Coalescing and branching simple exclusion and Fredrickson-Andersen models¹

Ivailo Hartarsky CEREMADE, Université Paris Dauphine, PSL University joint with Fabio Martinelli and Cristina Toninelli

8 September 2021

Random Networks and Interacting Particle Systems conference, online

¹Supported by ERC Starting Grant 680275 MALIG

Model Preliminaries Result

Coalescing Random Walks with Neighbour Births

G = (V, E) is a connected graph.

Model Preliminaries Result

Coalescing Random Walks with Neighbour Births

G = (V, E) is a connected graph.

CRWNB representation

Random walk jumping along each edge at rate 1.

Model Preliminaries Result

Coalescing Random Walks with Neighbour Births

G = (V, E) is a connected graph.

CRWNB representation

Independent random walks jumping along each edge at rate 1.

Model Preliminaries Result

Coalescing Random Walks with Neighbour Births

G = (V, E) is a connected graph.

CRWNB representation

Coalescing independent random walks jumping along each edge at rate 1.

CBSEP Model Application to FA1f Prelim Application to FAjf Result

Model Preliminaries Result

Coalescing Random Walks with Neighbour Births

G = (V, E) is a connected graph.

CRWNB representation

Coalescing independent random walks jumping along each edge at rate 1 and giving birth to a particle at each neighbour independently at rate β .

Model Preliminaries Result

History

Ivailo Hartarsky CBSEP and FA

History

• Biased voter model

CBSEP Model Application to FA1f Preliminaries Application to FAjf Result

- Biased voter model
- Williams-Bjerknes tumour growth model [WB'72]

CBSEP Model Application to FA1f Application to FAjf Result

- Biased voter model
- Williams-Bjerknes tumour growth model [WB'72]
- CRWNB was introduced as the dual of biased voter [Schwartz'77; Harris'76]

- Biased voter model
- Williams-Bjerknes tumour growth model [WB'72]
- CRWNB was introduced as the dual of biased voter [Schwartz'77; Harris'76]
- $\beta = 0$ is CRW dual of voter

- Biased voter model
- Williams-Bjerknes tumour growth model [WB'72]
- CRWNB was introduced as the dual of biased voter [Schwartz'77; Harris'76]
- $\beta = 0$ is CRW dual of voter
- On Z^d for β > 0 CRWNB converges weakly to its unique invariant measure starting with at least one particle.

- Biased voter model
- Williams-Bjerknes tumour growth model [WB'72]
- CRWNB was introduced as the dual of biased voter [Schwartz'77; Harris'76]
- $\beta = 0$ is CRW dual of voter
- On Z^d for β > 0 CRWNB converges weakly to its unique invariant measure starting with at least one particle.
- On Z^d for β > 0 − limit shape, cutoff [Bramson,Griffeath'80,81; Durrett,Griffeath'82]

- Biased voter model
- Williams-Bjerknes tumour growth model [WB'72]
- CRWNB was introduced as the dual of biased voter [Schwartz'77; Harris'76]
- $\beta = 0$ is CRW dual of voter
- On Z^d for β > 0 CRWNB converges weakly to its unique invariant measure starting with at least one particle.
- On Z^d for β > 0 − limit shape, cutoff [Bramson,Griffeath'80,81; Durrett,Griffeath'82]
- On $\mathbb Z$ for $\beta \to 0$ Brownian net [Sun,Swart'08]

Model Preliminaries Result

Coalescing and Branching Simple Exclusion Process

 $G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$

Model Preliminaries Result

Coalescing and Branching Simple Exclusion Process

 $G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$

CBSEP representation

Each edge e containing a particle resamples at rate 1 from π_e conditioned to still contain a particle.

