# Ranges of randomly biased random walks on trees 

## Alexis Kagan

Institut Denis Poisson, Université d'Orléans
Random Networks and Interacting Particle Systems
September 10, 2021

## Marked trees

Let

$$
\mathscr{U}:=\bigcup_{n \in \mathbb{N}}\left(\mathbb{N}^{*}\right)^{n}
$$

By convention, $\left(\mathbb{N}^{*}\right)^{0}=\{e\}, e$ is the sequence with length 0 . $A$ tree $\omega$ is a subset of $\mathscr{U}$ such that

- $e \in \omega$,

■ $u v \in \omega \Longrightarrow u \in \omega$,
■ for any $u \in \omega$, there exists $N_{u} \in \mathbb{N}$ such that $u j \in \omega$ if and only if $j \in\left\{1, \ldots, N_{u}\right\}$.
For a tree $\omega,\left(\omega,\left(A_{u} ; u \in \omega\right)\right)$ is called a marked tree where $A_{u}>0$ for all $u \in \omega$.


Notations: For $u \in \omega$

- $|u|=d_{\omega}(e, u)$ is the generation of $u$,
- for all $v \in \omega, v \leq u$ if and only if $v$ is an ancestor of $u$ and $u_{n}$ is the only ancestor of $u$ such that $|u|=n$,
- $u^{*}$ is the parent of $u$, the most recent ancestor of $u$.

Let $V(z)$ be the branching potential:

$$
V(z):=-\sum_{u \leq z} \log A_{u}=-\sum_{i=1}^{|z|} \log A_{z_{i}}
$$

## Galton-Watson marked tree $\mathbb{T}$

$N$ with law $\left(p_{k}\right)_{k \in \mathbb{N}}$ on $\mathbb{N}$ such that $\sum_{k \geq 0} k p_{k}>1$ and $A$ random variable on $(0, \infty)$.

- Generation 0: one individual (e,1).
- Generation $n \geq 1$ : generation $n-1$ empty $\Rightarrow$ generation $n$ empty. Otherwise, given generation $n-1$, each individual ( $u, A_{u}$ ) of generation $n-1$ gives birth to $N_{u}$ individuals $\left(u^{i}, A_{u^{i}}\right), i \in\left\{1, \ldots, N_{u^{i}}\right\}$, independently according to $(N, A)$.
$\mathbb{T}$ : the genealogical tree of this population with root $e$.
Random environment: the random marked tree ( $\mathbb{T}, A_{u} ; u \in \mathbb{T}$ ).
$\mathbf{P}=$ law of $\left(\mathbb{T}, A_{u} ; u \in \mathbb{T}\right)$ and $\mathbf{P}^{*}:=\mathbf{P}(\cdot \mid$ non-extinction $)$.


## Random walk on Galton-Watson tree $\mathbb{T}$

Given $\mathscr{E}=(\omega, A(u) ; u \in \omega), X=\left(X_{m}\right)$ is a random walk under $\left\{\mathbb{P}_{z}^{\mathscr{E}} ; z \in \omega\right\}$ on $\omega$ with $X_{0}=e$ and probability transition:

$$
\left\{\begin{array}{l}
p^{\mathscr{E}}\left(u, u^{*}\right)=\frac{1}{1+\sum_{k=1}^{N_{u}} A\left(u^{k}\right)}=\frac{e^{-V(u)}}{e^{-V(u)}+\sum_{k=1}^{N_{u}} e^{-V\left(u^{k}\right)}}, \\
p^{\mathscr{E}}\left(u, u^{i}\right)=\frac{A\left(u^{i}\right)}{1+\sum_{k=1}^{N_{u} A\left(u^{k}\right)}=\frac{e^{-V\left(u^{i}\right)}}{e^{-V(u)}+\sum_{k=1}^{N_{u}} e^{-V\left(u^{k}\right)}} .} \\
\mathbb{P}(\cdot):=\int_{\mathscr{E}} \mathbb{P}^{\mathscr{E}}(\cdot) \mathbf{P}(\mathrm{d} \mathscr{E})^{\mu^{u^{*}}} \text { and } \mathbb{P}^{*}(\cdot):=\int_{\mathscr{E}} \mathbb{P}^{\mathscr{E}}(\cdot) \mathbf{P}^{*}(\mathrm{~d} \mathscr{E})
\end{array}\right.
$$

## The slow random walk on Galton-Watson tree $\mathbb{T}$

$\log$-Laplace transform: $\psi(t):=\log \mathbf{E}\left[\sum_{|z|=1} e^{-t V(z)}\right]$. Boundary case for the branching potential $(V(u))_{u \in \omega}$ :

$$
\psi(1)=\psi^{\prime}(1)=0
$$

■ $X$ is null recurrent,
■ $X$ is slow: $\mathbb{P}^{*}$ - almost surely

$$
\begin{aligned}
& \quad \frac{1}{(\log n)^{3}} \max _{j \leq n}\left|X_{j}\right| \underset{n \rightarrow \infty}{\longrightarrow} C_{1}>0 . \\
& (\text { Farand, HM, She, 1z) }
\end{aligned}
$$

