An interpretation of random network dynamics as generalized exclusion processes

Jens Fischer

Université Toulouse III - Paul Sabatier; University of Potsdam

September 8, 2021

Université franco-allemande Deutsch-Französische Hochschule

Jens Fischer (Université Toulouse III - Paul SAn interpretation of random network dynamic

Random Network Dynamics - A reduced Echo Chamber model

Jens Fischer (Université Toulouse III - Paul SAn interpretation of random network dynamic

We consider discrete-time dynamics on discrete state spaces!

Particle configuration representation on line graph

Figure: Translation of existing edges (blue) in G to occupied sites (blue) in the line graph L. Existing edges are interpreted as k particles occupying sites on L.

Exclusion processes on graphs

Definition

Let L = (V, E) be a simple connected graph with $|V| = \overline{n} \in \mathbb{N}$ and $k \in \{1, \ldots, \overline{n} - 1\}$. Denote by P a stochastic matrix. An exclusion process of k particles in discrete time $\eta_k := (\eta_{k;t})_{t \in \mathbb{N}}$ on L is a Markov chain on the set of configurations

$$S_k = \{\eta \in \{0,1\}^V | \ |\eta| = k\}$$

defined by the transition matrix $Q=(q_{\eta,\mu})_{\eta,\mu\in\{0,1\}^V}$ given for $\eta,\mu\in\{0,1\}^V$ by

$$q_{\eta,\mu} = egin{cases} \mathsf{P}(\mathbf{v},\mathbf{w}) \mathbf{1}_{\eta(\mathbf{v})=\mathbf{1}=\mu(\mathbf{w}),\eta(\mathbf{w})=\mathbf{0}=\mu(\mathbf{v})}, & \eta
eq \mu \ \eta(u)=\mu(v) orall u
otin \{\mathbf{v},\mathbf{w}\} \ 1-\sum_{\mu
eq \eta} q_{\eta,\mu}, & \eta=\mu. \end{cases}$$

Translation of dynamics to line graph

Translation of dynamics to line graph

Jens Fischer (Université Toulouse III - Paul SAn interpretation of random network dynamic

Generalized Exclusion processes on graphs

Definition

Let L = (V, E) be a simple connected graph with $|V| = \bar{n} \in \mathbb{N}$ and $k \in \{1, \ldots, \bar{n} - 1\}$. Denote by $(P^{\eta})_{\eta \in \{0,1\}^{V}, |\eta| = k}$ a family of stochastic matrices. A generalized exclusion process in discrete time $\eta_k := (\eta_{k;t})_{t \in \mathbb{N}}$ of k particles on L is a Markov chain on the set of configurations

$$S_k = \{\eta \in \{0,1\}^V | |\eta| = k\}$$

defined by the transition matrix $Q=(q_{\eta,\mu})_{\eta,\mu\in\{0,1\}^V}$ given for $\eta,\mu\in\{0,1\}^V$ by

$$q_{\eta,\mu} = \begin{cases} \mathsf{P}^{\eta}(\mathsf{v},\mathsf{w})\mathbf{1}_{\eta(\mathsf{v})=1=\mu(\mathsf{w}),\eta(\mathsf{w})=0=\mu(\mathsf{v}), & \eta \neq \mu \\ \eta(u)=\mu(\mathsf{v})\forall u \notin \{\mathsf{v},\mathsf{w}\} \\ 1 - \sum_{\mu \neq \eta} q_{\eta,\mu}, & \eta = \mu. \end{cases}$$

Canonical state space of η_k

k-particle graph (kPG)

Definition

Let L = (V, E) be a simple graph and consider for $k \in \{1, ..., |V|\}$ the graph $\mathfrak{L}_k = (\mathfrak{V}_k, \mathfrak{E}_k)$ with $\mathfrak{V}_k = \{\mathfrak{v} \subseteq V | |\mathfrak{v}| = k\}$ and $\langle \mathfrak{v}, \mathfrak{w} \rangle \in \mathfrak{E}_k$ if and only if

$$\mathfrak{v} riangle \mathfrak{w} = \{ \mathbf{v}, \mathbf{w} \}, \ \langle \mathbf{v}, \mathbf{w}
angle \in \mathbf{E}.$$

We call \mathfrak{L}_k the *k*-particle graph (kPG) associated to *L*.

Figure: The cycle graph L = (V, E) with $|V| = \overline{n} = 8$.

