The time constant for Bernoulli percolation is Lipschitz continuous strictly above p_{c}

Barbara Dembin

ETH Zürich

Percolation

Percolation

- Graph $\left(\mathbb{Z}^{d}, \mathbb{E}^{d}\right), d \geq 2$.
- $(B(e))_{e \in \mathbb{E}^{d}}$: i.i.d. family of Bernoulli random variable of parameter $p \in[0,1]$.
- $B(e)=1 \Longrightarrow e$ is open.
- $B(e)=0 \Longrightarrow e$ is closed.

Figure 1: Simulation of percolation for parameters $p=0.1 ; 0.3$ and 0.6

Percolation probability

- Random graph $\mathcal{G}_{p}=\left(\mathbb{Z}^{d},\left\{e \in \mathbb{E}^{d}: B(e)=1\right\}\right)$.
- $\mathcal{C}_{p}(0)$: the connected component of 0 in \mathcal{G}_{p}.

Definition (Percolation probability)

$$
\forall p \in[0,1] \quad \theta(p)=\mathbb{P}\left(\left|\mathcal{C}_{p}(0)\right|=\infty\right) .
$$

Percolation probability

- Random graph $\mathcal{G}_{p}=\left(\mathbb{Z}^{d},\left\{e \in \mathbb{E}^{d}: B(e)=1\right\}\right)$.
- $\mathcal{C}_{p}(0)$: the connected component of 0 in \mathcal{G}_{p}.

Definition (Percolation probability)

$$
\forall p \in[0,1] \quad \theta(p)=\mathbb{P}\left(\left|\mathcal{C}_{p}(0)\right|=\infty\right) .
$$

- $\theta(0)=0$

Percolation probability

- Random graph $\mathcal{G}_{p}=\left(\mathbb{Z}^{d},\left\{e \in \mathbb{E}^{d}: B(e)=1\right\}\right)$.
- $\mathcal{C}_{p}(0)$: the connected component of 0 in \mathcal{G}_{p}.

Definition (Percolation probability)

$$
\forall p \in[0,1] \quad \theta(p)=\mathbb{P}\left(\left|\mathcal{C}_{p}(0)\right|=\infty\right) .
$$

- $\theta(0)=0$
- $\theta(1)=1$

Percolation probability

- Random graph $\mathcal{G}_{p}=\left(\mathbb{Z}^{d},\left\{e \in \mathbb{E}^{d}: B(e)=1\right\}\right)$.
- $\mathcal{C}_{p}(0)$: the connected component of 0 in \mathcal{G}_{p}.

Definition (Percolation probability)

$$
\forall p \in[0,1] \quad \theta(p)=\mathbb{P}\left(\left|\mathcal{C}_{p}(0)\right|=\infty\right) .
$$

- $\theta(0)=0$
- $\theta(1)=1$
- $p \mapsto \theta(p)$ is nondecreasing

Phase transition

Definition (Critical parameter)

$$
p_{c}=\sup \{p: \theta(p)=0\}
$$

Phase transition at $\left.p_{c} \in\right] 0,1[$:
Theorem (Broadbendt-Hammersley 57-59,...)

First passage percolation

First passage percolation

- Graph $\left(\mathbb{Z}^{d}, \mathbb{E}^{d}\right), d \geq 2$.
- $(t(e))_{e \in \mathbb{E}^{d}}$: i.i.d random variables distributed according to a distribution G on $\mathbb{R}_{+} \cup\{+\infty\}$

First passage percolation

- Graph $\left(\mathbb{Z}^{d}, \mathbb{E}^{d}\right), d \geq 2$.
- $(t(e))_{e \in \mathbb{E}^{d}}$: i.i.d random variables distributed according to a distribution G on $\mathbb{R}_{+} \cup\{+\infty\}$
- $t(e)$: time to cross $e \in \mathbb{E}^{d}$.

