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Random Network Dynamics

A reduced echo chamber model

We consider discrete-time dynamics on discrete state spaces!
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Figure: A reduced Echo Chamber model S = (St)t∈N.
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Random Network Dynamics

Particle configuration representation on line graph
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m = 4
n̄ = n(n−1)

2 = 6 k = m = 4

Figure: Translation of existing edges (blue) in G to occupied sites (blue) in the
line graph L. Existing edges are interpreted as k particles occupying sites on L.
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Random Network Dynamics

Exclusion processes on graphs

Definition

Let L = (V ,E ) be a simple connected graph with |V | = n̄ ∈ N and
k ∈ {1, . . . , n̄ − 1}. Denote by P a stochastic matrix. An exclusion
process of k particles in discrete time ηk := (ηk;t)t∈N on L is a Markov
chain on the set of configurations

Sk = {η ∈ {0, 1}V | |η| = k}

defined by the transition matrix Q = (qη,µ)η,µ∈{0,1}V given for

η, µ ∈ {0, 1}V by

qη,µ =


P(v ,w)1η(v)=1=µ(w),η(w)=0=µ(v)

η(u)=µ(v)∀u 6∈{v ,w}
, η 6= µ

1−
∑

µ6=η qη,µ, η = µ.
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Random Network Dynamics

Translation of dynamics to line graph
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Random Network Dynamics

Generalized Exclusion processes on graphs

Definition

Let L = (V ,E ) be a simple connected graph with |V | = n̄ ∈ N and
k ∈ {1, . . . , n̄ − 1}. Denote by (Pη)η∈{0,1}V , |η|=k a family of stochastic
matrices. A generalized exclusion process in discrete time
ηk := (ηk;t)t∈N of k particles on L is a Markov chain on the set of
configurations

Sk = {η ∈ {0, 1}V | |η| = k}

defined by the transition matrix Q = (qη,µ)η,µ∈{0,1}V given for

η, µ ∈ {0, 1}V by

qη,µ =


Pη(v ,w)1η(v)=1=µ(w),η(w)=0=µ(v)

η(u)=µ(v)∀u 6∈{v ,w}
, η 6= µ

1−
∑

µ 6=η qη,µ, η = µ.
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Construction of an appropriate state space

Canonical state space of ηk
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Construction of an appropriate state space

k-particle graph (kPG)

Definition

Let L = (V ,E ) be a simple graph and consider for k ∈ {1, . . . , |V |} the
graph Lk = (Vk ,Ek) with Vk = {v ⊆ V ||v| = k} and 〈v,w〉 ∈ Ek if and
only if

v4w = {v ,w}, 〈v ,w〉 ∈ E .

We call Lk the k-particle graph (kPG) associated to L.
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Construction of an appropriate state space

Visualization of Lk

Figure: The cycle graph L = (V ,E ) with |V | = n̄ = 8.
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Construction of an appropriate state space

Visualization of Lk

Figure: Lk associated to cycle L = (V ,E ) with |V | = n̄ = 8 and k = 2.
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Construction of an appropriate state space

Visualization of Lk

Figure: Lk associated to cycle L = (V ,E ) with |V | = n̄ = 8 and k = 3.
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Construction of an appropriate state space

Visualization of Lk

Figure: Lk associated to cycle L = (V ,E ) with |V | = n̄ = 8 and k = 4.
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An associated Markov chain

An associated Markov chain Sk

Lemma

Let L = (V ,E ) be a connected simple graph k ∈ {1, . . . , |V | − 1}. Then,
there is a Markov chain Sk on Lk such that if L is a line-graph of some
graph G the chain Sk is equal in law to the reduced Echo Chamber model
process.
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An associated Markov chain

The importance of vertex induced sub-graphs

Jens Fischer (Université Toulouse III - Paul Sabatier; University of Potsdam)An interpretation of random network dynamics as generalized exclusion processesSeptember 8, 2021 12 / 27



An associated Markov chain

Vertex induced sub-graphs

Definition

Let L = (V ,E ) be any simple graph and v ⊆ V . Then the graph
Lv = (v,Ev) with 〈v ,w〉 ∈ Ev if and only if v ,w ∈ v and 〈v ,w〉 ∈ E is
called the vertex induced subgraph of L on v.
We denote by degLv(v) the degree of v ∈ v in Lv.
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An associated Markov chain

Echo chamber model as a Markov chain on Lk

Theorem (Cattiaux, F.)

