New fermion measures from map enumeration

Harriet Walsh (ENS de Lyon)

Work in progress with Guillaume Chapuy (CNRS \& IRIF) and Baptiste Louf (Uppsala University)

Random Networks and Interacting Particle Systems, 6 September 2021

From random maps to Hurwitz numbers
Maps and their genus
Hurwitz maps and their enumeration

From random partitions to Hurwitz numbers
Integrable hierarchies and fermions
Random walks on the symmetric group

Towards asymptotic enumeration of high genus Hurwitz maps
Hurwitz random partitions at $\ell_{n} \sim n$
Unconnected to connected numbers

From random maps to Hurwitz numbers

Maps and their genus

Hurwitz maps and their enumeration

From random partitions to Hurwitz numbers
Integrable hierarchies and fermions
Random walks on the symmetric group

Towards asymptotic enumeration of high genus Hurwitz maps
Hurwitz random partitions at $\ell_{n} \sim n$
Unconnected to connected numbers

Maps are graphs embedded in surfaces, defined as a set of vertices and edges and their oriented incidence relations.

Maps are graphs embedded in surfaces, defined as a set of vertices and edges and their oriented incidence relations.

Maps are graphs embedded in surfaces, defined as a set of vertices and edges and their oriented incidence relations.

Maps are graphs embedded in surfaces, defined as a set of vertices and edges and their oriented incidence relations.

\neq

The genus g of a map is the minimal number of holes needed in the surface it's drawn on. It satisfies the Euler characteristic relation

$$
\# \text { vertices }-\# \text { edges }+\# \text { faces }=2-2 g \text {. }
$$

Maps have universal properties:

- e.g. universal asymptotic enumeration for maps, triangulations, ... with n vertices as $n \rightarrow \infty$.
- e.g. universal local limits for large random maps

Simulation by J. Bettinelli.

Maps have universal properties:

- e.g. universal asymptotic enumeration for maps, triangulations, ... with n vertices as $n \rightarrow \infty$.
- e.g. universal local limits for large random maps

The high genus regime, where $g \sim n$ grows with map size, is not yet fully understood.

Simulation by J. Bettinelli.

Maps have universal properties:

- e.g. universal asymptotic enumeration for maps, triangulations, ... with n vertices as $n \rightarrow \infty$.
- e.g. universal local limits for large random maps

The high genus regime, where $g \sim n$ grows with map size, is not yet fully understood.

Theorem (Budzinski-Louf, 2019)
Let $\mathcal{T}_{n, g_{n}}$ be the triangulations with n vertices and genus $g_{n}=\lfloor\theta n\rfloor$. Then, as $n \rightarrow \infty$,

$$
\left|\mathcal{T}_{n, g_{n}}\right|=n^{2 g_{n}} \exp [f(\theta) n+o(n)] .
$$

Simulation by J. Bettinelli.

From random maps to Hurwitz numbers
Maps and their genus
Hurwitz maps and their enumeration

From random partitions to Hurwitz numbers
Integrable hierarchies and fermions
Random walks on the symmetric group

Towards asymptotic enumeration of high genus Hurwitz maps
Hurwitz random partitions at $\ell_{n} \sim n$
Unconnected to connected numbers

We consider a family of maps constructed from constellations (Bousquet-Mélou \& Schaeffer, 2000):

We consider a family of maps constructed from constellations (Bousquet-Mélou \& Schaeffer, 2000):

Take an ℓ-constellation

We consider a family of maps constructed from constellations
(Bousquet-Mélou \& Schaeffer, 2000):

Take an ℓ-constellation, with n hyperedges

We consider a family of maps constructed from constellations
(Bousquet-Mélou \& Schaeffer, 2000):

Take an ℓ-constellation, with n hyperedges, defined by

$$
\begin{aligned}
\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\ell}, \phi\right\} & \subset S_{n} \\
\sigma_{1} \cdot \sigma_{2} \cdots \sigma_{\ell} \cdot \phi & =\mathrm{id}
\end{aligned}
$$