First passage percolation

- Graph $\left(\mathbb{Z}^{d}, \mathbb{E}^{d}\right), d \geq 2$.
- $(t(e))_{e \in \mathbb{E}^{d}}$: i.i.d random variables distributed according to a distribution G on $\mathbb{R}_{+} \cup\{+\infty\}$
- $t(e)$: time to cross $e \in \mathbb{E}^{d}$.
- Random pseudo-metric T_{G} :

$$
\forall x, y \in \mathbb{Z}^{d} \quad T_{G}(x, y)=\inf \left\{\sum_{e \in \gamma} t(e): \gamma \text { path from } x \text { to } y\right\}
$$

First passage percolation

- Graph $\left(\mathbb{Z}^{d}, \mathbb{E}^{d}\right), d \geq 2$.
- $(t(e))_{e \in \mathbb{E}^{d}}$: i.i.d random variables distributed according to a distribution G on $\mathbb{R}_{+} \cup\{+\infty\}$
- $t(e)$: time to cross $e \in \mathbb{E}^{d}$.
- Random pseudo-metric T_{G} :

$$
\forall x, y \in \mathbb{Z}^{d} \quad T_{G}(x, y)=\inf \left\{\sum_{e \in \gamma} t(e): \gamma \text { path from } x \text { to } y\right\}
$$

What is the asymptotic value of $T_{G}(0, n x)$?

First passage percolation : Definition of the time constant

Theorem (Hammersley-Welsh 65, Kingman 73-75)
Under some conditions on G, we have

$$
\forall x \in \mathbb{Z}^{d} \quad \lim _{n \rightarrow \infty} \frac{T_{G}(0, n x)}{n}=\mu_{G}(x) \text { almost surely and in } L^{1} .
$$

where $\mu_{G}(x)$ is a deterministic constant. This is the so-called time constant.

First passage percolation : Definition of the time constant

Theorem (Hammersley-Welsh 65, Kingman 73-75)
Under some conditions on G, we have

$$
\forall x \in \mathbb{Z}^{d} \quad \lim _{n \rightarrow \infty} \frac{T_{G}(0, n x)}{n}=\mu_{G}(x) \text { almost surely and in } L^{1} .
$$

where $\mu_{G}(x)$ is a deterministic constant. This is the so-called time constant.

Regularity of μ_{G} in G ?
Theorem (Cox 81,..., Garet-Marchand-Proccacia-Théret 17)
The map $G \mapsto \mu_{G}$ is continuous.

Time constant in the Bernoulli

case

Graph distance

We are interested in the random metric induced by \mathcal{G}_{p} when $p>p_{c}$. We define for x and y in \mathbb{Z}^{d}

$$
\mathcal{D}_{p}(x, y)=\inf \left\{|\gamma|: \gamma \text { path that joins } x \text { and } y \text { in } \mathcal{G}_{p}\right\}
$$

with the convention that $\mathcal{D}_{p}(x, y)=\infty$ if x and y are not in the same connected component in \mathcal{G}_{p}.

Graph distance

We are interested in the random metric induced by \mathcal{G}_{p} when $p>p_{c}$. We define for x and y in \mathbb{Z}^{d}

$$
\mathcal{D}_{p}(x, y)=\inf \left\{|\gamma|: \gamma \text { path that joins } x \text { and } y \text { in } \mathcal{G}_{p}\right\}
$$

with the convention that $\mathcal{D}_{p}(x, y)=\infty$ if x and y are not in the same connected component in \mathcal{G}_{p}.
Set $G_{p}=p \delta_{1}+(1-p) \delta_{\infty}$. We can couple $(t(e))_{e \in \mathbb{E}^{d}}$ with $(B(e))_{e \in \mathbb{E}^{d}}$ by setting $B(e)=\mathbb{1}_{t(e)=1}$ so that

$$
\mathcal{D}_{p}=T_{G_{p}}
$$

First passage percolation : Definition of the time constant for the graph distance

Theorem (Cerf-Théret 14)

For $p>p_{c}$, for any $x \in \mathbb{Z}^{d}$, there exists $\mu_{p}(x)>0$ such that

$$
\lim _{n \rightarrow \infty} \frac{\mathcal{D}_{p}(\widetilde{0}, \widetilde{n x})}{n}=\mu_{p}(x) \text { almost surely and in } L^{1}
$$

where \tilde{y} is the closest point in \mathcal{C}_{p} to y. This is the so-called time constant.