CBSEP Mo Application to FA1f Pro Application to FAjf Res

Model Preliminaries Result

Coalescing and Branching Simple Exclusion Process $G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$

CBSEP representation

Each edge e containing a particle resamples at rate 1 from π_e conditioned to still contain a particle. In other words along e:

• (SEP) a particle swaps with a hole with rate (1-p)/(2-p);

CBSEP Mo Application to FA1f Pro Application to FAjf Res

Model Preliminaries Result

Coalescing and Branching Simple Exclusion Process $G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$

CBSEP representation

Each edge e containing a particle resamples at rate 1 from π_e conditioned to still contain a particle. In other words along e:

- (SEP) a particle swaps with a hole with rate (1 p)/(2 p);
- (B) a particle fills the adjacent hole with rate p/(2-p);

CBSEP Mo Application to FA1f Pro Application to FAjf Res

Model Preliminaries Result

Coalescing and Branching Simple Exclusion Process $G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$

CBSEP representation

Each edge e containing a particle resamples at rate 1 from π_e conditioned to still contain a particle. In other words along e:

- (SEP) a particle swaps with a hole with rate (1 p)/(2 p);
- (B) a particle fills the adjacent hole with rate p/(2-p);
- (C) two particles coalesce at uniformly chosen of the two positions at rate 2(1-p)/(2-p).

Model Preliminaries Result

Model Preliminaries Result

What is so nice about CBSEP?

• CBSEP is attractive. It's even additive!

CBSEP Model Application to FA1f Prelimin Application to FAjf Result

- CBSEP is attractive. It's even additive!
- $\mu := \pi(\cdot | \Omega_+)$ is reversible, where $\Omega_+ = \{ \text{at least one particle} \}.$

CBSEP Model Application to FA1f Preliminaries Application to FAjf Result

- CBSEP is attractive. It's even additive!
- $\mu := \pi(\cdot | \Omega_+)$ is reversible, where $\Omega_+ = \{ \text{at least one particle} \}.$
- CBSEP is the same as CRWNB with $\beta = p/(1-p)$ slowed down by a factor (1-p)/(2-p).

CBSEP Model Application to FA1f Application to FAjf Result

- CBSEP is attractive. It's even additive!
- $\mu := \pi(\cdot | \Omega_+)$ is reversible, where $\Omega_+ = \{ \text{at least one particle} \}.$
- CBSEP is the same as CRWNB with $\beta = p/(1-p)$ slowed down by a factor (1-p)/(2-p).
- Nice dual model (in two distinct ways).

CBSEP Model Application to FA1f Preliminaries Application to FAjf Result

- CBSEP is attractive. It's even additive!
- $\mu := \pi(\cdot | \Omega_+)$ is reversible, where $\Omega_+ = \{ \text{at least one particle} \}.$
- CBSEP is the same as CRWNB with $\beta = p/(1-p)$ slowed down by a factor (1-p)/(2-p).
- Nice dual model (in two distinct ways).
- Lots of embedded random walks (even more than those in the CRWNB representation).

CBSEP Model Application to FA1f Application to FAjf Result

Mixing times

Let $h_{\omega}^{t}(\cdot) = P_{\omega}^{t}(\cdot)/\mu(\cdot)$ be the density of the law of CBSEP started at ω w.r.t. the reversible measure μ .

Model Preliminaries Result

Mixing times

$$\begin{split} h^t_{\omega}(\cdot) &= P^t_{\omega}(\cdot)/\mu(\cdot)\\ \text{Let } \|f\|_q &= \left(\int f^q \,\mathrm{d}\mu\right)^{1/q} = (\mu(f^q))^{1/q} \text{ for } q \in [1,\infty]. \end{split}$$

Model Preliminaries Result

Mixing times

$$\begin{split} h^t_{\omega}(\cdot) &= P^t_{\omega}(\cdot)/\mu(\cdot) \\ \|f\|_q &= (\mu(f^q))^{1/q} \\ \|h^t_{\omega} - 1\|_1 &= 2d_{\mathrm{TV}}(P^t_{\omega}, \mu) \end{split}$$

Model Preliminaries Result

Mixing times

$$\begin{split} h^t_{\omega}(\cdot) &= P^t_{\omega}(\cdot)/\mu(\cdot) \\ \|f\|_q &= (\mu(f^q))^{1/q} \\ \|h^t_{\omega} - 1\|_1 &= 2d_{\mathrm{TV}}(P^t_{\omega}, \mu) \\ T_q &= \inf\{t > 0, \max_{\omega} \|h^t_{\omega} - 1\|_q \leqslant 1/e\} \end{split}$$

