
. . . . . .

.

......

The Non-Planar Drainage Networks with Dependence

and Their Scaling Limit

Azadeh Parvaneh
(University of Isfahan)

Joint work with Prof. Rahul Roy (Indian Statistical Institute, Delhi Centre)

September, 2021

September, 2021 1/58



. . . . . .

Consider the integer lattice Z2 and fix p ∈ (0, 1). Let {Uv :
v ∈ Z2} and {Uv,w : v,w ∈ Z2,v(2) < w(2)} be two inde-
pendent collections of i.i.d. uniform (0, 1) random variables.

A vertex v ∈ Z2 is said to be open if Uv < p, and it is closed
otherwise. Let V := {v : v is open}.
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.. Model 1 (Introduced by (Athreya et al., 2008))
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.. Model 1 (Introduced by (Athreya et al., 2008))
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.. Model 1 (Introduced by (Athreya et al., 2008))
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.. Model 2 (Originated from (Roy et al., 2016))
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.. Model 2 (Originated from (Roy et al., 2016))
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.. Model 2 (Originated from (Roy et al., 2016))
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Now look at the graph as a collection of particles, each particle is doing

a random walk. For this purpose, consider the horizontal axis as the

space and the vertical axis as the time.
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Figure: A possible realization in Model 1.
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How can the motion of one or more particles be followed
over time?

To answer this question, a process starting at a finite number of
points is constructed. For some k ≥ 1, fix vertices u1,u2, . . . ,uk

with u1(2) = u2(2) = · · · = uk(2). In this presentation, the pro-
cess started from just one point is, intuitively, described because
its extension to k > 1 arbitrary points is straightforward.
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.. The Construction of Model 1
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.. The Construction

Taking

Xi,m :=

{
(ui,m, ti,m) for Model 1,
(ci,m, di,m,∆i,m, πi,m) for Model 2,

for 1 ≤ i ≤ k and m ≥ 0, from the construction it is clear that, the
process {(X1,m, . . . ,Xk,m) : m ≥ 0} is a Markov process on the state
space (Z2 × N)k for Model 1 and (Z2 × (N ∪ {0})× P× ⊓)k for Model
2, where P is the set of all subsets of {(⟨u,v⟩, x) : u,v ∈ Z2,u(2) <
v(2), x ∈ N ∪ {0}} and

⊓ =
{
(w1, . . . ,wn) ∈ Z2 × · · · × Z2 : n ∈ N,w1(2) < · · · < wn(2)

}
.
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.. Regeneration Time
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.. Regeneration Time

The random variable T has exponentially decaying tail probabil-
ities.

.
Proposition
..

......

There exist positive constants C1 and C2 such that

P{T ≥ n} ≤ C1exp{−C2n},

for all real positive number n.
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.. Coalescence Time

The graphs are trees almost surely, but we also show that:

b b
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νk

k

P{νk ≥ n} ≤ C|k|√
n
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.. Coalescence Time

For this purpose, we use the following theorem by Coupier et al. (2021):

.
Theorem
..

......

Let {Wn : n ≥ 0} be a discrete time adapted process with respect to a filtration {Gn : n ≥ 0} taking
values in {0, 1, . . .}. Suppose there exist positive constants M0, C3, C4, C5 and C6 such that for
all n ≥ 0,

(a) there exists an event An+1 ∈ Gn+1 such that on the event {Wn > M0}, we have P{Ac
n+1 |

Gn} ≤ C3/W
2+ε
n for some ε ∈ (0, 1], and E[(Wn+1 − Wn)1(An+1) | Gn] = 0;

(b) on the event {Wn ∈ (0,M0]}, E[Wn+1 − Wn | Gn] ≤ C4;

(c) for any m > 0, there exists pm > 0 such that on the event {Wn ∈ (0,m]}, P{Wn+1 = 0 |
Gn} ≥ pm;

(d) on the event {Wn > M0}, we have E[(Wn+1 − Wn)2 | Gn] ≥ C5 and E[|Wn+1 − Wn|3 |
Gn] ≤ C6.

