential $(V(u))_{u \in \omega}$:

$$\psi(1)=\psi'(1)=0$$

- X is null recurrent,
- **X** is slow: \mathbb{P}^* almost surely

$$\frac{1}{(\log n)^3} \max_{j \le n} |X_j| \underset{n \to \infty}{\longrightarrow} C_1 > 0.$$

Regular range of the walk

Let $\mathscr{E} = (\omega, A(u); u \in \omega)$ a given environment.

The sub-tree $\{u \in \omega; \exists j \leq n : X_j = u\}$ of ω :

The regular range up to the time n is defined by:

$$R_n := \#\{u \in \omega; \ \exists \ j \le n : X_j = u\}.$$

Asymptotic of R_n : in \mathbb{P}^* -probability

$$rac{\log n}{n}R_n \underset{n o \infty}{\longrightarrow} C_2 > 0.$$
 (Anotheolette, Chen, 18)

Extensions of the regular range

Introduce the local time \mathcal{L}_z^n of the vertex z at n:

$$\mathscr{L}_{z}^{n}:=\sum_{k=1}^{n}\mathbb{1}_{\{X_{k}=z\}}.$$

We add some constraints both on the trajectories of the walk and of the branching potential: for all $b \in (0,1)$, $k, n \in \mathbb{N}^*$, let $E_n^k \subset \mathbb{R}^k$ and introduce

$$\begin{aligned} \mathscr{R}_{n}^{(b)} &:= \#\{z \in \omega; \mathscr{L}_{z}^{n} \geq n^{b} \text{ and } (V(z_{1}), \dots, V(z)) \in E_{n}^{|z|}\} \\ &= \sum_{z \in \omega} \mathbb{1}_{\{\mathscr{L}_{z}^{n} \geq n^{b}, \ (V(z_{1}), \dots, V(z)) \in E_{n}^{|z|}\}}. \end{aligned}$$

and

$$\mathcal{R}_{n}^{X} := \#\{j \leq n; (V(u); e < u \leq X_{j}) \in E_{n}^{|X_{j}|}\}\$$

$$= \sum_{z \in U} \mathcal{L}_{z}^{n} \mathbb{1}_{\{(V(z_{1}), ..., V(z)) \in E_{n}^{|z|}\}}.$$

Define

$$r_n := \mathbf{E} \Big[\sum_{z \in \omega} e^{-V(z)} \mathbb{1}_{\{(V(z_1), \dots, V(z)) \in E_n^{|z|}\}} \Big] \in (0, 1),$$

and assume technical hypotheses only depending on the branching potential V and $E_n^k, k, n \ge 1$.

Theorem (Andreoletti-K. 21+)

If $(\log n)^{\gamma} = o(\log r_n)$ for some $\gamma \in (0,1)$ then in \mathbb{P}^* -probability

$$\frac{\log^{+} \mathscr{R}_{n}^{(b)} - (1 - b) \log n}{\log r_{n}} \xrightarrow[n \to \infty]{} 1 \quad and \quad \frac{\log^{+} \mathscr{R}_{n}^{X} - \log n}{\log r_{n}} \xrightarrow[n \to \infty]{} 1$$

else in \mathbb{P}^* -probability

$$\frac{\log^{+} \mathscr{R}_{n}^{(b)}}{\log n} \xrightarrow[n \to \infty]{} 1 - b \quad and \quad \frac{\log^{+} \mathscr{R}_{n}^{X}}{\log n} \xrightarrow[n \to \infty]{} 1$$

Examples

lacksquare Heavy range: $\mathscr{R}_n^{(b)} = \sum_{z \in \omega} \mathbb{1}_{\{\mathscr{L}_z^n \geq n^b\}} \ b \in (0,1)$

$$\frac{\log^+ \mathscr{R}_n^{(b)}}{\log n} \xrightarrow[n \to \infty]{} 1 - b \quad \text{in } \mathbb{P}^*\text{- probability.}$$

$$\mathscr{R}_n^{(b)} \approx n^{1-b+o(1)} \approx R_n n^{-b+o(1)}$$

■ High potential: $\mathcal{R}_n^X = \sum_{i=1}^n \mathbb{1}_{\{V(X_i) \geq (\log n)^\alpha\}}$ with $\alpha \in (1,2)$

$$\frac{\log^+ \mathcal{R}_n^X - \log n}{(\log n)^{\alpha - 1}} \underset{n \to \infty}{\longrightarrow} -1 \quad \text{ in } \mathbb{P}^*\text{- probability}.$$

$$\mathscr{R}_{n}^{X} \approx ne^{-(\log n)^{\alpha-1}(1+o(1))} \approx R_{n}e^{-(\log n)^{\alpha-1}(1+o(1))}.$$

