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Statistical physics and disordered
system



A fast recap of statistical physics

A generic model in statistical physics can be described by
- configurations/states o of “spins”. For example, o € {—1,+1}" for Ising
spins, o € SY for spherical spins, or ¢ might be a leaf of a binary tree Ty.
- Hamiltonian Hy(o): the energy of the configuration o.

- Gibbs measure: ug n(o) o< (@) where 3 is the inverse temperature.
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Example: the Curie-Weiss model. .,\ .
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- Ising spins: o € {+1}".
* Hamiltonian: Hy(o) = § 1 0ioy.
- Gibbs measure:

1
pan(o) = Zom exp(BHu(0)), where Zgy= > exp(BHn(c)).
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Phase transition of Curie-Weiss model

- There exists a critical temperature Tc = 1/8. (Curie temperature) such
that the model exhibits a phase transition.

- To be precise, if we consider the magnetization density of the
Curie-Weiss model

1 N
my = Nga-h
=

then the magnetization concentrates at zero when 3 < f¢
(paramagnetic), and it is bounded away from zero when 8 > f¢
(ferromagnetic).
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Figure 1: Distribution of the magnetization g y(my = -). Credit: S. Friedli and V.
Velenik, Figure 2.2.



Phase transition in everyday life
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Disordered systems

For the Curie-Weiss model, the Hamiltonians are deterministic. But
physicists are also interested in systems where the Hamiltonians are
random (disordered).

Example: The Sherrington—Kirkpatrick (SK) model.

- Ising spins o € {*1}"
- Hamiltonian .
Hy(o) = ;;A,,U;Uj,
where A € GOE(N). That is, A is a symmetric matrix where the
upper-triangular entries are i.i.d., Aj ~ N(0,2/N), and A; ~ N(0,1/N) for
I <j.
- The SK model is an example of spin glasses.



The continuous random energy model (CREM)

Physicists came up with other models which have more tractable correlation
structures.

- The CREM was proposed by [Bovier and Kurkova '04], which generalized
Derrida’s random energy model formulated in the '80s.

- (Xv)ver,: centered Gaussian process indexed by a binary tree Ty of
depth N with correlation function

E[Xu] = N-A (W)

where A : [0,1] — [0,1] is a continuous non-decreasing function such
that A(0) =0 and A(1) = 1.

- The CREM can be seen as a time-inhomogeneous binary branching
random walk with Gaussian increments.
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Disordered systems and algorithms

- Disordered systems originated from the study of glassy materials, but
then the research on this direction had a far-reaching influence on
other fields of science.

- Disordered systems and neural networks: Lenka Zdeborova, What has
statistical physics to say about machine learning?

- Algorithmic aspect of disordered systems:

- How to find a near optimal state/ground state of the system?
- How to sample a typical state from the Gibbs measure?
- Do these algorithms always work efficiently?



Finding ground states of the CREM [Addario-Berry and Maillard "19]

- Goal: Fix an energy level x € R. Find a leaf v such that X, > xN.

- Results: there exists a threshold

Xe = X«(A) = \/2|og2/1 VA() dt

such that
1. for all x < x«, there exists a linear-time algorithm which can achieve the
goal with high probability.
2. for all x > X, the goal is exponentially hard to accomplish.
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Comments on [Addario-Berry and Maillard 19]

- The ground state energy xs is defined by

Xs = lim —maxXVa:S \/2log?2 / \/a

N—oo N |v|=N

where @ is the left-derivative of the concave hull of A.

- The ground state equals to x. if and only if A is concave. Thus,

convexity of A < Fefficient algorithms finding the near ground state.

- Parallel works on spin glasses:
- [Montanari "18] for the SK model
- [Subag "18] for mixed spherical p-spin model
- [Gamarnik and Jagannath '19] for pure p-spin models.
- The near ground state particles are rare. How to sample a typical
particle from the Gibbs measure of the CREM?
The rest of the talk: answering the special case where A(t) = t.



Branching random walk and the
algorithm



Branching random walk

- Rooted d-ary tree: T = {@} U2, {0,...,d —1}"
- Depthofve T = |v|.