Model Preliminaries Result

Mixing times

$$\begin{split} h_{\omega}^{t}(\cdot) &= P_{\omega}^{t}(\cdot)/\mu(\cdot) \\ \|f\|_{q} &= (\mu(f^{q}))^{1/q} \\ \|h_{\omega}^{t} - 1\|_{1} &= 2d_{\mathrm{TV}}(P_{\omega}^{t}, \mu) \\ T_{q} &= \inf\{t > 0, \max_{\omega} \|h_{\omega}^{t} - 1\|_{q} \leqslant 1/e\} \\ T_{1} &= T_{\mathrm{mix}}\left(\frac{1}{2e}\right) \end{split}$$

Model Preliminaries Result

Mixing times

$$egin{aligned} h^t_{\omega}(\cdot) &= P^t_{\omega}(\cdot)/\mu(\cdot) \ \|f\|_q &= (\mu(f^q))^{1/q} \ \|h^t_{\omega} - 1\|_1 &= 2d_{ ext{TV}}(P^t_{\omega},\mu) \ T_q &= \inf\{t>0,\max_{\omega}\|h^t_{\omega} - 1\|_q \leqslant 1/e\} \ T_1 &= \mathcal{T}_{ ext{mix}}\left(rac{1}{2e}
ight) \end{aligned}$$

$$orall q \in [1,\infty], \quad {\mathcal T}_{oldsymbol{q}} \leqslant O\left(\log\lograc{1}{\mu_*}
ight){\mathcal T}_{
m Sob},$$

 $\mu_* = \min_\omega \mu(\omega); \,\, T_{
m Sob}$ is 'the inverse rate of decay of entropy'

CBSEP Model Application to FA1f Application to FAjf Result

Commuting and meeting

• The commute time $T_{com}^{x,y}$ of a RW between $x, y \in V$ is $\mathbb{E}_x[\tau_y] + \mathbb{E}_y[\tau_x]$.

CBSEP Model Application to FA1f Application to FA/f Result

Commuting and meeting

- The commute time $T_{com}^{x,y}$ of a RW between $x, y \in V$ is $\mathbb{E}_x[\tau_y] + \mathbb{E}_y[\tau_x]$.
- It's also $2|V|\mathcal{R}_{x,y}$, where $\mathcal{R}_{x,y}$ is the resistance between x, y.

CBSEP Model Application to FA1f Application to FA/f Result

Commuting and meeting

- The commute time $T_{com}^{x,y}$ of a RW between $x, y \in V$ is $\mathbb{E}_x[\tau_y] + \mathbb{E}_y[\tau_x]$.
- It's also $2|V|\mathcal{R}_{x,y}$, where $\mathcal{R}_{x,y}$ is the resistance between x, y.
- $T_{\text{meet}}^{x,y}$ is the expected meeting time of x and y.

Commuting and meeting

- The commute time $T_{com}^{x,y}$ of a RW between $x, y \in V$ is $\mathbb{E}_x[\tau_y] + \mathbb{E}_y[\tau_x]$.
- It's also $2|V|\mathcal{R}_{x,y}$, where $\mathcal{R}_{x,y}$ is the resistance between x, y.
- $T_{\text{meet}}^{x,y}$ is the expected meeting time of x and y.
- In all examples we will encounter (and many others) we have

$$T_{\text{meet}} := \frac{1}{|V|^2} \sum_{x,y} T_{\text{meet}}^{x,y} \asymp \frac{1}{|V|^2} \sum_{x,y} T_{\text{com}}^{x,y}$$
$$\asymp \max_{x,y} T_{\text{meet}}^{x,y} \asymp \max_{x,y} T_{\text{com}}^{x,y} =: T_{\text{com}}$$

and these are known up to a constant factor (or better).

Model Preliminaries Result

Setting

Slightly supercritical: $p_n \rightarrow 0$.
Setting

Slightly supercritical: $p_n \rightarrow 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where n = |V|.

Setting

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where n = |V|. We have in mind G is 'fairly sparse' and 'roughly regular', like:

Setting

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where n = |V|. We have in mind G is 'fairly sparse' and 'roughly regular', like:

Setting

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where n = |V|. We have in mind G is 'fairly sparse' and 'roughly regular', like:

$$T_{\rm com} \asymp n \times \begin{cases} n & d = 1 \\ \log n & d = 2 \\ 1 & d \ge 3 \end{cases}$$

Setting

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where n = |V|. We have in mind G is 'fairly sparse' and 'roughly regular', like:

• torus of side $L = n^{1/d}$ and dimension d.

$$T_{\rm com} \asymp n \times \begin{cases} n & d = 1 \\ \log n & d = 2 \\ 1 & d \ge 3 \end{cases}$$

• uniform random regular graph G(n, d).