Then, if ν := inf{n ≥ 1 : Wn = 0}, there is a positive constant C7 such that for any y ≥ 1 and
positive real number m, we have

P{ν ≥ m | W0 = y} ≤
C7y
√
m

.
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.. Coalescence Time

For each m ∈ Z, let Fm := σ
(
{Uz, Uv,w : z,v,w ∈ Z2, z(2) ≤ m,v(2) <

w(2) ≤ m}
)
. Consider the process starting from two arbitrary vertices

u1,u2 ∈ Z2 with u1(2) = u2(2) where, without loss of generality, u1(2) = 0.
For n ≥ 0, define Tn := Tn(u1,u2) as the time of the n-th joint regeneration
and

Zn = Zn(u1,u2) := |gn(u1)(1)− gn(u2)(1)|,
where gn(u1) and gn(u2) are the positions of the paths started at u1 and
u2 at time Tn, respectively. We can easily find that {Zn : n ≥ 0} is an
{FTn : n ≥ 0} adapted process. So taking

nu1,u2 := inf{n ≥ 1 : Zn = 0},

which is the first joint regeneration step in which two paths starting from u1

and u2 coalesce, we apply the theorem of Coupier et al. (2021) to obtain

P
{
nu1,u2 ≥ k | Z0 = y

}
≤ C

y√
k
, (1)

for all y ≥ 1 and positive real number k and some positive constant C.
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Consider each path as a collection of piecewise linear edges in such
a way that a path starting from u is the map πu : [u(2),∞) → R
with πu(hk(u)(2)) = hk(u)(1) and it is linear on [hk(u)(2), hk+1(u)(2)]
for each k ≥ 0.

Consider a path π ∈ X with the starting time σπ. For each
n ∈ N and some normalization constants σ, γ > 0, the scaled
path π(n)(σ, γ) is defined by

π(n)(σ, γ) : [σπ/(n
2γ),∞) → R

such that π(n)(σ, γ)(t) = π(n2γt)/(nσ). We denote the collection

of scaled paths by χn(σ, γ) := {π(n)
u (σ, γ) : u ∈ V}.
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Taking σ = [Var(π0(T1(0))]
1
2 and γ = E[T1(0)], it is proved that π

(n)
0 (σ, γ) ⇒

B0 as n → ∞, where Bx is the Brownian motion (with unit diffusion con-

stant) starting from x ∈ R2. As a result, if (un(1)/(nσ),un(2)/(n
2γ))

P−→ u,

then π
(n)
un (σ, γ) ⇒ Bu as n → ∞.

after rescaling by ( 1
nσ

, 1
n2γ

)

b

b

b

b

b

b

b b
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For a finite number of paths, the limit is coalescing Brownian
motions: a system of Brownian motions so that every two paths
move independently until they meet, and then, they coalesce and
move independent from the remaining paths.
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.. Main Result

.
Theorem
..

......

For each of the models, there exist σ := σ(p) and γ := γ(p)
such that as n → ∞, χ̄n(σ, γ) converges in distribution to the
(standard) Brownian web W.
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.. Brownian Web

Intuitively, the Brownian web is a collection of 1-dimensional coalescing
Brownian motions starting from every point (x, t) in the space-time
plane R2. It arises naturally as the diffusive scaling limit of a system
of 1-dimensional coalescing random walks starting from every vertex of
the space-time lattice Z2

even := {(i, j) ∈ Z2 : i+ j is even}.

First, Arratia (1979, 1981) considered the Brownian web to study the
scaling limit of the voter models. Next, Tóth and Werner (1998) also
considered the Brownian web for their study of the true self-repelling
motion.

Later, Fontes, Isopi, Newman and Ravishankar (2002, 2004) in-
troduced it as a random variable taking values in the space of compact
sets of paths.
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.. Brownian Web

Briefly, consider the following complete separable metric spaces:

.

......

