Time averages for kinetic Fokker-Planck equations

Giovanni M. Brigati ${ }^{1,2}$

${ }^{1}$ CEREMADE, CNRS, UMR 7534, Université Paris-Dauphine, PSL University, 75016 Paris, France
${ }^{2}$ Dipartimento di Matematica "F. Casorati", Università degli Studi di Pavia, 27100 Pavia, Italia

September 8, 2021

Acknowledgements

- Article available at https://arxiv.org/pdf/2106.12801.pdf
- This research project is funded by the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 754362.
- Partial support has been obtained from the EFI ANR-17-CE40-0030 Project of the French National Research Agency.

Notation

- t time in $[0, \infty)$,
- x space in $[0, L]^{d}$, periodic boundary conditions,
- v velocity in \mathbb{R}^{d},
- $f=f(t, x, v)$, distribution function (probability density).
- $\langle v\rangle^{2}=1+v^{2}$, Chinese bracket,
- $\gamma(v)$ Gaussian probability density, $d \gamma=\gamma d v$.

Foundation of the model

Evolution of a system of particles $\left(x_{i}, v_{i}\right)_{i=1, \cdots, N}$ moving and interacting with a random background force W_{N} :

$$
\left\{\begin{array}{l}
\dot{x}_{i}=v_{i} \\
\dot{v}_{i}=-v_{i}+W_{N}\left(v_{i}\right)
\end{array}\right.
$$

Langevin dynamics

Limit stochastic process as $N \rightarrow \infty$:

$$
\left\{\begin{array}{l}
d X_{t}=V_{t} d t \tag{LD}\\
d V_{t}=-V_{t} d t+\sqrt{2} d W_{t}
\end{array}\right.
$$

The process W_{t} is a standard Brownian motion (in v).
Evolution (statistical) of positions and velocities of the particles (molecules, electrons, stars, agents, \cdots).
Description at a mesoscopic level.
Example: plasmas, particles crossing an irregular medium.

From Langevin to VFP

- Let L^{*} be the generator associated with Langevin dynamics:

$$
\left\langle L^{\star}\left(X_{0}, V_{0}\right), f\right\rangle=\lim _{t \rightarrow 0} \int f(x, v) d X_{t} d V_{t}
$$

- Dual operator

$$
L f=-v \cdot \nabla_{x} f+\nabla_{v} \cdot\left(\nabla_{v} f+v f\right)=-T f+Q f .
$$

- Densities of solutions to (LD) are solutions to

$$
\begin{equation*}
\partial_{t} f=L f \tag{VFP}
\end{equation*}
$$

- The operator L is the kinetic Fokker-Planck or Vlasov-Fokker-Planck operator $=$ transport and collisions.

KOU equations and remarks

Let γ be the normalized Gaussian and consider $h=f / \gamma$. Then, h solves the Kinetic Ornstein-Uhlenbeck equation

$$
\begin{equation*}
\partial_{t} h+v \cdot \nabla_{x} h=\Delta_{v} h-v \cdot \nabla_{v} h=\Delta_{\gamma} h . \tag{KOU}
\end{equation*}
$$

- linear and mass-preserving kinetic equation. Henceforth, null-mass solutions only.
- degenerate dynamics: diffusion acts on the v variable only.
- the Ornstein-Uhlenbeck operator satisfies

$$
-\int\left(\Delta_{\gamma} h\right) h d x d \gamma=\int\left|\nabla_{v} h\right|^{2} d x d \gamma
$$

- a priori we control weak norms in velocity only.

Questions

1. Steady states?
2. Existence, uniqueness, regularity?
3. Approach to equilibrium? Rates? Explicit/optimal estimates?

Answers to 1 and 2

- h steady (null mass) solution if and only if $h=0$.
- For all $h_{0} \in \mathrm{~L}^{2}(d x d \gamma)$ there exists a unique classic solution to (KOU) starting at h_{0}. More general data allowed. Known at least since Kolmogorov 1934.
- Smoothing effect of the equation due to hypoellipticity, see Hörmander 1967.
- Hypoellipticity carries regularity from velocity to space directions, thanks to a twist in the phase space.