Setting

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where n = |V|. We have in mind G is 'fairly sparse' and 'roughly regular', like:

• torus of side $L = n^{1/d}$ and dimension d.

$$T_{\rm com} \asymp n \times \begin{cases} n & d = 1 \\ \log n & d = 2 \\ 1 & d \ge 3 \end{cases}$$

• uniform random regular graph G(n,d) $\mathcal{T}_{\mathrm{com}} symp n$

Setting

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where n = |V|. We have in mind G is 'fairly sparse' and 'roughly regular', like:

$$T_{\rm com} \asymp n \times \begin{cases} n & d = 1 \\ \log n & d = 2 \\ 1 & d \ge 3 \end{cases}$$

- uniform random regular graph G(n,d) $\mathcal{T}_{\mathrm{com}} symp n$
- complete binary tree.

Setting

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where n = |V|. We have in mind G is 'fairly sparse' and 'roughly regular', like:

$$T_{\rm com} \asymp n \times \begin{cases} n & d = 1 \\ \log n & d = 2 \\ 1 & d \ge 3 \end{cases}$$

- uniform random regular graph G(n,d) $\mathcal{T}_{\mathrm{com}} symp n$
- complete binary tree. $T_{\rm com} symp n \log n$

Setting

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where n = |V|. We have in mind G is 'fairly sparse' and 'roughly regular', like:

$$T_{\rm com} \asymp n \times \begin{cases} n & d = 1 \\ \log n & d = 2 \\ 1 & d \ge 3 \end{cases}$$

- uniform random regular graph $\mathit{G}(\mathit{n},\mathit{d}).\mathit{T}_{\mathrm{com}} symp n$
- complete binary tree. $T_{\rm com} \asymp n \log n$
- hypercube of dimension log₂ n.

Setting

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where n = |V|. We have in mind G is 'fairly sparse' and 'roughly regular', like:

$$T_{\rm com} \asymp n \times \begin{cases} n & d = 1 \\ \log n & d = 2 \\ 1 & d \ge 3 \end{cases}$$

- uniform random regular graph G(n,d). $\mathcal{T}_{\mathrm{com}} symp n$
- complete binary tree. $T_{\rm com} symp n \log n$
- hypercube of dimension $\log_2 n$. $T_{\rm com} \asymp n/\log n$

Model Preliminaries Result

Theorem (Martinelli, Toninelli, H.'20)

Let $p_n = \Theta(1/n)$ and $G_n = (V_n, E_n)$ be a sequence of 'nice'^a graphs with $|V_n| = n$. Then

$$\Omega(T_{\text{meet}}) \leqslant T_{\text{Sob}}^{\text{CBSEP}} \leqslant O(T_{\text{com}} \log n).$$

^aE.g. with bounded degree or rapidly mixing with degree at most $n^{1/5}$. This is only needed for the upper bound.

Model Preliminaries Result

Theorem (Martinelli, Toninelli, H.'20)

Let $p_n = \Theta(1/n)$ and $G_n = (V_n, E_n)$ be a sequence of 'nice'^a graphs with $|V_n| = n$. Then

$$\Omega(T_{\mathrm{meet}}) \leqslant T_{\mathrm{Sob}}^{\mathrm{CBSEP}} \leqslant O(T_{\mathrm{com}} \log n).$$

^aE.g. with bounded degree or rapidly mixing with degree at most $n^{1/5}$. This is only needed for the upper bound.

Corollary

If G_n is the d-dimensional torus, then

$$\begin{split} \Omega(n^2) &\leqslant \ T_{\rm Sob}^{\rm CBSEP} \leqslant O(n^2 \log n) & d = 1\\ \Omega(n \log n) &\leqslant \ T_{\rm Sob}^{\rm CBSEP} \leqslant O(n \log^2 n) & d = 2\\ \Omega(n) &\leqslant \ T_{\rm Sob}^{\rm CBSEP} \leqslant O(n \log n) & d \geqslant 3 \end{split}$$

Model Relationship with CBSEP Application

FA1f

$G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$

Model Relationship with CBSEP Application

FA1f $G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$

Definition (FA1f)

Each vertex $v \in V$ such that there is a neighbouring particle (i.e. $\{u, v\} \in E$ with $\omega_u = 1$) resamples at rate 1 from π_v .