We consider a family of maps constructed from constellations
(Bousquet-Mélou \& Schaeffer, 2000):

Take an ℓ-constellation, with n hyperedges, defined by

$$
\begin{aligned}
\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\ell}, \phi\right\} & \subset S_{n} \\
\sigma_{1} \cdot \sigma_{2} \cdots \sigma_{\ell} \cdot \phi & =\mathrm{id}
\end{aligned}
$$

- fix each $\sigma_{i}=\tau_{i}$ to be a transposition
- fix $\phi=$ id

We consider a family of maps constructed from constellations
(Bousquet-Mélou \& Schaeffer, 2000):

Take an ℓ-constellation, with n hyperedges, defined by

$$
\begin{array}{r}
\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{\ell}\right\} \subset S_{n} \\
\tau_{1} \cdot \tau_{2} \cdots \tau_{\ell}=\mathrm{id}
\end{array}
$$

- fix each $\sigma_{i}=\tau_{i}$ to be a transposition
- fix $\phi=$ id
- draw vertices on hyperedges and edges on hypervertices
These maps are in the same universality class as maps of all degree (Duchi, Poulalhon \& Schaeffer, 2014).

Consider the enumeration of the resulting maps,

$$
\begin{aligned}
H_{n, \ell}=\frac{1}{n!} \#\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{\ell}\right\} & \subset S_{n} \\
\tau_{1} \cdot \tau_{2} \cdots \tau_{\ell} & =\text { id } .
\end{aligned}
$$

By the ELSV formula, $H_{n, \ell}$ are the classical Hurwitz numbers; we call this family Hurwitz maps.

Frobenius' formula

The number of factorizations of the identity on S_{n} by ℓ transpositions can be expressed as a sum over irreducible representations V^{λ} of S_{n},

$$
H_{n, \ell}=\frac{1}{n!} \#\left\{\tau_{1} \cdot \tau_{2} \cdots \tau_{\ell}=\mathrm{id} \in S_{n}\right\}=\frac{1}{n!^{2}} \sum_{\lambda \vdash n}\left(\operatorname{dim} V^{\lambda}\right)^{2} \prod_{i=1}^{\ell} \frac{\chi^{\lambda}\left(\tau_{i}\right)}{\operatorname{dim} V^{\lambda}}
$$

Consider the enumeration of the resulting maps,

$$
\begin{aligned}
H_{n, \ell}=\frac{1}{n!} \#\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{\ell}\right\} & \subset S_{n} \\
\tau_{1} \cdot \tau_{2} \cdots \tau_{\ell} & =\mathrm{id} .
\end{aligned}
$$

By the ELSV formula, $H_{n, \ell}$ are the classical Hurwitz numbers; we call this family Hurwitz maps.

Frobenius' formula

The number of factorizations of the identity on S_{n} by ℓ transpositions can be expressed as a sum over irreducible representations V^{λ} of S_{n},

$$
H_{n, \ell}=\frac{1}{n!} \#\left\{\tau_{1} \cdot \tau_{2} \cdots \tau_{\ell}=\mathrm{id} \in S_{n}\right\}=\frac{1}{n!^{2}} \sum_{\lambda \vdash n} d_{\lambda}^{2}\left(\sum_{\square \in \lambda} c(\square)\right)^{\ell}
$$

$$
H_{n, \ell}=\frac{1}{n!} \#\left\{\tau_{1} \cdot \tau_{2} \cdots \tau_{\ell}=\mathrm{id} \in S_{n}\right\}=\frac{1}{n!^{2}} \sum_{\lambda \vdash n} d_{\lambda}^{2}\left(\sum_{\square \in \lambda} c(\square)\right)^{\ell}
$$

