The time constant for Bernoulli percolation is Lipschitz continuous strictly above p_c

Barbara Dembin

ETH Zürich

Percolation

Percolation

- Graph $(\mathbb{Z}^d, \mathbb{E}^d)$, $d \geq 2$.
- $(B(e))_{e \in \mathbb{E}^d}$: i.i.d. family of Bernoulli random variable of parameter $p \in [0, 1]$.
- $B(e) = 1 \implies e$ is open.
- $B(e) = 0 \implies e$ is closed.

Figure 1: Simulation of percolation for parameters p = 0.1; 0.3 and 0.6

- Random graph $\mathcal{G}_p = (\mathbb{Z}^d, \{e \in \mathbb{E}^d : B(e) = 1\}).$
- $C_p(0)$: the connected component of 0 in G_p .

Definition (Percolation probability)

$$\forall p \in [0,1] \qquad \theta(p) = \mathbb{P}(|\mathcal{C}_p(0)| = \infty).$$

- Random graph $\mathcal{G}_p = (\mathbb{Z}^d, \{e \in \mathbb{E}^d : B(e) = 1\}).$
- $C_p(0)$: the connected component of 0 in G_p .

Definition (Percolation probability)

$$\forall p \in [0,1]$$
 $\theta(p) = \mathbb{P}(|\mathcal{C}_p(0)| = \infty).$

• $\theta(0) = 0$

- Random graph $\mathcal{G}_p = (\mathbb{Z}^d, \{e \in \mathbb{E}^d : B(e) = 1\}).$
- $C_p(0)$: the connected component of 0 in G_p .

Definition (Percolation probability)

$$\forall p \in [0,1]$$
 $\theta(p) = \mathbb{P}(|\mathcal{C}_p(0)| = \infty).$

- $\theta(0) = 0$
- $\theta(1) = 1$

- Random graph $\mathcal{G}_p = (\mathbb{Z}^d, \{e \in \mathbb{E}^d : B(e) = 1\}).$
- $C_p(0)$: the connected component of 0 in G_p .

Definition (Percolation probability)

$$\forall p \in [0,1]$$
 $\theta(p) = \mathbb{P}(|\mathcal{C}_p(0)| = \infty).$

- $\theta(0) = 0$
- $\theta(1) = 1$
- $p \mapsto \theta(p)$ is nondecreasing

Phase transition

Definition (Critical parameter)

$$p_c = \sup \{ p : \theta(p) = 0 \}$$

Phase transition at $p_c \in]0,1[$:

Theorem (Broadbendt-Hammersley 57-59,...)

- Graph $(\mathbb{Z}^d, \mathbb{E}^d)$, $d \geq 2$.
- $(t(e))_{e \in \mathbb{E}^d}$: i.i.d random variables distributed according to a distribution G on $\mathbb{R}_+ \cup \{+\infty\}$

- Graph $(\mathbb{Z}^d, \mathbb{E}^d)$, $d \geq 2$.
- $(t(e))_{e \in \mathbb{E}^d}$: i.i.d random variables distributed according to a distribution G on $\mathbb{R}_+ \cup \{+\infty\}$
- t(e): time to cross $e \in \mathbb{E}^d$.

- Graph $(\mathbb{Z}^d, \mathbb{E}^d)$, $d \geq 2$.
- $(t(e))_{e \in \mathbb{E}^d}$: i.i.d random variables distributed according to a distribution G on $\mathbb{R}_+ \cup \{+\infty\}$
- t(e): time to cross $e \in \mathbb{E}^d$.
- Random pseudo-metric T_G :

$$\forall x,y \in \mathbb{Z}^d$$
 $T_G(x,y) = \inf \left\{ \sum_{e \in \gamma} t(e) : \gamma \text{ path from } x \text{ to } y \right\}.$

- Graph $(\mathbb{Z}^d, \mathbb{E}^d)$, $d \geq 2$.
- $(t(e))_{e \in \mathbb{E}^d}$: i.i.d random variables distributed according to a distribution G on $\mathbb{R}_+ \cup \{+\infty\}$
- t(e): time to cross $e \in \mathbb{E}^d$.
- Random pseudo-metric T_G :

$$\forall x,y \in \mathbb{Z}^d$$
 $T_G(x,y) = \inf \left\{ \sum_{e \in \gamma} t(e) : \gamma \text{ path from } x \text{ to } y \right\}.$

What is the asymptotic value of $T_G(0, nx)$?