Model Relationship with CBSEP Application

FA1f $G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$

Definition (FA1f)

Each vertex $v \in V$ such that there is a neighbouring particle (i.e. $\{u, v\} \in E$ with $\omega_u = 1$) resamples at rate 1 from π_v .

 $+ \ \mu = \pi(\cdot | \Omega_+)$ is reversible.

Model Relationship with CBSEP Application

FA1f $G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$

Definition (FA1f)

Each vertex $v \in V$ such that there is a neighbouring particle (i.e. $\{u, v\} \in E$ with $\omega_u = 1$) resamples at rate 1 from π_v .

- $+ \ \mu = \pi(\cdot|\Omega_+)$ is reversible.
- Not attractive (and does not have a dual).

Model Relationship with CBSEP Application

FA1f $G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$

Definition (FA1f)

Each vertex $v \in V$ such that there is a neighbouring particle (i.e. $\{u, v\} \in E$ with $\omega_u = 1$) resamples at rate 1 from π_v .

- $+~\mu=\pi(\cdot|\Omega_+)$ is reversible.
- Not attractive (and does not have a dual).
- No other (known) nice representations.

Model Relationship with CBSEP Application

FA1f $G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$

Definition (FA1f)

Each vertex $v \in V$ such that there is a neighbouring particle (i.e. $\{u, v\} \in E$ with $\omega_u = 1$) resamples at rate 1 from π_v .

 $+ \ \mu = \pi(\cdot|\Omega_+)$ is reversible.

- Not attractive (and does not have a dual).
- No other (known) nice representations.
- No (known) embedded random walks.

Model Relationship with CBSEP Application

FA1f $G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$

Definition (FA1f)

Each vertex $v \in V$ such that there is a neighbouring particle (i.e. $\{u, v\} \in E$ with $\omega_u = 1$) resamples at rate 1 from π_v .

 $+ \ \mu = \pi(\cdot|\Omega_+)$ is reversible.

- Not attractive (and does not have a dual).
- No other (known) nice representations.
- No (known) embedded random walks.
- Not well understood even for p=1/10 on \mathbb{Z} .

CBSEP Mode Application to FA1f Application to FA/f Appli

Model Relationship with CBSEP Application

Observation

A particle can perform a SEP move by creating a second one which kills the initial one.

CBSEP Model Application to FA1f Application to FAjf Application

Observation

A particle can perform a SEP move by creating a second one which kills the initial one. In terms of Dirichlet forms this reads

 $\mathcal{D}^{\mathrm{CBSEP}} \leqslant O(d_{\max}/p)\mathcal{D}^{\mathrm{FA1f}}.$

CBSEP Model Application to FA1f Application to FAjf Application

Observation

A particle can perform a SEP move by creating a second one which kills the initial one. In terms of Dirichlet forms this reads

 $\mathcal{D}^{\mathrm{CBSEP}} \leqslant O(d_{\mathsf{max}}/p)\mathcal{D}^{\mathrm{FA1f}}.$

Definition $(T_{\rm Sob})$

 ${\cal T}_{
m Sob}$ is the smallest constant such that

$$\operatorname{Ent}_{\mu}(f^2) := \mu(f^2 \log(f^2/\mu(f^2))) \leqslant T_{\operatorname{Sob}} \mathcal{D}(f).$$

CBSEP Model Application to FA1f Application to FAjf Application

Observation

A particle can perform a SEP move by creating a second one which kills the initial one. In terms of Dirichlet forms this reads

 $\mathcal{D}^{\mathrm{CBSEP}} \leqslant O(d_{\mathsf{max}}/p)\mathcal{D}^{\mathrm{FA1f}}.$

Definition (T_{Sob})

 $\mathcal{T}_{\rm Sob}$ is the smallest constant such that

$$\operatorname{Ent}_{\mu}(f^2) := \mu(f^2 \log(f^2/\mu(f^2))) \leqslant T_{\operatorname{Sob}} \mathcal{D}(f).$$

Corollary

$$T_{
m Sob}^{
m FA1f} \leqslant {\it O}({\it d}_{
m max}/{\it p}) T_{
m Sob}^{
m CBSEP}$$

CBSEP Model Application to FA1f Relationship with CBSE Application to FAjf Application