11/18

■ Heavy range + high potential:

$$\begin{split} \mathscr{R}_n^{(b)} &= \sum_{z \in \omega} \mathbb{1}_{\left\{\mathscr{L}_z^n \geq n^b, V(z_i) \geq (\log n)^{\alpha} \; \forall \; \lfloor \frac{|z|}{\beta} \rfloor \leq i \leq |z|\right\}} \text{ with } \beta \geq 1 \\ &\frac{\log \mathscr{R}_n^{(b)} - (1-b) \log n}{(\log n)^{\alpha-1}} \underset{n \to \infty}{\longrightarrow} -f(\beta) \quad \text{ in } \mathbb{P}^*\text{- probability.} \end{split}$$

$$\mathscr{R}_{n}^{(b)} pprox n e^{-f(eta)(\log n)^{lpha-1}(1+o(1))} pprox R_{n} e^{-f(eta)(\log n)^{lpha-1}(1+o(1))} \times n e^{-f(eta)(\log n)^{lpha-1}(1+o(1))}$$

with $f:[1,\infty)\longrightarrow (0,\infty)$ an increasing and continuous function such that f(1)=1.

Sketch of proof

Recall

$$\begin{aligned} \mathscr{R}_{n}^{(b)} &= \#\{z \in \omega; \mathscr{L}_{z}^{n} \geq n^{b} \text{ and } (V(z_{1}), \dots, V(z)) \in E_{n}^{|z|}\} \\ &= \sum_{z \in \omega} \mathbb{1}_{\{\mathscr{L}_{z}^{n} \geq n^{b}, (V(z_{1}), \dots, V(z)) \in E_{n}^{|z|}\}}. \end{aligned}$$

Goal: show that $\mathscr{R}_n^{(b)} \approx \mathbb{E}[\mathscr{R}_n^{(b)}] = n^{1-b} r_n^{1+o(1)}$ with high probability.

Upper bound: Markov inequality.

Lower bound: Bienaymé-Tchebychev type inequalities.

Edge local time and excursions above the root e

Introduce the edge local time \mathcal{N}_z^m of z at m:

$$\mathcal{N}_{z}^{m} := \sum_{k=1}^{m} \mathbb{1}_{\{X_{k-1}=z^{*}, X_{k}=z\}}.$$

Let $T^0=0$ and for any $n\geq 1$, $T^n=\inf\{j>T^{n-1}; X_j=e\}$.

Remark: $\mathcal{L}_z^{T^n} = \mathcal{N}_z^{T^n} + \sum_{i=1}^{N_z} \mathcal{N}_{z^i}^{T^n}$

Introduce the edge local time N_z^m of z at m:

$$\mathcal{N}_{z}^{m} := \sum_{k=1}^{m} \mathbb{1}_{\{X_{k-1}=z^{*}, X_{k}=z\}}.$$

Let $T^0 = 0$ and for any $n \ge 1$, $T^n = \inf\{j > T^{n-1}; X_j = e\}$.

Remark: $\mathcal{L}_z^{T^n} = \mathcal{N}_z^{T^n} + \sum_{i=1}^{N_z} \mathcal{N}_{z^i}^{T^n}$.

Fact: strong bias towards the root *e*:

$$\frac{T^n}{n \log n} \xrightarrow[n \to \infty]{} X \in (0, \infty)$$
 in \mathbb{P}^* - probability.

 \implies we can study $\mathcal{N}_{z}^{T^{n}}$ instead of \mathcal{L}_{z}^{n} .

$$\mathscr{G}_n := \{z \in \omega; |z| \le (\log n)^3 \text{ and } \overline{V}(z) \ge 3 \log n\}.$$

where $\overline{V}(z) = \max_{u \leq z} V(u)$.

