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Maps are graphs embedded in surfaces, defined as a set of vertices and

edges and their oriented incidence relations.

=

=

The genus g of a map is the minimal number of holes needed in the

surface it’s drawn on. It satisfies the Euler characteristic relation

#vertices−#edges + #faces = 2− 2g .
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Maps have universal properties:

• e.g. universal asymptotic enumeration

for maps, triangulations, ... with n

vertices as n→∞.

• e.g. universal local limits for large

random maps

The high genus regime, where g ∼ n grows

with map size, is not yet fully understood.

Theorem (Budzinski–Louf, 2019)

Let Tn,gn be the triangulations with n

vertices and genus gn = bθnc. Then, as

n→∞,

|Tn,gn | = n2gn exp[f (θ)n + o(n)].

Simulation by J. Bettinelli.
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We consider a family of maps constructed from constellations

(Bousquet-Mélou & Schaeffer, 2000):

Take an `-constellation, with n

hyperedges, defined by

{σ1, σ2, . . . , σ`, φ} ⊂ Sn

σ1 · σ2 · · ·σ` · φ = id

• fix each σi = τi to be a

transposition

• fix φ = id

• draw vertices on hyperedges

and edges on hypervertices

These maps are in the same universality class as maps of all degree

(Duchi, Poulalhon & Schaeffer, 2014).
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Consider the enumeration of the

resulting maps,

Hn,` =
1

n!
#{τ1, τ2, . . . , τ`} ⊂ Sn

τ1 · τ2 · · · τ` = id .

By the ELSV formula, Hn,` are

the classical Hurwitz numbers;

we call this family Hurwitz maps.

Frobenius’ formula

The number of factorizations of the identity on Sn by ` transpositions

can be expressed as a sum over irreducible representations V λ of Sn,

Hn,` =
1

n!
#{τ1 · τ2 · · · τ` = id ∈ Sn} =

1

n!2

∑
λ`n

(dimV λ)2
∏̀
i=1

χλ(τi )

dimV λ
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The irreducible representations and conjugacy classes of Sn are indexed

by partitions λ ` n, λ = (λ1 ≥ λ2 ≥ . . . λ`(λ)), λ1 + λ2 + . . .+ λ`(λ) = n.

• dλ is the number of standard

Young tableaux of shape λ
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• c(�i,j) = j − i is the contents
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∗ When ` is odd, Hn,` = 0.



Hn,` =
1

n!
#{τ1 · τ2 · · · τ` = id ∈ Sn} =

1

n!2

∑
λ`n

d2
λ

(∑
�∈λ

c(�)

)`

The irreducible representations and conjugacy classes of Sn are indexed

by partitions λ ` n, λ = (λ1 ≥ λ2 ≥ . . . λ`(λ)), λ1 + λ2 + . . .+ λ`(λ) = n.

Hn,`, counting unconnected Hurwitz maps, can be reframed as the

partition function of random partitions of n under the Hurwitz measure

Pn,`(λ) =
1

Hn,`

1

n!2
dλC

`
λ , Cλ =

∑
�∈λ

c(�).

Goal: Study these random partitions in the “high genus” regime

`n = 2bθnc.
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Theorem (Okounkov, 2000)

The generating function

τ(β, q) =
∑
n,`

qn
β`

`!
enuHn,`

satisfies the Toda equation

e−u
∂2

∂u2
log τ(β, q) =

τ(u + β, q)τ(u − β, q)

τ(β, q)2
.

• This leads to recurrence relations for the connected Hurwitz

numbers hn,` generated by log τ (Dubrovin, Yang & Zagier, 2017).

• Okounkov’s approach is what’s particularly interesting:

“we remark that the generating function for double Hurwitz numbers is almost by definition

a certain matrix element in the infinite wedge space. It is a well known result of the Kyoto

school that such matrix elements are τ -functions of integrable hierarchies.”