The irreducible representations and conjugacy classes of S_{n} are indexed by partitions $\lambda \vdash n, \lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{\ell(\lambda)}\right), \lambda_{1}+\lambda_{2}+\ldots+\lambda_{\ell(\lambda)}=n$.
$\ell(\lambda)$

$$
H_{n, \ell}=\frac{1}{n!} \#\left\{\tau_{1} \cdot \tau_{2} \cdots \tau_{\ell}=\mathrm{id} \in S_{n}\right\}=\frac{1}{n!^{2}} \sum_{\lambda \vdash n} d_{\lambda}^{2}\left(\sum_{\square \in \lambda} c(\square)\right)^{\ell}
$$

The irreducible representations and conjugacy classes of S_{n} are indexed by partitions $\lambda \vdash n, \lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{\ell(\lambda)}\right), \lambda_{1}+\lambda_{2}+\ldots+\lambda_{\ell(\lambda)}=n$.

- d_{λ} is the number of standard Young tableaux of shape λ

* When ℓ is odd, $H_{n, \ell}=0$.

$$
H_{n, \ell}=\frac{1}{n!} \#\left\{\tau_{1} \cdot \tau_{2} \cdots \tau_{\ell}=\mathrm{id} \in S_{n}\right\}=\frac{1}{n!^{2}} \sum_{\lambda \vdash n} d_{\lambda}^{2}\left(\sum_{\square \in \lambda} c(\square)\right)^{\ell}
$$

The irreducible representations and conjugacy classes of S_{n} are indexed by partitions $\lambda \vdash n, \lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{\ell(\lambda)}\right), \lambda_{1}+\lambda_{2}+\ldots+\lambda_{\ell(\lambda)}=n$.
$H_{n, \ell}$, counting unconnected Hurwitz maps, can be reframed as the partition function of random partitions of n under the Hurwitz measure

$$
\mathbb{P}_{n, \ell}(\lambda)=\frac{1}{H_{n, \ell}} \frac{1}{n!^{2}} d_{\lambda} C_{\lambda}^{\ell}, \quad C_{\lambda}=\sum_{\square \in \lambda} c(\square)
$$

Goal: Study these random partitions in the "high genus" regime

$$
\ell_{n}=2\lfloor\theta n\rfloor .
$$

From random maps to Hurwitz numbers
Maps and their genus
Hurwitz maps and their enumeration

From random partitions to Hurwitz numbers
Integrable hierarchies and fermions
Random walks on the symmetric group

Towards asymptotic enumeration of high genus Hurwitz maps
Hurwitz random partitions at $\ell_{n} \sim n$
Unconnected to connected numbers

From random maps to Hurwitz numbers
Maps and their genus
Hurwitz maps and their enumeration

From random partitions to Hurwitz numbers
Integrable hierarchies and fermions
Random walks on the symmetric group

Towards asymptotic enumeration of high genus Hurwitz maps
Hurwitz random partitions at $\ell_{n} \sim n$
Unconnected to connected numbers

Theorem (Okounkov, 2000)

The generating function

$$
\tau(\beta, q)=\sum_{n, \ell} q^{n} \frac{\beta^{\ell}}{\ell!} e^{n u} H_{n, \ell}
$$

satisfies the Toda equation

$$
e^{-u} \frac{\partial^{2}}{\partial u^{2}} \log \tau(\beta, q)=\frac{\tau(u+\beta, q) \tau(u-\beta, q)}{\tau(\beta, q)^{2}} .
$$

- This leads to recurrence relations for the connected Hurwitz numbers $h_{n, \ell}$ generated by $\log \tau$ (Dubrovin, Yang \& Zagier, 2017).
- Okounkov's approach is what's particularly interesting:

[^0]The infinite wedge space is built up from the vacuum

$$
\cdots \wedge \underset{-\frac{7}{2}}{\bullet} \wedge \underset{-\frac{5}{2}}{\bullet} \wedge \underset{-\frac{3}{2}}{\bullet} \wedge \underset{-\frac{1}{2}}{\bullet} \wedge \underset{\frac{1}{2}}{\circ} \wedge \underset{\frac{3}{2}}{\circ} \wedge \underset{\frac{5}{2}}{\circ} \wedge \cdots \quad=|\emptyset\rangle
$$

with the following toolkit:

- Creation:

$$
\psi_{k}\left(\cdots \wedge \circ_{k} \wedge \cdots\right)=(-1)^{\#\left\{\bullet_{j>k}\right\}} \cdots \wedge \wedge_{k} \wedge \cdots, \quad \psi_{k}\left(\cdots \wedge \wedge_{k} \wedge \cdots\right)=0
$$

- Annihilation:
$\psi_{k}^{*}(\cdots \wedge \bullet \wedge \cdots)=(-1)^{\#\left\{\bullet_{j>k}\right\}} \cdots \wedge_{k} \wedge^{\prime} \cdots, \quad \psi_{k}^{*}\left(\cdots \wedge_{k} \wedge \cdots\right)=0$
- Indicator: $\quad \psi_{k} \psi_{k}^{*}|\mathfrak{S}\rangle= \begin{cases}|\mathfrak{S}\rangle, & \bullet \text { in }|\mathfrak{S}\rangle \\ 0, & 0 \text { in }|\mathfrak{S}\rangle\end{cases}$
- Jumps:

$$
a_{ \pm 1}=\sum_{k \in \mathbb{Z}+\frac{1}{2}} \psi_{k \mp 1} \psi_{k}^{*}
$$

- Anticommutation:

$$
\psi_{k} \psi_{\ell}+\psi_{\ell} \psi_{k}=\psi_{k}^{*} \psi_{\ell}^{*}+\psi_{\ell}^{*} \psi_{k}^{*}=0, \quad \psi_{k} \psi_{\ell}^{*}+\psi_{\ell}^{*} \psi_{k}=\delta_{k \ell}
$$

Up to charge, each fermion configuration maps to a partition, by

$$
\mathfrak{S}(\lambda)=\left\{\lambda_{i}-i+\frac{1}{2}, i \in \mathbb{Z}_{>0}\right\} .
$$

Up to charge, each fermion configuration maps to a partition, by

$$
\mathfrak{S}(\lambda)=\left\{\lambda_{i}-i+\frac{1}{2}, i \in \mathbb{Z}_{>0}\right\} .
$$

Up to charge, each fermion configuration maps to a partition, by

$$
\mathfrak{S}(\lambda)=\left\{\lambda_{i}-i+\frac{1}{2}, i \in \mathbb{Z}_{>0}\right\} .
$$

Up to charge, each fermion configuration maps to a partition, by

$$
\mathfrak{S}(\lambda)=\left\{\lambda_{i}-i+\frac{1}{2}, i \in \mathbb{Z}_{>0}\right\} .
$$

The vacuum expectation value

$$
\langle\emptyset| e^{\theta a+1}\left(\prod_{k \in \mathfrak{S}(\lambda)} \psi_{k} \psi_{k}^{*}\right) e^{\theta a-1}|\emptyset\rangle=d_{\lambda}^{2} \frac{\theta^{2|\lambda|}}{|\lambda|!^{2}}
$$

counts the standard Young tableaux of shape λ.

Up to charge, each fermion configuration maps to a partition, by

$$
\mathfrak{S}(\lambda)=\left\{\lambda_{i}-i+\frac{1}{2}, i \in \mathbb{Z}_{>0}\right\} .
$$

The sum of contents $C_{\lambda}=\sum_{\square \in \lambda} c(\square)$ is the eigenvalue of the operator

$$
F_{2}=\sum_{k \in \mathfrak{S}(\lambda)} \frac{k^{2}}{2}: \psi_{k} \psi_{k}^{*}:, \quad: \psi_{k} \psi_{k}^{*}:= \begin{cases}\psi_{k} \psi_{k}^{*}, & k>0 \\ \psi_{k}^{*} \psi_{k} & k<0\end{cases}
$$