First passage percolation : Definition of the time constant for the graph distance

Theorem (Cerf-Théret 14)

For $p>p_{c}$, for any $x \in \mathbb{Z}^{d}$, there exists $\mu_{p}(x)>0$ such that

$$
\lim _{n \rightarrow \infty} \frac{\mathcal{D}_{p}(\widetilde{0}, \widetilde{n x})}{n}=\mu_{p}(x) \text { almost surely and in } L^{1}
$$

where \tilde{y} is the closest point in \mathcal{C}_{p} to y. This is the so-called time constant.

Regularity of μ_{p} in p ?

Regularity of the time constant

Theorem (Garet-Marchand-Proccacia-Théret 17)

The map $p \mapsto \mu_{p}$ is continuous for $p>p_{c}$.

Regularity of the time constant

Theorem (Garet-Marchand-Proccacia-Théret 17)

The map $p \mapsto \mu_{p}$ is continuous for $p>p_{c}$.
Theorem (D. 18)
Let $p_{0}>p_{c}$, there exists a positive constant C (depending on p_{0}) such that

$$
\forall p, q \in\left[p_{0}, 1\right] \quad \sup _{\|x\|=1}\left|\mu_{p}(x)-\mu_{q}(x)\right| \leq C|q-p| \log |q-p| .
$$

Theorem (Cerf-D. 21)

Let $p_{0}>p_{c}$, there exists a positive constant C (depending on p_{0}) such that

$$
\forall p, q \in\left[p_{0}, 1\right] \quad \sup _{\|x\|=1}\left|\mu_{p}(x)-\mu_{q}(x)\right| \leq C|q-p| .
$$

General idea of the proof

Let $q>p>p_{c}$. We couple the percolation in such a way that a p-open edge is q-open using uniform random variable.

General idea of the proof

Let $q>p>p_{c}$. We couple the percolation in such a way that a p-open edge is q-open using uniform random variable. It is easy to prove that $\mu_{p} \geq \mu_{q}$.

General idea of the proof

Let $q>p>p_{c}$. We couple the percolation in such a way that a p-open edge is q-open using uniform random variable. It is easy to prove that $\mu_{p} \geq \mu_{q}$. For the other inequality, we have

$$
\mathbb{P}(e \text { is } p \text {-closed } \mid e \text { is } q \text {-open })=\mathbb{P}(U(e) \geq p \mid U(e) \leq q)=\frac{q-p}{q}
$$

where $U(e)$ is uniform on $[0,1]$.

General idea of the proof

Let $q>p>p_{c}$. We couple the percolation in such a way that a p-open edge is q-open using uniform random variable. It is easy to prove that $\mu_{p} \geq \mu_{q}$. For the other inequality, we have

$$
\mathbb{P}(e \text { is } p \text {-closed } \mid e \text { is } q \text {-open })=\mathbb{P}(U(e) \geq p \mid U(e) \leq q)=\frac{q-p}{q}
$$

where $U(e)$ is uniform on $[0,1] . \gamma$ is a q-geodesic between 0 and $n x$. The number of edges to bypass is of order $(q-p) n$.

General idea of the proof

Let $q>p>p_{c}$. We couple the percolation in such a way that a p-open edge is q-open using uniform random variable. It is easy to prove that $\mu_{p} \geq \mu_{q}$. For the other inequality, we have

$$
\mathbb{P}(e \text { is } p \text {-closed } \mid e \text { is } q \text {-open })=\mathbb{P}(U(e) \geq p \mid U(e) \leq q)=\frac{q-p}{q}
$$

where $U(e)$ is uniform on $[0,1] . \gamma$ is a q-geodesic between 0 and $n x$. The number of edges to bypass is of $\operatorname{order}(q-p) n$.