Let L be a connected simple graph, n̄ = |V | and k ∈ {1, . . . , n̄ − 1}. The

transition matrix P4k of Sk on Lk satisfies

p4k;v,w =



1

k

1

deg(v)− degLv(v) + 1
, v4w = {v ,w}; 〈v ,w〉 ∈ E ,

∑
v∈v

1

k

1

deg(v)− degLv(v) + 1
, v = w,

0, otherwise.
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An associated Markov chain

Lumpability and stationary distribution

Theorem (Cattiaux, F., Roelly)

Let L = (V ,E ) be a simple connected graph with n̄ = |V | and
k ∈ {1, . . . , n̄ − 1}. Define for v,w ∈ Vk the equivalence relation v ∼ w if
and only if Lv,vc

∼
= Lw,wc . Write [vi ] := {u ∈ Vk |u ∼ vi} the equivalence

class of vi and denote by l the number of distinct equivalence classes.
Then, the Markov chain Sk is strongly lumpable with respect to the
partition {[v1], . . . , [vl ]}.
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An associated Markov chain

Lumpability and stationary distribution

Theorem (Cattiaux, F., Roelly)

Let L = (V ,E ) be a d̄-regular graph with n̄ = |V | and k ∈ {1, . . . , n̄ − 1}.
Denote by πk the stationary distribution of Sk . Then, for all equivalence
classes [v] under the equivalence relation ∼ we have that all v,w ∈ [v]
satisfy the identity πk(v) = πk(w).
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An associated Markov chain

Convergence speed to equilibrium on d̄-regular
graphs
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An associated Markov chain

L as a d̄-regular graph

If L is a line graph of some underlying graph G where G has n vertices,
then L is a strongly regular graph with

L = srg

(
n(n − 1)

2
, 2(n − 2), n − 2, 4

)
.

We reduce, therefore, for this section our considerations to d̄-regular
graphs.
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An associated Markov chain

Convergence speed to equilibrium

Theorem

Let L be a connected d̄-regular graph on n̄ vertices and k ∈ {1, . . . , n̄ − 1}
with d̄ + k + 1 ≤ n̄. Denote for v,w ∈ Vk and l ∈ N by ωLk

l (v,w) the
number of walks of length l from v to w along the edges in Lk . Then
there is a constant C (L, k) such that for κ := diam(Lk) and ε > 0 the

transition matrix P4k satisfies

sup
v∈Vk

∑
w∈Vk

|p4;(n)
k;v,w − π(w)| ≤ 2(1− ε)b

n
κc, n ≥ 1. (1)

We know C explicitly but it is too large for a slide.
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An associated Markov chain

Properties of Sk

τ2

β2 β3

τ3

τ1

β1

Figure: The tri-star T .

Note: What follows can be easily generalized for general cycles instead of
the triangle {τ1, τ2, τ3}.
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An associated Markov chain

Reversibility of Sk

Theorem (F., Cattiaux, 2020, forthcoming)

Let L be any simple connected d̄-regular graph on n̄ vertices with
d̄ ∈ {3, . . . , n̄ − 3}. Assume that L contains a tri-star T . Then, the
Markov chain Sk is reversible on Lk if and only if k ∈ {1, 2, n̄ − 2, n̄ − 1}.
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An associated Markov chain

Reversibility of Sk

Idea of the proof:

Construct a counterexample using 3 particles and Kolmogorov’s criterion.

τ2

β2 β3

τ3

τ1

β1
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An associated Markov chain

Reversibility of Sk

Idea of the proof:

Construct a counterexample using 3 particles and Kolmogorov’s criterion.
Idea: Moving out of a crowded neighborhood is more probable then
moving back into this specific neighborhood.
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An associated Markov chain

Reversibility of Sk

Idea of the proof:

Construct a counterexample using 3 particles and Kolmogorov’s criterion.
Idea: Moving out of a crowded neighborhood is more probable then
moving back into this specific neighborhood.
This is not the case for the classical exclusion process!
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An associated Markov chain

Reversibility on complete graphs

Corollary (Cattiaux, F.)

Let L be a strongly regular graph with parameters (n̄, d̄ , α, β) with α ≥ 1.
Then, the process Sk is reversible if and only if d̄ ∈ {2, n̄ − 2, n̄ − 1} or
k ∈ {1, 2, n̄ − 2, n̄ − 1}.
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An associated Markov chain

Reversibility in social conflict model

Corollary (Cattiaux, F.)

Consider the process S = (St)t on a population of n individuals with k
relationships. Then the associated process Sk is reversible if and only if

n = 3 or k ∈
{

1, 2, n(n−1)
2 − 2, n(n−1)

2 − 1
}

.

The probability go from one set of relationships back to the same
set depends highly on the order in which single relationships are
dissolved and recreated.
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An associated Markov chain

τ2

β2 β3

τ3

τ1

β1

Figure: The tri-star T does never exist in bipartite graphs!
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Conclusions

Conclusions
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Conclusions

Outlook

Analyze complete Echo Chamber model,

Generalized exclusion processes in random absorbing env.,

Establish links between the geometry of a graph and exclusion
processes.
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