The unconnected Hurwitz numbers $H_{n, \ell}$ are generated by

$$
\begin{aligned}
\tau(\beta, q) & =\left.\sum_{\lambda}\langle\emptyset| e^{\theta a_{+1}}\left(\prod_{k \in \mathfrak{S}(\lambda)} \psi_{k} \psi_{k}^{*}\right) e^{\beta F_{2}} e^{\theta a_{-1}}|\emptyset\rangle\right|_{\theta=q e^{u / 2}} \\
& =\sum_{n, \ell} q^{n} \frac{\beta^{\ell}}{\ell!} e^{n u} \sum_{\lambda \vdash n} d_{\lambda}^{2} C_{\lambda}^{\ell}
\end{aligned}
$$

- At $\beta=0$, the Poissonized Plancherel measure

$$
\mathbb{P}(\lambda)=\frac{1}{\tau(0, q)} d_{\lambda}^{2} \frac{q^{|\lambda|} e^{u|\lambda|}}{|\lambda|!^{2}}
$$

defines a determinantal point process, in which every correlation function can be expressed as a determinant of a kernel (Borodin, Okounkov \& Olshanski, 1999).

* This is one way to find the rather trivial result $H_{n, 0}=\frac{1}{n!}$.

From random maps to Hurwitz numbers
Maps and their genus
Hurwitz maps and their enumeration

From random partitions to Hurwitz numbers
Integrable hierarchies and fermions
Random walks on the symmetric group

Towards asymptotic enumeration of high genus Hurwitz maps
Hurwitz random partitions at $\ell_{n} \sim n$
Unconnected to connected numbers

Consider a shuffling n numbers by ℓ random exchanges

$$
\mathbb{P}(\text { id })=\frac{1}{n}, \quad \mathbb{P}\left(\tau_{i}\right)=\frac{1}{n^{2}} \quad \forall \tau_{i} \in S_{n} .
$$

$$
(1,2,3,4,5,6,7,8,9,10,11,12,13,14, \ldots, n-1, n)
$$

Consider a shuffling n numbers by ℓ random exchanges

$$
\begin{aligned}
& \mathbb{P}(\mathrm{id})=\frac{1}{n}, \quad \mathbb{P}\left(\tau_{i}\right)=\frac{1}{n^{2}} \quad \forall \tau_{i} \in S_{n} . \\
\sigma_{0}=\mathrm{id}: & (1,2,3,4,5,6,7,8,9,10,11,12,13,14, \ldots, n-1, n) \\
\sigma_{1}: & (1,2,11,4,5,6,7,8,9,10,3,12,13,14, \ldots, n-1, n)
\end{aligned}
$$

Consider a shuffling n numbers by ℓ random exchanges

$$
\begin{array}{cl}
& \mathbb{P}(\mathrm{id})=\frac{1}{n}, \quad \mathbb{P}\left(\tau_{i}\right)=\frac{1}{n^{2}} \quad \forall \tau_{i} \in S_{n} . \\
\sigma_{0}=\mathrm{id}: & (1,2,3,4,5,6,7,8,9,10,11,12,13,14, \ldots, n-1, n) \\
\sigma_{1}: & (1,2,11,4,5,6,7,8,9,10,3,12,13,14, \ldots, n-1, n) \\
\sigma_{2}: & (1,2,11,4, n-1,6,7,8,9,10,3,12,13,14, \ldots, 5, n)
\end{array}
$$

Consider a shuffling n numbers by ℓ random exchanges

$$
\begin{aligned}
& \mathbb{P}(\mathrm{id})=\frac{1}{n}, \quad \mathbb{P}\left(\tau_{i}\right)=\frac{1}{n^{2}} \quad \forall \tau_{i} \in S_{n} . \\
\sigma_{0}=\mathrm{id}: & (1,2,3,4,5,6,7,8,9,10,11,12,13,14, \ldots, n-1, n) \\
\sigma_{1}: & (1,2,11,4,5,6,7,8,9,10,3,12,13,14, \ldots, n-1, n) \\
\sigma_{2}: & (1,2,11,4, n-1,6,7,8,9,10,3,12,13,14, \ldots, 5, n) \\
\sigma_{3}: & (9,2,11,4, n-1,6,7,8,1,10,3,12,13,14, \ldots, 5, n)
\end{aligned}
$$