Corollary

With $p = \Theta(1/n)$ on the torus of dimension d, for all $q \geqslant 1$

$$T_q^{\text{FA}} \leqslant O(\log n) T_{\text{Sob}}^{\text{FA}} \leqslant O(n \log n) T_{\text{Sob}}^{\text{CBSEP}} \leqslant \begin{cases} O(n^3 \log^2 n) & d = 1\\ O(n^2 \log^3 n) & d = 2\\ O(n^2 \log^2 n) & d \ge 3 \end{cases}$$

CBSEP Model Application to FA1f Relationship with CBSI Application to FAjf Application

Corollary

With $p = \Theta(1/n)$ on the torus of dimension d, for all $q \geqslant 1$

$$T_q^{\text{FA}} \leqslant O(\log n) T_{\text{Sob}}^{\text{FA}} \leqslant O(n \log n) T_{\text{Sob}}^{\text{CBSEP}} \leqslant \begin{cases} O(n^3 \log^2 n) & d = 1\\ O(n^2 \log^3 n) & d = 2\\ O(n^2 \log^2 n) & d \ge 3 \end{cases}$$

Theorem (Pillai, Smith' 17; Pillai, Smith' 19)

$$\Omega(n^2) \leqslant T_{\min}^{\mathrm{FA}} \leqslant \begin{cases} O(n^2 \log^{14} n) & d=2\\ O(n^2 \log n) & d \geqslant 3 \end{cases}$$

CBSEP Model Application to FA1f Relationship with CBS Application to FAjf Application

Corollary

With $p = \Theta(1/n)$ on the torus of dimension d, for all $q \geqslant 1$

$$T_q^{\rm FA} \leqslant O(\log n) T_{\rm Sob}^{\rm FA} \leqslant O(n\log n) T_{\rm Sob}^{\rm CBSEP} \leqslant \begin{cases} O(n^3\log^2 n) & d=1\\ O(n^2\log^3 n) & d=2\\ O(n^2\log^2 n) & d \ge 3 \end{cases}$$

Theorem (Pillai, Smith' 17; Pillai, Smith' 19)

$$\Omega(n^2) \leqslant T_{\min}^{\mathrm{FA}} \leqslant \begin{cases} O(n^2 \log^{14} n) & d=2\\ O(n^2 \log n) & d \geqslant 3 \end{cases}$$

• Simpler proof.

CBSEP Model Application to FA1f Relationship with CBS Application to FAjf Application

Corollary

With $p = \Theta(1/n)$ on the torus of dimension d, for all $q \geqslant 1$

$$T_q^{\rm FA} \leqslant O(\log n) T_{\rm Sob}^{\rm FA} \leqslant O(n\log n) T_{\rm Sob}^{\rm CBSEP} \leqslant \begin{cases} O(n^3\log^2 n) & d=1\\ O(n^2\log^3 n) & d=2\\ O(n^2\log^2 n) & d \ge 3 \end{cases}$$

Theorem (Pillai,Smith'17; Pillai,Smith'19)

$$\Omega(n^2) \leqslant T_{\min}^{\mathrm{FA}} \leqslant \begin{cases} O(n^2 \log^{14} n) & d=2\\ O(n^2 \log n) & d \geqslant 3 \end{cases}$$

- Simpler proof.
- Stronger mixing notion.

CBSEP Model Application to FA1f Relationship with CBS Application to FAjf Application

Corollary

With $p = \Theta(1/n)$ on the torus of dimension d, for all $q \geqslant 1$

$$T_q^{\rm FA} \leqslant O(\log n) T_{\rm Sob}^{\rm FA} \leqslant O(n\log n) T_{\rm Sob}^{\rm CBSEP} \leqslant \begin{cases} O(n^3\log^2 n) & d=1\\ O(n^2\log^3 n) & d=2\\ O(n^2\log^2 n) & d \ge 3 \end{cases}$$

Theorem (Pillai,Smith'17; Pillai,Smith'19)

$$\Omega(n^2) \leqslant T_{ ext{mix}}^{ ext{FA}} \leqslant egin{cases} O(n^2 \log^{14} n) & d=2 \ O(n^2 \log n) & d \geqslant 3 \end{cases}$$

- Simpler proof.
- Stronger mixing notion.
- General graphs and choices of p.