- Independent increments: (Y")ver\ (o} 11.d. copies of Y = (Yo, ..., Yg_1).
- branching random walk X = (X,)ver with increments Y is a process
defined by
Xg == O7

Xo = Z@<w§v Yw, ‘V| >

Yy
~ Y
Y110
Y1100

Yi1001
Xi1001 = Y1 + Y11 + Y110 + Y1100 + Yi1001



The Gibbs measure of the CREM

- The Gibbs measure of the CREM is defined by

1
pan(U) = Z[;—Neﬁx”, where Zgy= > e’

|u|=N
- For a given node v and |u| = m, we define
1 _ _
M;},m(u) _ Zg NeB(XW Xv)7 where ZZ&,N — Z eﬁ(Xvu Xv)_

|u|l=m



Recursive sampling on M-renormalized tree

Questions: how to sample the Gibbs measure efficiently? If we can, is it
possible to do it for all 8 > 07

Consider the following algorithm

setv =g,

while |v| < N do
choose w with |w| = M A (N — |v|) according to the Gibbs measure
3 MA(N—[]);
replace v with vw;

end

output v.
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Remarks

- The running time of the algorithm is deterministic and bounded by
[N/M72M.

- Moreover, the law of the algorithm is a random probability measure
ws.mn defined by

pamo(2) =1
1 manccsnm(VW) = pamim(V) - 11 ma—my (W)
for all |v] = KM, |w| =M A (N — KM) and 0 < K < | 3]
Example: binary tree, M =2 and N = 5. On this configuration,

116.52(10101) = 1155(10) X pu5,(10) X s (1)
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Question: does y3 v approximate the Gibbs measure?



Main results




Approximation

The entropy of ug,n and the Kullback-Leibler divergence from pg,n to fig,n
are respectively defined by

Husn) = D mpw(u (m)

|ul=N
» | o M) ,
(Fip || paon) I;N fign(u) - log (uﬁ,N(u)

Definition (Approximation)
Let B > 0. We say that a sequence of random probability measures
(fig,n)n>1 approximates the Gibbs measure ug,y if

d(iig,w || ps.n)

— 0, in probability as N — co.
H(us.n)



Main results I: efficient approximation in the subcritical regime

Theorem (Approximation bounds)

Let M € Nand 8 € [0, ). Then for all p > 1, there exists a constant
Ci(p) > 0 such that

N
s 1| 5}l < G0 | 5. ()
Moreover, for all p > 1, there exists a constant C;(p) > 0 such that
d(psmn || an) —E[d(usmn | pon)lll, < G(p)- ()

Corollary (Complexity upper bound)

If 8 € [0, Bc), then there exists a polynomial-time algorithm such that for
every p > 1, denoting by fig,y the law of its output,

1 -
yl1dCsn [l wow)ll, — O 3)

as N — oco. In particular, fig,y approximates the Gibbs measure ug .



Main results Il: hardness in the supercritical regime

Theorem (Complexity lower bound)

Assume ¢ € D(¢)°. Let B > Bc. Suppose that v = (V(R))kr>o a random
algorithm with law fiy such that fiy approximates the Gibbs measure pg,
and 7 is the running time of the algorithm. Then for every § > 0, there
exists z > 0, such that for large enough N,

P (T > er> — 0.

Remark. Note that 8. € D(p)° implies in particular that Bc < oo.
X-DUP) = JRe® P PP cw } effechve dowaon & @



Main ingredients of the proofs




Ingredients of proving the approximation bound

Homogeneity of the BRW ~ factorization of the KL divergence
L1
d(psmn || pen) = > pnkn(u) - (o || 1 n—km)-
K=0 |u|=KM

Calculation of the expectation ~~ generalizing it to p-norms.

E [d(usmn || )]
=
= Z IE MﬁMKM(U) d(MBM ||NﬁN KM)]

=0 |u|l=kM

-1

,,
==

=

ﬁ
2=

E [MB,M,KM(U) E [d(M%,M I N%,wa) }]:KM]]
|u|=KM

Il
1

—1

ﬁ
=
[

E [ugmm(u) - E[d(ugm || pon—km)]]
|u|=KM
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==

=
— E[d(usm || psn—km)] -

=
I

<}
N



Ingredients of proving the complexity upper bound

- We showed the approximation bound

1@ 1| o)l < 6)- |3 @

- By choosing M(N) = O(log N), we have that the running time
[N/M(N)]12"™ is of polynomial, and that

1 -
qlldCsn [l mom)ll, =0, N = co.

- (Folklore) In the subcritical regime 8 € [0, 8¢), H(us,n)/N converges in
probability to a positive constant as N — co.