Consider a shuffling n numbers by ℓ random exchanges

$$
\begin{aligned}
& \mathbb{P}(\mathrm{id})=\frac{1}{n}, \quad \mathbb{P}\left(\tau_{i}\right)=\frac{1}{n^{2}} \quad \forall \tau_{i} \in S_{n} . \\
\sigma_{0}=\mathrm{id}: & (1,2,3,4,5,6,7,8,9,10,11,12,13,14, \ldots, n-1, n) \\
\sigma_{1}: & (1,2,11,4,5,6,7,8,9,10,3,12,13,14, \ldots, n-1, n) \\
\sigma_{2}: & (1,2,11,4, n-1,6,7,8,9,10,3,12,13,14, \ldots, 5, n) \\
\sigma_{3}: & (9,2,11,4, n-1,6,7,8,1,10,3,12,13,14, \ldots, 5, n) \\
& \vdots \\
\sigma_{\ell}: & (9,17,6,28, n-1,4,31,8,25,1,3, n, 13,21, \ldots, 5,11)
\end{aligned}
$$

The random partition σ_{ℓ} is distributed by the convolution $\mathbb{P}^{* \ell}(\sigma)$.

- Question: For what ℓ_{n} is $\sigma_{\ell_{n}}$ a uniform random permutation (Diaconis \& Shahshahani, 1981)?

Theorem (Diaconis-Shahshahani, 1981)

The measure on S_{n} from a random walk of length ℓ by transpositions with $\mathbb{P}(\tau)=\frac{1}{n^{2}}$ approaches the uniform measure U as $n \rightarrow \infty$ if
$\ell>\frac{1}{2} n \log n$. In particular, the total variation distance is bounded as

$$
\left\|\mathbb{P}^{* \ell}-U\right\| \leq b \exp \left[\frac{n \log n-2 \ell}{n}\right]
$$

The Hurwitz measure makes an appearance in the proof...

Theorem (Diaconis-Shahshahani, 1981)

The measure on S_{n} from a random walk of length ℓ by transpositions with $\mathbb{P}(\tau)=\frac{1}{n^{2}}$ approaches the uniform measure U as $n \rightarrow \infty$ if
$\ell>\frac{1}{2} n \log n$. In particular, the total variation distance is bounded as

$$
\left\|\mathbb{P}^{* \ell}-U\right\| \leq b \exp \left[\frac{n \log n-2 \ell}{n}\right]
$$

The Hurwitz measure makes an appearance in the proof...
$\mathbb{P}^{* \ell}$ is Fourier transformed to the representations of S_{n}, with

$$
\rho(\mathbb{P})=\sum_{\sigma \in S_{n}} \mathbb{P}(\sigma) \rho(\sigma), \quad \rho\left(\mathbb{P}^{* \ell}\right)=\rho(\mathbb{P})^{\ell}, \quad \mathbb{P}(\sigma)=\frac{1}{n!} \sum_{\lambda \vdash n} d_{\lambda} \operatorname{tr} \rho(\sigma)^{*} \mathbb{P}(\rho),
$$

leading to an upper bound

$$
\left\|\mathbb{P}^{* \ell}-U\right\|^{2} \leq \sum_{\lambda \vdash n} d_{\lambda}^{2}\left(\frac{1}{n}+\frac{n-1}{n} C_{\lambda}\right)^{2 \ell} .
$$

Theorem (Diaconis-Shahshahani, 1981)

The measure on S_{n} from a random walk of length ℓ by transpositions with $\mathbb{P}(\tau)=\frac{1}{n^{2}}$ approaches the uniform measure U as $n \rightarrow \infty$ if $\ell>\frac{1}{2} n \log n$. In particular, the total variation distance is bounded as

$$
\begin{gathered}
\left\|\mathbb{P}^{* \ell}-U\right\| \leq b \exp \left[\frac{n \log n-2 \ell}{n}\right] . \\
\left\|\mathbb{P}^{* \ell}-U\right\|^{2} \leq \sum_{\lambda \vdash n} d_{\lambda}^{2}\left(\frac{1}{n}+\frac{n-1}{n} C_{\lambda}\right)^{2 \ell}
\end{gathered}
$$