## Regular range of the walk

Let $\mathscr{E}=(\omega, A(u) ; u \in \omega)$ a given environment.
The sub-tree $\left\{u \in \omega ; \exists j \leq n: X_{j}=u\right\}$ of $\omega$ :


The regular range up to the time $n$ is defined by:

$$
R_{n}:=\#\left\{u \in \omega ; \exists j \leq n: X_{j}=u\right\} .
$$

Asymptotic of $R_{n}$ : in $\mathbb{P}^{*}$-probability

$$
\frac{\log n}{n} R_{n} \underset{n \rightarrow \infty}{\longrightarrow} C_{2}>0
$$

(Anohooletti, chen, 18)

## Extensions of the regular range

Introduce the local time $\mathscr{L}_{z}^{n}$ of the vertex $z$ at $n$ :

$$
\mathscr{L}_{z}^{n}:=\sum_{k=1}^{n} \mathbb{1}_{\left\{X_{k}=z\right\}} .
$$

We add some constraints both on the trajectories of the walk and of the branching potential: for all $b \in(0,1), k, n \in \mathbb{N}^{*}$, let $E_{n}^{k} \subset \mathbb{R}^{k}$ and introduce

$$
\begin{aligned}
\mathscr{R}_{n}^{(b)}: & =\#\left\{z \in \omega ; \mathscr{L}_{z}^{n} \geq n^{b} \text { and }\left(V\left(z_{1}\right), \ldots, V(z)\right) \in E_{n}^{|z|}\right\} \\
& =\sum_{z \in \omega} \mathbb{1}_{\left\{\mathscr{L}_{z}^{n} \geq n^{b},\left(V\left(z_{1}\right), \ldots, V(z)\right) \in E_{n}^{|z|}\right\}} .
\end{aligned}
$$

and

$$
\begin{aligned}
\mathscr{R}_{n}^{X}: & =\#\left\{j \leq n ;\left(V(u) ; e<u \leq X_{j}\right) \in E_{n}^{\left|X_{j}\right|}\right\} \\
& =\sum_{z \in \omega} \mathscr{L}_{z}^{n} \mathbb{1}_{\left\{\left(V\left(z_{1}\right), \ldots, V(z)\right) \in E_{n}^{|z|}\right\}} .
\end{aligned}
$$

Define

$$
r_{n}:=\mathbf{E}\left[\sum_{z \in \omega} e^{-V(z)} \mathbb{1}_{\left\{\left(V\left(z_{1}\right), \ldots, V(z)\right) \in E_{n}^{|z|}\right\}}\right] \in(0,1),
$$

and assume technical hypotheses only depending on the branching potential $V$ and $E_{n}^{k}, k, n \geq 1$.

## Theorem (Andreoletti-K. 21+)

If $(\log n)^{\gamma}=o\left(\log r_{n}\right)$ for some $\gamma \in(0,1)$ then in $\mathbb{P}^{*}$-probability

$$
\frac{\log ^{+} \mathscr{R}_{n}^{(b)}-(1-b) \log n}{\log r_{n}} \underset{n \rightarrow \infty}{\longrightarrow} 1 \quad \text { and } \quad \frac{\log ^{+} \mathscr{R}_{n}^{X}-\log n}{\log r_{n}} \underset{n \rightarrow \infty}{\longrightarrow} 1
$$

else in $\mathbb{P}^{*}$-probability

$$
\frac{\log ^{+} \mathscr{R}_{n}^{(b)}}{\log n} \underset{n \rightarrow \infty}{\longrightarrow} 1-b \text { and } \frac{\log ^{+} \mathscr{R}_{n}^{X}}{\log n} \underset{n \rightarrow \infty}{\longrightarrow} 1
$$

## Examples

- Heavy range: $\mathscr{R}_{n}^{(b)}=\sum_{z \in \omega} \mathbb{1}_{\left\{\mathscr{L}_{z}^{n} \geq n^{b}\right\}} b \in(0,1)$

$$
\begin{aligned}
& \frac{\log ^{+} \mathscr{R}_{n}^{(b)}}{\log n} \underset{n \rightarrow \infty}{\longrightarrow} 1-b \quad \text { in } \mathbb{P}^{*} \text { - probability. } \\
& \mathscr{R}_{n}^{(b)} \approx n^{1-b+o(1)} \approx R_{n} n^{-b+o(1)}
\end{aligned}
$$