Jens Fischer (Université Toulouse III - Paul SAn interpretation of random network dynamic

Figure: \mathfrak{L}_k associated to cycle L = (V, E) with $|V| = \overline{n} = 8$ and k = 2.

Jens Fischer (Université Toulouse III - Paul SAn interpretation of random network dynamic

Figure: \mathfrak{L}_k associated to cycle L = (V, E) with $|V| = \overline{n} = 8$ and k = 3.

Figure: \mathfrak{L}_k associated to cycle L = (V, E) with $|V| = \overline{n} = 8$ and k = 4.

An associated Markov chain \mathfrak{S}_k

Lemma

Let L = (V, E) be a connected simple graph $k \in \{1, ..., |V| - 1\}$. Then, there is a Markov chain \mathfrak{S}_k on \mathfrak{L}_k such that if L is a line-graph of some graph G the chain \mathfrak{S}_k is equal in law to the reduced Echo Chamber model process.

The importance of vertex induced sub-graphs

Jens Fischer (Université Toulouse III - Paul SAn interpretation of random network dynamic September 8, 2021 12/27

Vertex induced sub-graphs

Definition

Let L = (V, E) be any simple graph and $v \subseteq V$. Then the graph $L_v = (v, E_v)$ with $\langle v, w \rangle \in E_v$ if and only if $v, w \in v$ and $\langle v, w \rangle \in E$ is called the vertex induced subgraph of L on v. We denote by $\deg^{L_v}(v)$ the degree of $v \in v$ in L_v .

Echo chamber model as a Markov chain on \mathfrak{L}_k

Theorem (Cattiaux, F.)

Let *L* be a connected simple graph, $\bar{n} = |V|$ and $k \in \{1, ..., \bar{n} - 1\}$. The transition matrix P_k^{\triangle} of \mathfrak{S}_k on \mathfrak{L}_k satisfies

$$p_{k;\mathfrak{v},\mathfrak{w}}^{\triangle} = \begin{cases} \frac{1}{k} \frac{1}{\deg(v) - \deg^{L_{\mathfrak{v}}}(v) + 1}, & \mathfrak{v} \triangle \mathfrak{w} = \{v, w\}; \langle v, w \rangle \in E, \\ \sum_{v \in \mathfrak{v}} \frac{1}{k} \frac{1}{\deg(v) - \deg^{L_{\mathfrak{v}}}(v) + 1}, & \mathfrak{v} = \mathfrak{w}, \\ 0, & otherwise. \end{cases}$$

Lumpability and stationary distribution

Theorem (Cattiaux, F., Roelly)

Let L = (V, E) be a simple connected graph with $\bar{n} = |V|$ and $k \in \{1, ..., \bar{n} - 1\}$. Define for $v, w \in \mathfrak{V}_k$ the equivalence relation $v \sim w$ if and only if $L_{v,v^c} \cong L_{w,w^c}$. Write $[v_i] := \{u \in \mathfrak{V}_k | u \sim v_i\}$ the equivalence class of v_i and denote by I the number of distinct equivalence classes. Then, the Markov chain \mathfrak{S}_k is strongly lumpable with respect to the partition $\{[v_1], \ldots, [v_l]\}$.

Lumpability and stationary distribution

Theorem (Cattiaux, F., Roelly)

Let L = (V, E) be a \overline{d} -regular graph with $\overline{n} = |V|$ and $k \in \{1, ..., \overline{n} - 1\}$. Denote by π_k the stationary distribution of \mathfrak{S}_k . Then, for all equivalence classes $[\mathfrak{v}]$ under the equivalence relation \sim we have that all $\mathfrak{v}, \mathfrak{w} \in [\mathfrak{v}]$ satisfy the identity $\pi_k(\mathfrak{v}) = \pi_k(\mathfrak{w})$.

Convergence speed to equilibrium on \bar{d} -regular graphs

L as a \bar{d} -regular graph

If L is a line graph of some underlying graph G where G has n vertices, then L is a strongly regular graph with

$$L = \operatorname{srg}\left(\frac{n(n-1)}{2}, 2(n-2), n-2, 4\right).$$

We reduce, therefore, for this section our considerations to $\bar{d}\mbox{-regular}$ graphs.