First passage percolation: Definition of the time constant

Theorem (Hammersley-Welsh 65, Kingman 73-75)

Under some conditions on G, we have

$$\forall x \in \mathbb{Z}^d$$
 $\lim_{n \to \infty} \frac{T_G(0, nx)}{n} = \mu_G(x)$ almost surely and in L^1 .

where $\mu_G(x)$ is a deterministic constant. This is the so-called time constant.

First passage percolation: Definition of the time constant

Theorem (Hammersley-Welsh 65, Kingman 73-75)

Under some conditions on G, we have

$$\forall x \in \mathbb{Z}^d$$
 $\lim_{n \to \infty} \frac{T_G(0, nx)}{n} = \mu_G(x)$ almost surely and in L^1 .

where $\mu_G(x)$ is a deterministic constant. This is the so-called time constant.

Regularity of μ_G in G?

Theorem (Cox 81,..., Garet-Marchand-Proccacia-Théret 17)

The map $G \mapsto \mu_G$ is continuous.

Time constant in the Bernoulli

case

Graph distance

We are interested in the random metric induced by \mathcal{G}_p when $p>p_c$. We define for x and y in \mathbb{Z}^d

$$\mathcal{D}_p(x,y) = \inf\{|\gamma| : \gamma \text{ path that joins } x \text{ and } y \text{ in } \mathcal{G}_p\}$$

with the convention that $\mathcal{D}_p(x,y)=\infty$ if x and y are not in the same connected component in \mathcal{G}_p .

Graph distance

We are interested in the random metric induced by \mathcal{G}_p when $p>p_c$. We define for x and y in \mathbb{Z}^d

$$\mathcal{D}_p(x,y) = \inf\{|\gamma| : \gamma \text{ path that joins } x \text{ and } y \text{ in } \mathcal{G}_p\}$$

with the convention that $\mathcal{D}_p(x,y) = \infty$ if x and y are not in the same connected component in \mathcal{G}_p .

Set $G_p = p\delta_1 + (1-p)\delta_{\infty}$. We can couple $(t(e))_{e \in \mathbb{E}^d}$ with $(B(e))_{e \in \mathbb{E}^d}$ by setting $B(e) = \mathbb{1}_{t(e)=1}$ so that

$$\mathcal{D}_p = T_{G_p}$$
.

First passage percolation : Definition of the time constant for the graph distance

Theorem (Cerf-Théret 14)

For $p > p_c$, for any $x \in \mathbb{Z}^d$, there exists $\mu_p(x) > 0$ such that

$$\lim_{n\to\infty}\frac{\mathcal{D}_p(\widetilde{0},\widetilde{nx})}{n}=\mu_p(x) \ \text{almost surely and in } L^1$$

where \widetilde{y} is the closest point in \mathcal{C}_p to y. This is the so-called time constant.

First passage percolation : Definition of the time constant for the graph distance

Theorem (Cerf-Théret 14)

For $p > p_c$, for any $x \in \mathbb{Z}^d$, there exists $\mu_p(x) > 0$ such that

$$\lim_{n\to\infty}\frac{\mathcal{D}_p(\widetilde{0},\widetilde{nx})}{n}=\mu_p(x) \text{ almost surely and in } L^1$$

where \widetilde{y} is the closest point in \mathcal{C}_p to y. This is the so-called time constant.

Regularity of μ_p in p?

Regularity of the time constant

Theorem (Garet-Marchand-Proccacia-Théret 17)

The map $p \mapsto \mu_p$ is continuous for $p > p_c$.

Regularity of the time constant

Theorem (Garet-Marchand-Proccacia-Théret 17)

The map $p \mapsto \mu_p$ is continuous for $p > p_c$.

Theorem (D. 18)

Let $p_0 > p_c$, there exists a positive constant C (depending on p_0) such that

$$\forall p,q \in [p_0,1]$$
 $\sup_{\|x\|=1} |\mu_p(x) - \mu_q(x)| \leq C|q-p|\log|q-p|$.

Theorem (Cerf-D. 21)

Let $p_0 > p_c$, there exists a positive constant C (depending on p_0) such that

$$\forall p, q \in [p_0, 1]$$
 $\sup_{\|x\|=1} |\mu_p(x) - \mu_q(x)| \le C|q - p|$.