_, dasn [l o) x 0. N— oo.
H(gs,n)



Ingredients of proving the complexity lower bound

- One can show that with high probability, there exists z > 0 such that for
large enough N, the algorithm finds a vertex u whose ancestor w at
generation |[N/2| is z-exceptional, that is,

Xo — Xow — @/(ﬂc)N/z > Z\/N.
- Forall |w| = [N/2], define
Aw = {w is z-exceptional}.

The events are independent by the branching property. Moreover, the
probability P (Aw) are exponentially small in zv/N by tail estimate of the
maximal particle of BRW.

- The proof follows from adapting the argument of [Addario-Berry and
Maillard "19].nea



Conclusions and Outlook

- Disordered systems give rise up to many interesting algorithmic
problems, such that sampling the ground states or the typical states of
the system.

- We provided an algorithm that can approximate the Gibbs measure of
BRW in the subcritical regime, and we showed that the Gibbs measure is
algorithmically hard to approximate in the supercritical regime. These
results cover the case of the CREM where A(t) = t.

- Ongoing work of us is trying to extend the results to general CREM.

20
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Appendix




Implications of the complexity upper bound

Corollary (Complexity upper bound)
If B € [0, Bc), then there exists a polynomial-time algorithm such that for
every p > 1, denoting by fig,y the law of its output,

1 -
ylld(Esn [l o), = 0 (5)

as N — oo. In particular, fig,y approximates the Gibbs measure ug y.

- In the physics literature, one would say that fig,n and g,y are measure
equivalent or equivalent in the sense of specific relative entropy.

- Equation (5) implies the following: if (Av)w>1 is @ sequence of sets such
that ug,n(An) convergences to 0 exponentially fast as N — oo, then one
can show that fig n(An) — O (ex: via Birgé’s inequality).

22



Ideas to prove the approximation bound (1) and (2)

1. Homogeneity of the BRW ~ factorization of the KL divergence
Lyl

d(psmn || pon) = > g (u) - d(ubou || b n—km)-
K=0 |u|=KM

2. Biggins' theoerm + negative moments estimation of Wg,
~ forall p > 1, we have

sup [|log We,nl|, < oo which will give us  [|d(usm || msn)ll, < C(p).
n>0

A Iltem 2 holds as long as 3 < f.
3. Item 1+ Item 2 ~» approximation bound (1)

Gl sl < 3= B = | | - o)

4. Concentration inequalities + estimate of the square sums of ug un(:) ~
approximation bound (2)

I d (s 1 tan) — E[d(usmn || mom)lll, < Co-r.
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Proof of the complexity upper bound

Proof of the first statement:

1. Choose M = M(N) — oo as N — oo, and set fig.y = pg,m,n-
2. By the approximation bound (1), we obtain

1 . 1
a19GEs (T am)ll, = 5l dGesmonn 1| e,

1 N
gy Gi(p) \‘M(N)J -0, N— (6)
Proof of the second statement:

1. Assuming moreover that M = O(log N). In particular, the running time is
of polynomial.
2. We have the following folklore lemma
Lemma. Asymptotics of the entropies for 8 < 3.
If 8 € [0, Bc), then H(ps,n)/N converges in probability to a positive constant
as N — oo.

3. Then by (6) and the lemma above, we conclude that

(g |l #an) — 0, in probability as N — oo.
H(MBJ\I) 2%



Steps of proving the complexity lower bound

1. If B> Bcand if Bc € D(p)°, then H(ug,n) = Op(1), as N — oo.
2. By [Chen, Madaule and Mallein '19], there exists a RV Z > 0 with
continuous distribution function such that

Xy — XUN/Z —¢'(Bc) - N/2 lay 7 N> oo
VN

3. Assume jig,y is the law of an algorithm that approximates the Gibbs
measure pg n. Step 1then implies that d(jig.n || ps.n) L 0asN— oo.

4. Pinsker's inequality implies that the total variation between jig v and
BN 5 0as N — oo. Thus Step 2 holds as well for fig,n.

5. Fix 6 > 0. There exists z > 0 such that for large enough N, the algorithm
finds a vertex u whose ancestor w at generation |N/2] is z-exceptional,
that is,

Xu — Xo — MN/2 > zV/N,

with probability at least 1 — §.
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Steps of proving the complexity lower bound

6. Forall jw| = |[N/2], define
Ay = {w is z-exceptional}.

The events are independent by the branching property.

7. By tail estimate of the maximal particle of BRW, the probability P (Aw)
are exponentially small in zv/N. Then one can adapt the argument of
[Addario-Berry and Maillard "19] to derive the result.
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