Fundamental energy estimate

Lyapunov functional for the evolution:
$\frac{1}{2} \frac{d}{d t}\left\|h_{t}\right\|_{L^{2}(d x d \gamma)}^{2}=\iint h_{t} \Delta_{\gamma} h_{t} d x d \gamma=-\iint\left|\nabla_{v} h_{t}\right|^{2} d x d \gamma \leq 0$.
Not sufficient to prove

$$
h_{t} \rightarrow 0, \quad \text { as } t \rightarrow \infty
$$

for all h_{0} initial data.
How to prove it? How fast? Decay rates?

Conclusion in the space-homogeneous case

Assume independence from x in this slide only (overdamped Langevin dynamics).
The energy estimate is

$$
\frac{1}{2} \frac{d}{d t}\left\|h_{t}\right\|_{L^{2}(d \gamma)}^{2}=\int h_{t} \Delta_{\gamma} h_{t} d \gamma=-\int\left|\nabla_{v} h_{t}\right|^{2} d \gamma
$$

Via Gauss-Poincaré inequality (Nash 1965):

$$
-\int\left|\nabla_{v} h_{t}\right|^{2} d \gamma \leq-\left\|h_{t}\right\|_{\mathrm{L}^{2}(d \gamma)}^{2}
$$

Therefore

$$
\left\|h_{t}\right\|_{\mathrm{L}^{2}(d \gamma)}^{2} \leq\left\|h_{0}\right\|_{\mathrm{L}^{2}(d \gamma)}^{2} \mathrm{e}^{-2 t}
$$

sharp exponential decay estimate.

The problem of hypocoercivity

How to recover a decay result in the fully inhomogeneous case?

- coercivity is available along velocity directions, lacking along space directions,
- hypocoercivity is the name of a class of techniques aimed at recovering decay in the missing directions,
- term coined by T. Gallay, appeared first in Villani 2006,
- need to separate decay from regularity issues.

A very important toy model

One-particle kinetic model:

$$
\frac{d}{d t}\binom{f_{1}(t)}{f_{2}(t)}+\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{f_{1}(t)}{f_{2}(t)}=\left(\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right)\binom{f_{1}(t)}{f_{2}(t)} .
$$

Intuition for key papers of Arnold-Erb 2014, Dolbeault-Mouhot-Schmeiser 2015. How to prove convergence to $(0,0)$ without solving the ODE? :)

Strategy of hypocoercivity

1. twist of the reference norm (L^{2} or H^{1}), creating an equivalent norm;
2. Gronwall estimate in the new norm;
3. exponential decay in the reference norm, via norm equivalence.
4. typical estimate:

$$
\left\|h_{t}\right\| \leq C e^{-\lambda t}\left\|h_{0}\right\|
$$

5. $C>1$ whenever the diffusion is degenerate. $C=1$ in case of coercivity in all variables (as in the space homogeneous case).

H^{1} hypocoercivity

- Villani 2006, Villani 2009, Dolbeault-Li 2018, Baudoin 2013-2020,
- cover a broad class of degenerate PDEs,
- explicit results in H^{1}-norm and Wasserstein distance,
- consequent rates of convergence in L^{2}-norm are suboptimal, more direct calculations are required,
- example of twisted norm:

$$
\|h\|^{2}=\|h\|_{\mathrm{H}^{1}(d x d v)}^{2}+\epsilon \nabla_{x} h \cdot \nabla_{v} h .
$$