(R2
c , ρ): a space of points which is the completion of R2 under the

metric ρ;

(Π, d): a space of paths with specified starting points;

(H, dH): the Hausdorff metric space of compact subsets of Π.
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.. Brownian Web

Let BH be the Borel σ-algebra generated by the metric dH. The Brow-
nian web W is an (H,BH) valued random variable whose distribution
is uniquely characterized by the following three properties:

for each deterministic point x ∈ R2, there is a unique path π̃x ∈ W
starting from x almost surely;

for each k ≥ 1 and any finite set of deterministic points x1, . . . ,xk ∈
R2, the collection {π̃x1 , . . . , π̃xk

} is distributed as coalescing Brow-
nian motions starting from x1, . . . ,xk;

for any countable deterministic dense set D ⊆ R2, W is the closure
of {π̃x : x ∈ D} in (Π, d) almost surely.
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.. The Method of Proof

The method of proof follows Theorem 5.1, Proposition B.1 of
(Fontes et al., 2004) and Theorem 1.4 of (Newman et al.,
2005), where four conditions (I1), (B

′
1), (T1) and (E′

1) need to
be checked.
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.. The Method of Proof

(I1) For all y ∈ R2, there exist ζyn ∈ χ̄n(σ, γ) such that for
any finite set of points y1, . . . ,yk from a deterministic countable
dense set D of R2, (ζy1

n , . . . , ζyk
n ) ⇒ (Wy1 , . . . ,Wyk

) as n → ∞,
where (Wy1 , . . . ,Wyk

) is the coalescing Brownian motions (with
unit diffusion constant) starting from k points y1, . . . ,yk.
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.. The Method of Proof

(B′
1) For all β > 0,

lim sup
ε→0+

lim sup
n→∞

sup
t>β

sup
(a,t0)∈R2

P{ηχ̄n(σ,γ)(t0, t; a, a+ ε) ≥ 2} = 0.

×××××

t0

t0 + t

a a+ ε

In this realization, ηχ̄n(σ,γ)(t0, t; a, a+ ε) is 5.
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.. The Method of Proof

(T1) Let ΛL,T := [−L,L]× [−T, T ]. Then, for every u, L, T ∈ (0,∞),

lim sup
t→0+

1

t
lim sup
n→∞

sup
(x0,t0)∈ΛL,T

P{Aχ̄n(σ,γ)(x0, t0;u, t)} = 0.

bt0

t0 + t

t0 + 2t

x0x0 − u x0 + ux0 − 21u x0 + 21u

A realization of the event Aχ̄n(σ,γ)(x0, t0;u, t).

not-to-scale
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.. The Method of Proof

(E′
1) For every t0 ∈ R, if Zt0 is any subsequential limit of {χ̄t0

n : n ∈ N},
where χ̄t0

n is the subset of paths in χ̄n(σ, γ) which start before or at time t0,
then for all t, a, b ∈ R with t > 0 and a < b,

E[η̂Zt0 (t0, t; a, b)] ≤ E[η̂W(t0, t; a, b)].

×××

t0

t0 + t
a b

In this realization, η̂Γ(t0, t; a, b) is 3.
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.. Similar Studies

Convergence to the Brownian web for a system with
(possible) crossing paths:

Newman, Ravishankar and Sun (2005)

Coletti and Valle (2014)

Convergence to the Brownian web for a system with non-
Markovian nature:

Roy, Saha and Sarkar (2016)

Coupier, Saha, Sarkar and Tran (2021)
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.. Next Result

Our method of proof can also be applied to the study of the
generalized Howard’s model (Coletti and Valle, 2014) to relax
the condition they need to show convergence to the Brownian
web.
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.. Generalized Drainage Network Model (Coletti and Valle, 2014)

Let {ζv : v ∈ Z2} be another independent collection of i.i.d. random
variables taking values in N according to a probability mass function q.

bc b bc bc bc bc b bc

bc

bc bc

bc

bc

b

b

b

b

bc

bc

bc

bc

b

bc

bc

u v

ζu takes value 2 and ζv takes value 3

Coletti and Valle have shown that if q has a finite range (that means
there exists a set F ⊆ N such that |F | < ∞ and q(n) ̸= 0 if and only
if n ∈ F ), then χ̄n (the closure of the collection of all suitably rescaled
paths) converges in distribution to the (standard) Brownian web W as
n → ∞. However, our method just needs that q has a finite 6-th
moment.
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Thank You For Your Attention!
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