Let $q>p>p_c$. We couple the percolation in such a way that a p-open edge is q-open using uniform random variable.

Let $q>p>p_c$. We couple the percolation in such a way that a p-open edge is q-open using uniform random variable. It is easy to prove that $\mu_p\geq \mu_q$.

Let $q>p>p_c$. We couple the percolation in such a way that a p-open edge is q-open using uniform random variable. It is easy to prove that $\mu_p\geq \mu_q$. For the other inequality, we have

$$\mathbb{P}(e \text{ is } p\text{-closed}|\ e \text{ is } q\text{-open}) = \mathbb{P}(U(e) \geq p \mid U(e) \leq q) = \frac{q-p}{q}$$
 where $U(e)$ is uniform on $[0,1]$.

Let $q>p>p_c$. We couple the percolation in such a way that a p-open edge is q-open using uniform random variable. It is easy to prove that $\mu_p\geq \mu_q$. For the other inequality, we have

$$\mathbb{P}(e \text{ is } p\text{-closed}|\ e \text{ is } q\text{-open}) = \mathbb{P}(U(e) \geq p \mid U(e) \leq q) = \frac{q-p}{q}$$

where U(e) is uniform on [0,1]. γ is a q-geodesic between 0 and nx. The number of edges to bypass is of order (q-p)n.

Let $q>p>p_c$. We couple the percolation in such a way that a p-open edge is q-open using uniform random variable. It is easy to prove that $\mu_p\geq \mu_q$. For the other inequality, we have

$$\mathbb{P}(e \text{ is } p\text{-closed}|\ e \text{ is } q\text{-open}) = \mathbb{P}(U(e) \geq p \mid U(e) \leq q) = \frac{q-p}{q}$$

where U(e) is uniform on [0,1]. γ is a q-geodesic between 0 and nx. The number of edges to bypass is of order (q-p)n.

Figure 2: Build a *p*-open path upon a *q*-open path for $q > p > p_c$

 γ' is a p-open path. The aim is to get the better control as possible of $|\gamma'\setminus\gamma|$.

 γ' is a $p\text{-}\mathrm{open}$ path. The aim is to get the better control as possible of $|\gamma'\setminus\gamma|$.

$$\mathcal{D}_p(0, nx) \leq |\gamma'| \leq |\gamma| + |\gamma' \setminus \gamma| \leq \mathcal{D}_q(0, nx) + |\gamma' \setminus \gamma|$$

If we prove that $|\gamma'\setminus\gamma|\leq C_0|q-p|n$ then

$$\mu_p \leq \mu_q + C_0 |q - p|.$$

First approach: renormalization

Divide the lattice into boxes of mesoscopic size ${\it N}$. A good box is a box that has good connectivity property. Being a good box is something very likely for ${\it N}$ large.

First approach: renormalization

a good N-boxa p-closed edge

Divide the lattice into boxes of mesoscopic size N. A good box is a box that has good connectivity property. Being a good box is something very likely for N large. Two cases :

- 1. Bad edge in good box
- 2. Bad edge in bad box

Let $q>p>p_c$. γ is the q-geodesic between 0 and nx. We don't reveal which edges need to be bypassed. For each $e\in\gamma$, we define c(e) the cost to bypass e such that:

Let $q>p>p_c$. γ is the q-geodesic between 0 and nx. We don't reveal which edges need to be bypassed. For each $e\in\gamma$, we define c(e) the cost to bypass e such that:

• we can build γ' p-open path such that $|\gamma' \setminus \gamma| \leq \sum_{e \in \gamma} \mathbb{1}_{e \text{ is } p\text{-closed } c(e)}.$

Let $q > p > p_c$. γ is the q-geodesic between 0 and nx. We don't reveal which edges need to be bypassed. For each $e \in \gamma$, we define c(e) the cost to bypass e such that:

- we can build γ' *p*-open path such that $|\gamma' \setminus \gamma| \leq \sum_{e \in \gamma} \mathbb{1}_{e \text{ is } p\text{-closed } c(e)}.$
- $(c(e))_{e \in \gamma}$ do not depend on the *p*-state of edges in γ

Let $q>p>p_c$. γ is the q-geodesic between 0 and nx. We don't reveal which edges need to be bypassed. For each $e\in\gamma$, we define c(e) the cost to bypass e such that:

- we can build γ' p-open path such that $|\gamma' \setminus \gamma| \leq \sum_{e \in \gamma} \mathbb{1}_{e \text{ is } p\text{-closed } c(e)}.$
- $(c(e))_{e \in \gamma}$ do not depend on the *p*-state of edges in γ
- $\sum_{e \in \gamma} c(e)^2 \le Cn$

Let $q>p>p_c$. γ is the q-geodesic between 0 and nx. We don't reveal which edges need to be bypassed. For each $e\in\gamma$, we define c(e) the cost to bypass e such that:

- we can build γ' *p*-open path such that $|\gamma' \setminus \gamma| \leq \sum_{e \in \gamma} \mathbb{1}_{e \text{ is } p\text{-closed } c(e)}.$
- $(c(e))_{e \in \gamma}$ do not depend on the *p*-state of edges in γ
- $\sum_{e \in \gamma} c(e)^2 \le Cn$

We have

$$\mathcal{D}_p(0, nx) \leq |\gamma'| \leq |\gamma| + |\gamma' \setminus \gamma| \leq \mathcal{D}_q(0, nx) + \sum_{e \in \gamma} \mathbb{1}_{e \text{ is } p\text{-closed } c(e)}$$

We have

$$\mathbb{E}\left(\sum_{e\in\gamma}\mathbb{1}_{e \text{ is }p\text{-closed }}c(e)
ight)\leq C(q-p)n$$
 .

We have

$$\mathbb{E}\left(\sum_{e\in\gamma}\mathbb{1}_{e\text{ is }p\text{-closed }}c(e)\right)\leq C(q-p)n.$$

$$\operatorname{Var}\left(\sum_{e\in\gamma}\mathbb{1}_{e\text{ is }p\text{-closed }}c(e)\right)=\sum_{e\in\gamma}c(e)^2\operatorname{Var}(\mathbb{1}_{e\text{ is }p\text{-closed}})\leq Cn\,.$$

We have

$$\mathbb{E}\left(\sum_{e\in\gamma}\mathbb{1}_{e\text{ is }p\text{-closed }}c(e)\right)\leq C(q-p)n.$$

$$\operatorname{Var}\left(\sum_{e\in\gamma}\mathbb{1}_{e\text{ is }p\text{-closed }}c(e)\right)=\sum_{e\in\gamma}c(e)^2\operatorname{Var}(\mathbb{1}_{e\text{ is }p\text{-closed}})\leq Cn\,.$$

By Markov's inequality, we get that with high probability

$$\sum_{e \in \gamma} \mathbb{1}_{e \text{ is } p\text{-closed } c(e)} \leq 2C(q-p)n.$$

We have

$$\mathbb{E}\left(\sum_{e\in\gamma}\mathbb{1}_{e\text{ is }p\text{-closed }}c(e)\right)\leq C(q-p)n.$$

$$\operatorname{Var}\left(\sum_{e\in\gamma}\mathbb{1}_{e\text{ is }p\text{-closed }}c(e)\right)=\sum_{e\in\gamma}c(e)^2\operatorname{Var}(\mathbb{1}_{e\text{ is }p\text{-closed}})\leq Cn\,.$$

By Markov's inequality, we get that with high probability

$$\sum_{e \in \gamma} \mathbb{1}_{e \text{ is } p\text{-closed } c(e)} \leq 2C(q-p)n.$$

To build c(e) we need a multiscale renormalisation. We need to consider an infinite number of scales of box at the same time.

We have

$$\mathbb{E}\left(\sum_{e\in\gamma}\mathbb{1}_{e\text{ is }p\text{-closed }}c(e)\right)\leq C(q-p)n.$$

$$\operatorname{Var}\left(\sum_{e\in\gamma}\mathbb{1}_{e\text{ is }p\text{-closed }}c(e)\right)=\sum_{e\in\gamma}c(e)^2\operatorname{Var}(\mathbb{1}_{e\text{ is }p\text{-closed}})\leq \mathit{Cn}\,.$$

By Markov's inequality, we get that with high probability

$$\sum_{e \in \gamma} \mathbb{1}_{e \text{ is } p\text{-closed } c(e)} \leq 2C(q-p)n.$$

To build c(e) we need a multiscale renormalisation. We need to consider an infinite number of scales of box at the same time. A good box at scale k+1 is good if it does not contain too much bad boxes at scale k.

Thank you for your attention!