L^{2} hypocoercivity

- DMS 2015, Bouin-Dolbeault-Mouhot-Mischler-Schmeiser 2019, Arnold-Achleitner-Carlen 2016-2018-..., Bernard-Fathi-Levitt-Stoltz 2020, ...
- direct L^{2} calculations for a general class of PDEs,
- consistency with diffusion limits (DMS),
- rates of convergence are generally off by one order of magnitude, but very accurate/optimal in many interesting cases: AE 2014, AAC 2018,
Arnold-Dolbeault-Schmeiser-Wöhrer 2021,
- twisted norm in DMS:

$$
\|f\|^{2} \approx\|f\|_{\mathrm{L}^{2}(d x d v)}^{2}+\int f\left(\epsilon_{1} \frac{\Delta_{x}}{\epsilon_{2}+\Delta_{x}}\right) f d x d v
$$

Recent approaches involving weak norms

- Armstrong-Mourrat 2019, Cao-Lu-Wang 2020.
- Weak velocity norms of solutions are considered, reference space

$$
h \in \mathrm{~L}^{2}\left(d t d x ; H^{1}(d \gamma)\right)
$$

with

$$
\left(\partial_{t}+v \cdot \nabla_{x}\right) h \in \mathrm{~L}^{2}\left(d t d x ; H^{-1}(d \gamma)\right)
$$

- Generalized Poincaré inequality (AM 2019)

$$
\|h\|_{\mathrm{L}^{2}(d t d x d \gamma)}^{2} \leq C_{1}\left\|\nabla_{v} h\right\|_{\mathrm{L}^{2}}^{2}+C_{2}\left\|\left(\partial_{t}+v \cdot \nabla_{x}\right) h\right\|_{\mathrm{L}^{2}\left(\mathrm{H}^{-1}(d \gamma)\right)}^{2} .
$$

- hypocoercivity via a discrete Gronwall estimate.

Explicit generalized Poincaré inequalities

1. Introduce $\rho=\int h d \gamma$.
2. Lions' Lemma (J.-L. Lions '60 - Amrouche et alii 2014):

$$
\|\rho\|_{\mathrm{L}^{2}}^{2} \leq C_{L}\left\|\nabla_{t, x} \rho\right\|_{\mathrm{H}^{-1}(d t d x)}^{2}
$$

3. Averaging Lemma (AM 2019, B. 2021)

$$
\left\|\nabla_{t, x} \rho\right\|_{\mathrm{H}^{-1}(d t d x)}^{2} \leq d_{2}\left\|\nabla_{v} h\right\|_{\mathrm{L}^{2}(d t d x d \gamma)}^{2}
$$

4. Explicit Poincaré inequality:

$$
\|h\|_{L^{2}(\operatorname{dtdxd\gamma })}^{2} \leq C_{P}\left\|\nabla_{v} h\right\|_{\mathrm{L}^{2}(d t d x d \gamma)}^{2} .
$$

Message: velocity derivatives control the whole norm of the solution, if integrated in time.

Explicit decay for time averages (B. 2021)

Let $\tau>0$ small, then

$$
\frac{d}{d t} \int_{t}^{t+\tau}\|h\|_{\mathrm{L}^{2}(d x d \gamma)}^{2} d t=-2\left\|\nabla_{v} h\right\|_{\mathrm{L}^{2}(d t d x d \gamma)}^{2}
$$

and,

$$
-2\left\|\nabla_{V} h\right\|_{\mathrm{L}^{2}(d t d x d \gamma)}^{2} \leq-\frac{2}{C_{P}} \int_{t}^{t+\tau}\|h\|_{\mathrm{L}^{2}(d x d \gamma)}^{2} d t
$$

Therefore

$$
\tau^{-1} \int_{t}^{t+\tau}\|h\|_{\mathrm{L}^{2}(d x d \gamma)}^{2} d t \leq\left\|h_{0}\right\|_{\mathrm{L}^{2}}^{2} e^{-\frac{2}{c_{P}} t}
$$

Bonus: extension to a class of kinetic Fokker-Planck

 equations- Langevin dynamics: Gaussian local equilibria (due to Brownian motion).
- more general local equilibria? Decay rates depend on their growth at infinity (Bouin-Dolbeault-Lafleche-Schmeiser 2020, B. 2021):

Thank you for your attention.