Convergence speed to equilibrium

Theorem

Let L be a connected \overline{d} -regular graph on \overline{n} vertices and $k \in \{1, \ldots, \overline{n} - 1\}$ with $\overline{d} + k + 1 \leq \overline{n}$. Denote for $v, w \in \mathfrak{V}_k$ and $l \in \mathbb{N}$ by $\omega_l^{\mathfrak{L}_k}(v, w)$ the number of walks of length l from v to w along the edges in \mathfrak{L}_k . Then there is a constant C(L, k) such that for $\kappa := \operatorname{diam}(\mathfrak{L}_k)$ and $\varepsilon > 0$ the transition matrix P_k^{Δ} satisfies

$$\sup_{\mathfrak{v}\in\mathfrak{V}_k}\sum_{\mathfrak{w}\in\mathfrak{V}_k}|p_{k;\mathfrak{v},\mathfrak{w}}^{\triangle;(n)}-\pi(\mathfrak{w})|\leq 2(1-\varepsilon)^{\left\lfloor\frac{n}{\kappa}\right\rfloor},\quad n\geq 1. \tag{1}$$

Convergence speed to equilibrium

Theorem

Let L be a connected \overline{d} -regular graph on \overline{n} vertices and $k \in \{1, \ldots, \overline{n} - 1\}$ with $\overline{d} + k + 1 \leq \overline{n}$. Denote for $v, w \in \mathfrak{V}_k$ and $l \in \mathbb{N}$ by $\omega_l^{\mathfrak{L}_k}(v, w)$ the number of walks of length l from v to w along the edges in \mathfrak{L}_k . Then there is a constant C(L, k) such that for $\kappa := \operatorname{diam}(\mathfrak{L}_k)$ and $\varepsilon > 0$ the transition matrix P_k^{Δ} satisfies

$$\sup_{\mathfrak{v}\in\mathfrak{V}_k}\sum_{\mathfrak{w}\in\mathfrak{V}_k}|p_{k;\mathfrak{v},\mathfrak{w}}^{\triangle;(n)}-\pi(\mathfrak{w})|\leq 2(1-\varepsilon)^{\left\lfloor\frac{n}{\kappa}\right\rfloor},\quad n\geq 1. \tag{1}$$

We know C explicitly but it is too large for a slide.

Properties of \mathfrak{S}_k

Figure: The tri-star \mathcal{T} .

Note: What follows can be easily generalized for general cycles instead of the triangle $\{\tau_1, \tau_2, \tau_3\}$.

Theorem (F., Cattiaux, 2020, forthcoming)

Let L be any simple connected \overline{d} -regular graph on \overline{n} vertices with $\overline{d} \in \{3, \ldots, \overline{n} - 3\}$. Assume that L contains a tri-star \mathcal{T} . Then, the Markov chain \mathfrak{S}_k is reversible on \mathfrak{L}_k if and only if $k \in \{1, 2, \overline{n} - 2, \overline{n} - 1\}$.

21/27

Idea of the proof:

Idea of the proof:

Construct a counterexample using 3 particles and Kolmogorov's criterion. **Idea:** Moving out of a crowded neighborhood is more probable then moving back into this specific neighborhood.

Idea of the proof:

Construct a counterexample using 3 particles and Kolmogorov's criterion. **Idea:** Moving out of a crowded neighborhood is more probable then moving back into this specific neighborhood. This is not the case for the classical exclusion process!

Reversibility on complete graphs

Corollary (Cattiaux, F.)

Let L be a strongly regular graph with parameters $(\bar{n}, \bar{d}, \alpha, \beta)$ with $\alpha \ge 1$. Then, the process \mathfrak{S}_k is reversible if and only if $\bar{d} \in \{2, \bar{n}-2, \bar{n}-1\}$ or $k \in \{1, 2, \bar{n}-2, \bar{n}-1\}$.

Reversibility in social conflict model

Corollary (Cattiaux, F.)

Consider the process $S = (S_t)_t$ on a population of n individuals with k relationships. Then the associated process \mathfrak{S}_k is reversible if and only if n = 3 or $k \in \left\{1, 2, \frac{n(n-1)}{2} - 2, \frac{n(n-1)}{2} - 1\right\}$.

The probability go from one set of relationships back to the same set depends highly on the order in which single relationships are dissolved and recreated.

Figure: The tri-star \mathcal{T} does never exist in bipartite graphs!

Conclusions

Conclusions

Outlook

Outlook

• Analyze complete Echo Chamber model,

Outlook

- Analyze complete Echo Chamber model,
- Generalized exclusion processes in random absorbing env.,

Outlook

- Analyze complete Echo Chamber model,
- Generalized exclusion processes in random absorbing env.,
- Establish links between the geometry of a graph and exclusion processes.