Figure 2: Build a p-open path upon a q-open path for $q>p>p_{c}$

General idea of the proof

γ^{\prime} is a p-open path. The aim is to get the better control as possible of $\left|\gamma^{\prime} \backslash \gamma\right|$.

General idea of the proof

γ^{\prime} is a p-open path. The aim is to get the better control as possible of $\left|\gamma^{\prime} \backslash \gamma\right|$.

$$
\mathcal{D}_{p}(0, n x) \leq\left|\gamma^{\prime}\right| \leq|\gamma|+\left|\gamma^{\prime} \backslash \gamma\right| \leq \mathcal{D}_{q}(0, n x)+\left|\gamma^{\prime} \backslash \gamma\right|
$$

If we prove that $\left|\gamma^{\prime} \backslash \gamma\right| \leq C_{0}|q-p| n$ then

$$
\mu_{p} \leq \mu_{q}+C_{0}|q-p|
$$

First approach: renormalization

\square a good N-box

- a p-closed edge

Divide the lattice into boxes of mesoscopic size N. A good box is a box that has good connectivity property. Being a good box is something very likely for N large.

First approach: renormalization

\square a good N-box

- a p-closed edge

Divide the lattice into boxes of mesoscopic size N. A good box is a box that has good connectivity property. Being a good box is something very likely for N large. Two cases:

1. Bad edge in good box
2. Bad edge in bad box

A different approach

Let $q>p>p_{c} . \gamma$ is the q-geodesic between 0 and $n x$. We don't reveal which edges need to be bypassed. For each $e \in \gamma$, we define $c(e)$ the cost to bypass e such that:

A different approach

Let $q>p>p_{c} . \gamma$ is the q-geodesic between 0 and $n x$. We don't reveal which edges need to be bypassed. For each $e \in \gamma$, we define $c(e)$ the cost to bypass e such that:

- we can build $\gamma^{\prime} p$-open path such that

$$
\left|\gamma^{\prime} \backslash \gamma\right| \leq \sum_{e \in \gamma} \mathbb{1}_{e} \text { is } p \text {-closed } c(e) .
$$

A different approach

Let $q>p>p_{c} . \gamma$ is the q-geodesic between 0 and $n x$. We don't reveal which edges need to be bypassed. For each $e \in \gamma$, we define $c(e)$ the cost to bypass e such that:

- we can build $\gamma^{\prime} p$-open path such that $\left|\gamma^{\prime} \backslash \gamma\right| \leq \sum_{e \in \gamma} \mathbb{1}_{e}$ is p-closed $c(e)$.
- $(c(e))_{e \in \gamma}$ do not depend on the p-state of edges in γ

A different approach

Let $q>p>p_{c} . \gamma$ is the q-geodesic between 0 and $n x$. We don't reveal which edges need to be bypassed. For each $e \in \gamma$, we define $c(e)$ the cost to bypass e such that:

- we can build $\gamma^{\prime} p$-open path such that

$$
\left|\gamma^{\prime} \backslash \gamma\right| \leq \sum_{e \in \gamma} \mathbb{1}_{e} \text { is } p \text {-closed } c(e) .
$$

- $(c(e))_{e \in \gamma}$ do not depend on the p-state of edges in γ
- $\sum_{e \in \gamma} c(e)^{2} \leq C n$

A different approach

Let $q>p>p_{c} . \gamma$ is the q-geodesic between 0 and $n x$. We don't reveal which edges need to be bypassed. For each $e \in \gamma$, we define $c(e)$ the cost to bypass e such that:

- we can build $\gamma^{\prime} p$-open path such that

$$
\left|\gamma^{\prime} \backslash \gamma\right| \leq \sum_{e \in \gamma} \mathbb{1}_{e} \text { is } p \text {-closed } c(e) .
$$