The cut-off in the total variation distance at $2 \ell>n \log n$ is due to the contributions from

$$
\boldsymbol{\lambda}=(n), \quad \boldsymbol{\lambda}=(1,1, \ldots, 1) ;
$$

the Hurwitz random partitions concentrate to them as $n \rightarrow \infty$.

From random maps to Hurwitz numbers
 Maps and their genus
 Hurwitz maps and their enumeration
 From random partitions to Hurwitz numbers
 Integrable hierarchies and fermions
 Random walks on the symmetric group

Towards asymptotic enumeration of high genus Hurwitz maps
Hurwitz random partitions at $\ell_{n} \sim n$
Unconnected to connected numbers

From random maps to Hurwitz numbers
Maps and their genus
Hurwitz maps and their enumeration

From random partitions to Hurwitz numbers
Integrable hierarchies and fermions
Random walks on the symmetric group

Towards asymptotic enumeration of high genus Hurwitz maps
Hurwitz random partitions at $\ell_{n} \sim n$
Unconnected to connected numbers

Limit shapes as $n \rightarrow \infty$ are known for Hurwitz random measures $\mathbb{P}_{n, \ell}$ with:

- $\ell=0$ (Plancherel measure)
- $\ell_{n}>n \log n$ (random shuffling)

Limit shapes as $n \rightarrow \infty$ are known for Hurwitz random measures $\mathbb{P}_{n, \ell}$ with:

- $\ell=0$ (Plancherel measure)

- $\ell_{n}>n \log n$ (random shuffling)

In the related model of random maps, these correspond to trivial cases:

- for $\ell=0$, there are no edges to construct maps
- for $\ell_{n}>n \log n$, the maps saturate and edges are left unconnected.

The intermediate regime corresponds to the map enumeration problem.

$$
\ell_{n} \sim n^{1 / 2}
$$

$$
\ell_{n} \sim n^{3 / 4}
$$

Lemma (Chapuy-Louf-W., 2021+)

Let λ be a random partition of n distributed by the Hurwitz measure $\mathbb{P}_{n, \ell_{n}}$ with $\ell_{n}=2\lfloor\theta n\rfloor$ for $\theta \geq 1$. As $n \rightarrow \infty, \lambda$ converges to the limit shape

$$
\lambda=\left(\frac{2 \ell_{n}}{\log n}, \tilde{\lambda}\right)
$$

where $\tilde{\lambda}$ is the limit shape under the Plancherel measure $\mathbb{P}_{n-\frac{2 \ell_{n}}{10{ }_{0} n}, 0}$.

Lemma (Chapuy-Louf-W., 2021+)

Let λ be a random partition of n distributed by the Hurwitz measure $\mathbb{P}_{n, \ell_{n}}$ with $\ell_{n}=2\lfloor\theta n\rfloor$ for $\theta \geq 1$. As $n \rightarrow \infty, \lambda$ converges to the limit shape

$$
\lambda=\left(\frac{2 \ell_{n}}{\log n}, \tilde{\lambda}\right)
$$

where $\tilde{\lambda}$ is the limit shape under the Plancherel measure $\mathbb{P}_{n-\frac{2 \ell_{n}}{\log _{n}, 0}}$.
This is proven by

- varying λ_{1} with $\lambda_{2}, \lambda_{3}, \ldots, \lambda_{\ell(\lambda)}$ fixed to maximize

$$
d_{\lambda}^{2} C_{\lambda}^{\ell_{n}}
$$

- showing λ_{1} is the only large part
- showing that with $\lambda_{1}, \tilde{\lambda}=\lambda \backslash \lambda_{1}$ should maximize

$$
d_{\tilde{\lambda}}^{2} .
$$

Theorem (Chapuy-Louf-W., 2021+)

Where $\ell_{n}=2\lfloor\theta n\rfloor$, the classical Hurwitz numbers are approximated by

$$
H_{n, \ell_{n}}=\exp \left[2 \ell_{n}\left(\log \ell_{n}-\log \log n\right)-\ell_{n}(2+2 \log 2)+o(n)\right]
$$

as $n \rightarrow \infty$.