The infinite wedge space is built up from the vacuum

· · · ∧ •
− 7

2

∧ •
− 5

2

∧ •
− 3

2

∧ •
− 1

2

∧ ◦
1
2

∧ ◦
3
2

∧ ◦
5
2

∧ · · · = |∅〉

with the following toolkit:

• Creation:

ψk(· · ·∧◦
k
∧· · · ) = (−1)#{•j>k} · · ·∧•

k
∧· · · , ψk(· · ·∧•

k
∧· · · ) = 0

• Annihilation:

ψ∗k (· · ·∧•
k
∧· · · ) = (−1)#{•j>k} · · ·∧◦

k
∧· · · , ψ∗k (· · ·∧◦

k
∧· · · ) = 0

• Indicator: ψkψ
∗
k |S〉 =

|S〉 , •k in |S〉

0, ◦
k

in |S〉

• Jumps: a±1 =
∑

k∈Z+1
2
ψk∓1ψ

∗
k

• Anticommutation:

ψkψ` + ψ`ψk = ψ∗kψ
∗
` + ψ∗`ψ

∗
k = 0, ψkψ

∗
` + ψ∗`ψk = δk`



Up to charge, each fermion configuration maps to a partition, by

S(λ) = {λi − i +
1

2
, i ∈ Z>0}.

The matrix element

〈∅| eθa+1

( ∏
k∈S(λ)

ψkψ
∗
k

)
eθa−1 |∅〉 = d2

λ

θ2|λ|

|λ|!2

counts the standard Young tableaux of shape λ.
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Up to charge, each fermion configuration maps to a partition, by
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Up to charge, each fermion configuration maps to a partition, by

S(λ) = {λi − i +
1

2
, i ∈ Z>0}.

0

1-1

20

3

a−1

-2

The sum of contents Cλ =
∑

�∈λ c(�) is the eigenvalue of the operator

F2 =
∑

k∈S(λ)

k2

2
: ψkψ

∗
k :, : ψkψ

∗
k :=

{
ψkψ

∗
k , k > 0

ψ∗kψk k < 0



The unconnected Hurwitz numbers Hn,` are generated by

τ(β, q) =
∑
λ

〈∅| eθa+1

( ∏
k∈S(λ)

ψkψ
∗
k

)
eβF2eθa−1 |∅〉

∣∣∣∣
θ=qeu/2

=
∑
n,`

qn
β`

`!
enu
∑
λ`n

d2
λC

`
λ.

• At β = 0, the Poissonized Plancherel

measure

P(λ) =
1

τ(0, q)
d2
λ

q|λ|eu|λ|

|λ|!2

defines a determinantal point

process, in which every correlation

function can be expressed as a

determinant of a kernel (Borodin,

Okounkov & Olshanski, 1999).

-2 -1 1 2

1

2

λi−i

qeu

λi+i

qeu

∗ This is one way to find the

rather trivial result Hn,0 = 1
n! .
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Consider a shuffling n numbers by ` random exchanges

P(id) =
1

n
, P(τi ) =

1

n2
∀ τi ∈ Sn.

σ0 = id :

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, . . . , n − 1, n)

σ1 : (1, 2, 11, 4, 5, 6, 7, 8, 9, 10, 3, 12, 13, 14, . . . , n − 1, n)

σ2 : (1, 2, 11, 4, n − 1, 6, 7, 8, 9, 10, 3, 12, 13, 14, . . . , 5, n)

σ3 : (9, 2, 11, 4, n − 1, 6, 7, 8, 1, 10, 3, 12, 13, 14, . . . , 5, n)

...

σ` : (9, 17, 6, 28, n − 1, 4, 31, 8, 25, 1, 3, n, 21, 14, . . . , 5, 11)

The random partition σ` is distributed by the convolution P∗`(σ).

• Question: For what `n does P∗` converge to the uniform

distribution on Sn as n→∞ (Diaconis & Shahshahani, 1981) ?
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Theorem (Diaconis–Shahshahani, 1981)

The measure on Sn from a random walk of length ` by transpositions

with P(τ) = 1
n2 approaches the uniform measure U as n→∞ if

` > 1
2n log n. In particular, the total variation distance is bounded as

‖P∗` − U‖ ≤ b exp

[
n log n − 2`

n

]
.

The Hurwitz measure makes an appearance in the proof...