Model Bootstrap percolation

FA*j*f

$d \ge j \ge 2$, $\Omega = \{0,1\}^{\mathbb{Z}^d}$, $0 , <math>\pi = Ber(p)^{\otimes \mathbb{Z}^d}$

Model Bootstrap percolation

$\mathsf{FA}_{j}\mathsf{f}$ $d \ge j \ge 2, \ \Omega = \{0, 1\}^{\mathbb{Z}^{d}}, \ 0$

Definition (FAjf)

Each vertex $v \in \mathbb{Z}^d$ such that there are at least j neighbouring particles resamples at rate 1 from π_v .

Model Bootstrap percolation

$$\mathsf{FA}_{j}\mathsf{f}$$

$$d \ge j \ge 2, \ \Omega = \{0, 1\}^{\mathbb{Z}^{d}}, \ 0$$

Definition (FAjf)

Each vertex $v \in \mathbb{Z}^d$ such that there are at least j neighbouring particles resamples at rate 1 from π_v .

Definition (*j*-neighbour bootstrap percolation)

Each vertex $v \in \mathbb{Z}^d$ such that there are at least j neighbouring particles becomes filled at rate 1.

Model Bootstrap percolation

Bootstrap percolation and FA2f

Theorem (Gravner, Holroyd'08+Morris, H.'19)

For d = j = 2 bootstrap percolation w.h.p. the origin becomes filled at time

$$\exp\left(\frac{\pi^2}{18p}-\frac{\Theta(1)}{\sqrt{p}}
ight)$$

CBSEP Application to FA1f Application to FAjf Bootstrap percolation

Bootstrap percolation and FA2f

Theorem (Gravner, Holroyd'08+Morris, H.'19)

e

For d = j = 2 bootstrap percolation w.h.p. the origin becomes filled at time

$$\exp\left(\frac{\pi^2}{18\rho}-\frac{\Theta(1)}{\sqrt{\rho}}\right)$$

Theorem (Martinelli,Toninelli,H.'20+)

For d = j = 2 FA w.h.p. the origin becomes filled at time

$$\exp\left(\frac{\pi^2}{9p} + \frac{O(\log(1/p))^3}{\sqrt{p}}\right).$$

Model Bootstrap percolation

Thank you.

Model Bootstrap percolation

?

lvailo Hartarsky CBSEP and FA

Model Bootstrap percolation

Theorem

There exists c > 0 s.t. for any $p_n \rightarrow 0$

$$T_{\mathrm{Sob}} \leqslant c \max\left(rac{d_{\mathrm{avg}}d_{\mathrm{max}}^2}{d_{\mathrm{min}}^2} T_{\mathrm{mix}}^{\mathrm{rw}} \log(n), \left(\max_y ar{\mathcal{R}}_y
ight) n |\log(p_n)|
ight),$$

where $T_{\rm mix}^{\rm rw}$ is the mixing time of the lazy simple random walk on G.

[Alon-Kozma'18+Lee-Yau'98]
CBSEP Application to FA1f Application to FAjf

Theorem (Balogh,Bollobás,Duminil-Copin,Morris'12+Uzzell'19)

For $d \ge j \ge 2$ bootstrap percolation there exists an explicit constant^a $\lambda(d,j) > 0$ such that w.h.p. the filling time τ of the origin satisfies

$$\exp^{j-1}\left(\frac{\lambda(d,j)-o(1)}{p^{1/(d-j+1)}}\right)\leqslant\tau\leqslant\exp^{j-1}\left(\frac{\lambda(d,j)}{p^{1/(d-j+1)}}-\frac{\Omega(1)}{p^{1/(2(d-j+1))}}\right)$$

^aThis notation is not the standard one in bootstrap percolation.

Theorem

(Cancrini, Martinelli, Roberto, Toninelli'08+H., Martinelli, Toninelli'20+)

For $d \ge j \ge 3$ FA w.h.p. the filling time satisfies the same inequalities. For d > j = 2 FA instead

$$\exp\left(\frac{d\cdot\lambda(d,2)-o(1)}{p^{1/(d-1)}}\right)\leqslant\tau\leqslant\exp\left(\frac{d\cdot\lambda(d,2)}{p^{1/(d-1)}}+\frac{O(\log^3p)}{p^{1/(2(d-1))}}\right).$$