■ High potential: $\mathscr{R}_{n}^{X}=\sum_{j=1}^{n} \mathbb{1}_{\left\{V\left(X_{j}\right) \geq(\log n)^{\alpha}\right\}}$ with $\alpha \in(1,2)$

$$
\begin{aligned}
& \frac{\log ^{+} \mathscr{R}_{n}^{X}-\log n}{(\log n)^{\alpha-1}} \underset{n \rightarrow \infty}{\longrightarrow}-1 \quad \text { in } \mathbb{P}^{*} \text { - probability. } \\
& \mathscr{R}_{n}^{X} \approx n e^{-(\log n)^{\alpha-1}(1+o(1))} \approx R_{n} e^{-(\log n)^{\alpha-1}(1+o(1))} .
\end{aligned}
$$



■ Heavy range + high potential:

$$
\begin{aligned}
& \mathscr{R}_{n}^{(b)}=\sum_{z \in \omega} \mathbb{1}_{\left\{\mathscr{L}_{2}^{n} \geq n^{b}, V\left(z_{i}\right) \geq(\log n)^{\alpha} \forall\left\lfloor\frac{|z|}{\beta}\right\rfloor \leq i \leq|z|\right\}} \text { with } \beta \geq 1 \\
& \frac{\log \mathscr{R}_{n}^{(b)}-(1-b) \log n}{(\log n)^{\alpha-1}} \underset{n \rightarrow \infty}{\longrightarrow}-f(\beta) \quad \text { in } \mathbb{P}^{*} \text { - probability. } \\
& \mathscr{R}_{n}^{(b)} \approx n e_{n-b}^{-f(\beta)(\log n)^{\alpha-1}(1+o(1))} \approx R_{n} e^{-f(\beta)(\log n)^{\alpha-1}(1+o(1))} \times n^{-b}
\end{aligned}
$$

with $f:[1, \infty) \longrightarrow(0, \infty)$ an increasing and continuous


## Sketch of proof

Recall

$$
\begin{aligned}
\mathscr{R}_{n}^{(b)} & =\#\left\{z \in \omega ; \mathscr{L}_{z}^{n} \geq n^{b} \text { and }\left(V\left(z_{1}\right), \ldots, V(z)\right) \in E_{n}^{|z|}\right\} \\
& =\sum_{z \in \omega} \mathbb{1}_{\left\{\mathscr{L}_{z}^{n} \geq n^{b},\left(V\left(z_{1}\right), \ldots, V(z)\right) \in E_{n}^{|z|}\right\}} .
\end{aligned}
$$

Goal: show that $\mathscr{R}_{n}^{(b)} \approx \mathbb{E}\left[\mathscr{R}_{n}^{(b)}\right]=n^{1-b} r_{n}^{1+o(1)}$ with high probability.

Upper bound: Markov inequality.
Lower bound: Bienaymé-Tchebychev type inequalities.

## Edge local time and excursions above the root e

Introduce the edge local time $\mathscr{N}_{z}^{m}$ of $z$ at $m$ :

$$
\mathscr{N}_{z}^{m}:=\sum_{k=1}^{m} \mathbb{1}_{\left\{X_{k-1}=z^{*}, X_{k}=z\right\}}
$$

Let $T^{0}=0$ and for any $n \geq 1, T^{n}=\inf \left\{j>T^{n-1} ; X_{j}=e\right\}$.
Remark: $\mathscr{L}_{z}^{T^{n}}=\mathscr{N}_{z}^{T^{n}}+\sum_{i=1}^{N_{z}} \mathscr{N}_{z^{i}}^{T^{n}}$


Introduce the edge local time $N_{z}^{m}$ of $z$ at $m$ :

$$
\mathscr{N}_{z}^{m}:=\sum_{k=1}^{m} \mathbb{1}_{\left\{X_{k-1}=z^{*}, X_{k}=z\right\}}
$$

Let $T^{0}=0$ and for any $n \geq 1, T^{n}=\inf \left\{j>T^{n-1} ; X_{j}=e\right\}$.
Remark: $\mathscr{L}_{z}^{T^{n}}=\mathscr{N}_{z}^{T^{n}}+\sum_{i=1}^{N_{z}} \mathscr{N}_{z^{i}}^{T^{n}}$.
Fact: strong bias towards the root $e$ :

$$
\frac{T^{n}}{n \log n} \underset{n \rightarrow \infty}{\longrightarrow} X \in(0, \infty) \quad \text { in } \mathbb{P}^{*} \text { - probability }
$$

$\Longrightarrow$ we can study $\mathscr{N}_{z}{ }^{T^{n}}$ instead of $\mathscr{L}_{z}^{n}$.

Let

$$
\mathscr{G}_{n}:=\left\{z \in \omega ;|z| \leq(\log n)^{3} \text { and } \bar{V}(z) \geq 3 \log n\right\} .
$$

where $\bar{V}(z)=\max _{u \leq z} V(u)$.
Fact: Any vertex in $\mathscr{G}_{n}$ visited at least once during the first $n$ excursions above the root $e$ is actually visited during a single excursion.