- $(c(e))_{e \in \gamma}$ do not depend on the p-state of edges in γ
- $\sum_{e \in \gamma} c(e)^{2} \leq C n$

We have

$$
\mathcal{D}_{p}(0, n x) \leq\left|\gamma^{\prime}\right| \leq|\gamma|+\left|\gamma^{\prime} \backslash \gamma\right| \leq \mathcal{D}_{q}(0, n x)+\sum_{e \in \gamma} \mathbb{1}_{e} \text { is } p \text {-closed } c(e)
$$

A different approach

We have

$$
\mathbb{E}\left(\sum_{e \in \gamma} \mathbb{1}_{e} \text { is } p \text {-closed } c(e)\right) \leq C(q-p) n .
$$

A different approach

We have

$$
\begin{gathered}
\mathbb{E}\left(\sum_{e \in \gamma} \mathbb{1}_{e} \text { is } p \text {-closed } c(e)\right) \leq C(q-p) n . \\
\operatorname{Var}\left(\sum_{e \in \gamma} \mathbb{1}_{e} \text { is } p \text {-closed } c(e)\right)=\sum_{e \in \gamma} c(e)^{2} \operatorname{Var}\left(\mathbb{1}_{e \text { is } p \text {-closed }}\right) \leq C n .
\end{gathered}
$$

A different approach

We have

$$
\mathbb{E}\left(\sum_{e \in \gamma} \mathbb{1}_{e} \text { is } p \text {-closed } c(e)\right) \leq C(q-p) n .
$$

$$
\operatorname{Var}\left(\sum_{e \in \gamma} \mathbb{1}_{e} \text { is } p \text {-closed } c(e)\right)=\sum_{e \in \gamma} c(e)^{2} \operatorname{Var}\left(\mathbb{1}_{e} \text { is } p \text {-closed }\right) \leq C n .
$$

By Markov's inequality, we get that with high probability

$$
\sum_{e \in \gamma} \mathbb{1}_{e} \text { is } p \text {-closed } c(e) \leq 2 C(q-p) n .
$$

A different approach

We have

$$
\mathbb{E}\left(\sum_{e \in \gamma} \mathbb{1}_{e} \text { is } p \text {-closed } c(e)\right) \leq C(q-p) n .
$$

$$
\operatorname{Var}\left(\sum_{e \in \gamma} \mathbb{1}_{e \text { is } p \text {-closed }} c(e)\right)=\sum_{e \in \gamma} c(e)^{2} \operatorname{Var}\left(\mathbb{1}_{e} \text { is } p \text {-closed }\right) \leq C n .
$$

By Markov's inequality, we get that with high probability

$$
\sum_{e \in \gamma} \mathbb{1}_{e} \text { is } p \text {-closed } c(e) \leq 2 C(q-p) n .
$$

To build $c(e)$ we need a multiscale renormalisation. We need to consider an infinite number of scales of box at the same time.

A different approach

We have

$$
\mathbb{E}\left(\sum_{e \in \gamma} \mathbb{1}_{e} \text { is } p \text {-closed } c(e)\right) \leq C(q-p) n .
$$

$$
\operatorname{Var}\left(\sum_{e \in \gamma} \mathbb{1}_{e} \text { is } p-\text { closed } c(e)\right)=\sum_{e \in \gamma} c(e)^{2} \operatorname{Var}\left(\mathbb{1}_{e} \text { is } p-\text { closed }\right) \leq C n .
$$

By Markov's inequality, we get that with high probability

$$
\sum_{e \in \gamma} \mathbb{1}_{e} \text { is } p \text {-closed } c(e) \leq 2 C(q-p) n .
$$

To build $c(e)$ we need a multiscale renormalisation. We need to consider an infinite number of scales of box at the same time. A good box at scale $k+1$ is good if it does not contain too much bad boxes at scale k.

Thank you for your attention!