Theorem (Chapuy-Louf-W., 2021+)

Where $\ell_{n}=2\lfloor\theta n\rfloor$, the unconnected classical Hurwitz numbers are approximated by

$$
H_{n, \ell_{n}}=\exp \left[2 \ell_{n}\left(\log \ell_{n}-\log \log n\right)-\ell_{n}(2+2 \log 2)+o(n)\right]
$$

as $n \rightarrow \infty$.
The partition function $H_{n, \ell_{n}}$ is bounded below by

$$
\begin{aligned}
H_{n, \ell_{n}} \geq & d_{\lambda}^{2} C_{\lambda}^{\ell_{n}} \\
& =e^{2 \ell_{n}\left(\log \ell_{n}-\log \log n\right)-\ell_{n}(2+2 \log 2)+o(n)}
\end{aligned}
$$

and bounded above in turn by showing that

$$
\sum_{\mu \neq \boldsymbol{\lambda} \vdash n} d_{\mu}^{2} C_{\mu}^{\ell_{n}} \leq \frac{1}{n^{k n^{1 / 2}}} d_{\lambda}^{2} C_{\lambda}^{\ell_{n}}
$$

```
From random maps to Hurwitz numbers
Maps and their genus
Hurwitz maps and their enumeration
From random partitions to Hurwitz numbers
Integrable hierarchies and fermions
Random walks on the symmetric group
Towards asymptotic enumeration of high genus Hurwitz maps
Hurwitz random partitions at \(\ell_{n} \sim n\)
```

Unconnected to connected numbers
$H_{n, \ell_{n}}$ do not really count high genus Hurwitz maps; for our original problem we need to find the connected numbers $h_{n, \ell}$.

- Is there a high genus giant component? Is

$$
H_{n, \ell}=\sum_{m, k}\binom{n-1}{m-1}\binom{\ell}{k} h_{m, k} H_{n-m, \ell-k}
$$

dominated by $(m, k)=\left(c_{1} n, c_{2} \ell\right)$?
$H_{n, \ell_{n}}$ do not really count high genus Hurwitz maps; for our original problem we need to find the connected numbers $h_{n, \ell}$.

- Is there a high genus giant component? Is

$$
\begin{aligned}
& H_{n, \ell}=\sum_{m, k}\binom{n-1}{m-1}\binom{\ell}{k} h_{m, k} H_{n-m, \ell-k} \\
& \text { dominated by }(m, k)=\left(c_{1} n, c_{2} \ell\right) ? \\
& \text {. } . . \text { no. }
\end{aligned}
$$

Rather, we can hope to extract approximate asymptotics for $h_{n, \ell}$ from $H_{n, \ell}$ at smaller ℓ_{n}.

Conclusions \& Perspectives

Via the Hurwitz numbers, a particular high genus map enumeration problem can be reframed as a model of random integer partitions. This involves an integrable generalization of the Plancherel measure, which also appears in random walks on the symmetric group. Using this approach, we have found asymptotics of $H_{n, \ell_{n} \sim n}$ to $e^{o(n)}$.

This is work in progress, and we are still looking at

- $H_{n, \ell}$ in the full intermediate regime, $0<\ell<n \log n$
- approximating the connected numbers $h_{n, \ell}$
- the corresponding fermion model.

Thank you for your attention!

[^0]: "we remark that the generating function for double Hurwitz numbers is almost by definition a certain matrix element in the infinite wedge space. It is a well known result of the Kyoto school that such matrix elements are τ-functions of integrable hierarchies."