P∗` is Fourier transformed to the representations of Sn, with

ρ(P) =
∑
σ∈Sn

P(σ)ρ(σ), ρ(P∗`) = ρ(P)`, P(σ) =
1

n!

∑
λ`n

dλ tr ρ(σ)∗P(ρ),

leading to an upper bound

‖P∗` − U‖2 ≤
∑
λ`n

d2
λ

(
1

n
+

n − 1

n
Cλ

)2`

.
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Theorem (Diaconis–Shahshahani, 1981)

The measure on Sn from a random walk of length ` by transpositions

with P(τ) = 1
n2 approaches the uniform measure U as n→∞ if

` > 1
2n log n. In particular, the total variation distance is bounded as

‖P∗` − U‖ ≤ b exp

[
n log n − 2`

n

]
.

‖P∗` − U‖2 ≤
∑
λ`n

d2
λ

(
1

n
+

n − 1

n
Cλ

)2`

The cut-off in the total variation distance at 2` > n log n is due to the

contributions from

λ = (n), λ = (1, 1, . . . , 1);

the Hurwitz random partitions concentrate to them as n→∞.
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Limit shapes as n→∞ are known for Hurwitz random measures Pn,`,

with:

• ` = 0 (Plancherel measure)

• `n > n log n (random shuffling)

In the related model of random maps, these correspond to trivial cases:

• for ` = 0, there are no edges to construct maps

• for `n > n log n, the maps saturate and edges are left unconnected.

The intermediate regime corresponds to the map enumeration problem.
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`n ∼ n1/2

`n ∼ n2/3
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Lemma (Chapuy–Louf–W., 2021+)

Let λ be a random partition of n distributed by the Hurwitz measure

Pn,`n with `n = 2bθnc for θ ≥ 1. As n→∞, λ converges to the limit

shape

λ =

(
2`n

log n
, λ̃

)
where λ̃ is the limit shape under the Plancherel measure Pn− 2`n

log n ,0
.

This is proven by

• varying λ1 with λ2, λ3, . . . , λ`(λ) fixed

to maximize

d2
λC

`n
λ

• showing λ1 is the only large part

• showing that with λ1, λ̃ = λ\λ1 should

maximize

d2
λ̃
.
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Theorem (Chapuy–Louf–W., 2021+)

Where `n = 2bθnc, the classical Hurwitz numbers are approximated by

Hn,`n = exp

[
2`n(log `n − log log n)− `n(2 + 2 log 2) + o(n)

]
as n→∞.

The partition function Hn,`n is bounded

below by

Hn,`n ≥d2
λC

`n
λ

= e2`n(log `n−log log n)−`n(2+2 log 2)+o(n)

and bounded above in turn by showing that∑
µ6=λ`n

d2
µC

`n
µ ≤

1

nkn1/2
d2
λC

`n
λ .
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From random maps to Hurwitz numbers

Maps and their genus

Hurwitz maps and their enumeration

From random partitions to Hurwitz numbers

Integrable hierarchies and fermions

Random walks on the symmetric group

Towards asymptotic enumeration of high genus Hurwitz maps

Hurwitz random partitions at `n ∼ n

Unconnected to connected numbers



Hn,`n do not really count high genus

Hurwitz maps; for our original problem we

need to find the connected numbers hn,`.

• Is there a high genus giant

component? Is

Hn,` =
∑
m,k

(
n − 1

m − 1

)(
`

k

)
hm,kHn−m,`−k

dominated by (m, k) = (c1n, c2`)?

• . . . no.

Rather, we can hope to extract approximate

asymptotics for hn,` from Hn,` at smaller `n.
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Conclusions & Perspectives

Via the Hurwitz numbers, a particular high genus map enumeration

problem can be reframed as a model of random integer partitions. This

involves an integrable generalization of the Plancherel measure, which

also appears in random walks on the symmetric group. Using this

approach, we have found asymptotics of Hn,`n∼n to eo(n).

This is work in progress, and we are still looking at

• Hn,` in the full intermediate regime, 0 < ` < n log n

• approximating the connected numbers hn,`

• the corresponding fermion model.



Thank you for your attention!
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