Fact: Any vertex in \mathcal{G}_n visited at least once during the first n excursions above the root e is actually visited during a single excursion.

Indeed,
$$E_z^n := \sum_{j=1}^n \mathbb{1}_{\{\exists k \in [T^{j-1}, T^j): X_k = z\}} \sim \text{Bin}(n, \mathbb{P}^{\mathscr{E}}(T_x < T_e))$$
 under $\mathbb{P}^{\mathscr{E}}$ and $\mathbb{P}^{\mathscr{E}}(T_x < T_e) \leq e^{-\overline{V}(z)}$ so we have

$$\mathbb{P}\big(\exists z \in \mathscr{G}_n : E_z^n \ge 2\big) \le n^2 (\log n)^3 e^{-3\log n} = \frac{(\log n)^3}{n}.$$

$$\Longrightarrow \mathscr{R}_n(b) \gtrsim \sum_{i=1}^n \mathscr{R}_{j,n}(b)$$
 where

$$\mathscr{R}_{j,n}(b) := \sum_{z \in \mathscr{G}_n} \mathbb{1}_{\{\mathscr{N}_z^{T^j} - \mathscr{N}_z^{T^{j-1}} \ge n^b, \ (V(z_1), ..., V(z)) \in E_n^{|z|}\}},$$

i.i.d with law $\mathcal{R}_{1,n}(b)$ under $\mathbb{P}^{\mathcal{E}}$.

$$\mathbb{E}^{\mathscr{E}}[\sum_{j=1}^n\mathscr{R}_{j,n}(b)]=n\mathbb{E}^{\mathscr{E}}[\mathscr{R}_{1,n}(b)]$$
 and

$$\mathbb{E}^{\mathscr{E}}[\mathscr{R}_{1,n}(b)] = \sum_{z \in \mathscr{G}_n} \mathbb{P}^{\mathscr{E}}(\mathscr{N}_z^{T^1} \geq n^b) \mathbb{1}_{\{(V(z_1), \dots, V(z)) \in E_n^{|z|}\}}$$

$$\mathbb{V}$$
ar $^{\mathscr{E}}ig(\sum_{j=1}^{n}\mathscr{R}_{j,n}(b)ig)=n\mathbb{V}$ ar $^{\mathscr{E}}ig(\mathscr{R}_{1,n}(b)ig)\leq n\mathbb{E}^{\mathscr{E}}[\mathscr{R}_{1,n}(b)^2]$ and

$$\mathbb{E}^{\mathscr{E}}[\mathscr{R}_{1,n}(b)^{2}] = \sum_{z,u \in \mathscr{G}_{n}} \mathbb{P}^{\mathscr{E}}(\mathscr{N}_{z}^{T^{1}} \vee \mathscr{N}_{u}^{T^{1}} \geq n^{b}) \mathbb{1}_{\{(V(z_{1}),...,V(z)) \in E_{n}^{|z|}\}}$$

$$\times \mathbb{1}_{\{(V(u_1),...,V(u))\in E_n^{|u|}\}}.$$

•The law of $\mathcal{N}_z^{T^1}$:

$$\mathbb{P}^{\mathscr{E}}(\mathscr{N}_z^{T^1}=0)=\mathbb{P}^{\mathscr{E}}(T_z>T_e)$$
 and for all $k\geq 1$

$$\mathbb{P}^{\mathscr{E}}(\mathscr{N}_{z}^{T^{1}}=k)=\mathbb{P}^{\mathscr{E}}(T_{z}< T_{e})\mathbb{P}^{\mathscr{E}}_{z^{*}}(T_{z}< T_{e})^{k-1}\mathbb{P}^{\mathscr{E}}_{z^{*}}(T_{z}> T_{e}).$$

•The law of $\mathcal{N}_z^{T^1}$ conditionally given $(\mathcal{N}_v^{T^1})_{v \leq z}$:

$$\mathscr{N}_{z}^{T^{1}} \sim \mathsf{BinNeg}\left(\mathscr{N}_{z^{*}}^{T^{1}}, (e^{V(z^{*})-V(z)})^{-1}\right) \; \mathsf{under} \; \mathbb{P}^{\mathscr{E}}.$$