Indeed, $E_{z}^{n}:=\sum_{j=1}^{n} \mathbb{1}_{\left\{\exists k \in\left[T^{j-1}, T^{j}\right): X_{k}=z\right\}} \sim \operatorname{Bin}\left(n, \mathbb{P}^{\mathscr{E}}\left(T_{x}<T_{e}\right)\right)$ under $\mathbb{P}^{\mathscr{E}}$ and $\mathbb{P}^{\mathscr{E}}\left(T_{x}<T_{e}\right) \leq e^{-\bar{V}(z)}$ so we have

$$
\mathbb{P}\left(\exists z \in \mathscr{G}_{n}: E_{z}^{n} \geq 2\right) \leq n^{2}(\log n)^{3} e^{-3 \log n}=\frac{(\log n)^{3}}{n}
$$

$\Longrightarrow \mathscr{R}_{n}(b) \gtrsim \sum_{j=1}^{n} \mathscr{R}_{j, n}(b)$ where

$$
\mathscr{R}_{j, n}(b):=\sum_{z \in \mathscr{G}_{n}} \mathbb{1}_{\left\{\mathscr{N}_{z}^{\top j}-\mathscr{N}_{z}^{T j-1} \geq n^{b},\left(V\left(z_{1}\right), \ldots, V(z)\right) \in E_{n}^{|z|}\right\}, ~},
$$

i.i.d with law $\mathscr{R}_{1, n}(b)$ under $\mathbb{P}^{\mathscr{E}}$.
$\mathbb{E}^{\mathscr{E}}\left[\sum_{j=1}^{n} \mathscr{R}_{j, n}(b)\right]=n \mathbb{E}^{\mathscr{E}}\left[\mathscr{R}_{1, n}(b)\right]$ and

$$
\mathbb{E}^{\mathscr{E}}\left[\mathscr{R}_{1, n}(b)\right]=\sum_{z \in \mathscr{G}_{n}} \mathbb{P}^{\mathscr{E}}\left(\mathscr{N}_{z}^{T^{1}} \geq n^{b}\right) \mathbb{1}_{\left\{\left(V\left(z_{1}\right), \ldots, V(z)\right) \in E_{n}^{|z|}\right\}}
$$

$\operatorname{Var}^{\mathscr{E}}\left(\sum_{j=1}^{n} \mathscr{R}_{j, n}(b)\right)=n \mathbb{V} \operatorname{ar}^{\mathscr{E}}\left(\mathscr{R}_{1, n}(b)\right) \leq n \mathbb{E}^{\mathscr{E}}\left[\mathscr{R}_{1, n}(b)^{2}\right]$ and $\mathbb{E}^{\mathscr{E}}\left[\mathscr{R}_{1, n}(b)^{2}\right]=\sum_{z, u \in \mathscr{G}_{n}} \mathbb{P}^{\mathscr{E}}\left(\mathscr{N}_{z}^{T^{1}} \vee \mathscr{N}_{u}^{T^{1}} \geq n^{b}\right) \mathbb{1}_{\left\{\left(V\left(z_{1}\right), \ldots, V(z)\right) \in E_{n}^{|z|}\right\}}$

$$
\times \mathbb{1}_{\left\{\left(V\left(u_{1}\right), \ldots, V(u)\right) \in E_{n}^{|u|}\right\}} .
$$

- The law of $\mathscr{N}_{z}{ }^{1}$ :

$$
\mathbb{P}^{\mathscr{E}}\left(\mathscr{N}_{z}^{T^{1}}=0\right)=\mathbb{P}^{\mathscr{E}}\left(T_{z}>T_{e}\right) \text { and for all } k \geq 1
$$

$$
\mathbb{P}^{\mathscr{E}}\left(\mathscr{N}_{z}^{T^{1}}=k\right)=\mathbb{P}^{\mathscr{E}}\left(T_{z}<T_{e}\right) \mathbb{P}_{z^{*}}^{\mathscr{E}}\left(T_{z}<T_{e}\right)^{k-1} \mathbb{P}_{z^{*}}^{\mathscr{E}}\left(T_{z}>T_{e}\right)
$$

- The law of $\mathscr{N}_{z} T^{1}$ conditionally given $\left(\mathscr{N}_{v}{ }^{1}\right)_{v \leq z}$ :
$\mathscr{N}_{z}^{T^{1}} \sim \operatorname{BinNeg}\left(\mathscr{N}_{z^{*}}^{T^{1}},\left(e^{V\left(z^{*}\right)-V(z)}\right)^{-1}\right)$ under $\mathbb{P}^{\mathscr{E}}$.

