Statistical and Computational limits for sparse graph alignment

Luca Ganassali Junior Conference on Random networks and interacting particle systems

Joint work with Laurent Massoulié and Marc Lelarge

INRIA, DI/ENS, PSL Research University, Paris, France

Question: Given two graphs G = (V, E) and G' = (V', E') with |V| = |V'|, what is the best way to match nodes of G with nodes of G'?

Question: Given two graphs G = (V, E) and G' = (V', E') with |V| = |V'|, what is the best way to match nodes of G with nodes of G'?

Minimizing disagreements: Find a bijection $f: V \rightarrow V'$ that minimizes

$$\sum_{(i,j)\in V^2} \left(\mathbf{1}_{(i,j)\in E} - \mathbf{1}_{(f(i),f(j))\in E'} \right)^2,$$

or, equivalently solve

$$\max_{\Pi} \operatorname{Tr} \left(\mathsf{G} \Pi \mathsf{G}' \Pi^\top \right),$$

where Π runs over all permutation matrices.

Question: Given two graphs G = (V, E) and G' = (V', E') with |V| = |V'|, what is the best way to match nodes of G with nodes of G'?

Minimizing disagreements: Find a bijection $f: V \rightarrow V'$ that minimizes

$$\sum_{(i,j)\in V^2} \left(\mathbf{1}_{(i,j)\in E} - \mathbf{1}_{(f(i),f(j))\in E'} \right)^2,$$

or, equivalently solve

$$\max_{\Pi} \operatorname{Tr} \left(\mathsf{G} \Pi \mathsf{G}' \Pi^{\top} \right),$$

where Π runs over all permutation matrices. \leftarrow NP-hard in the worst case

Planted setting: we observe some random graphs \mathcal{G}, \mathcal{H} (*n* nodes) correlated with a *planted* alignment π^* (hidden). We want to 'recover' π^* , with high probability when $n \to \infty$.

Planted setting: we observe some random graphs \mathcal{G}, \mathcal{H} (*n* nodes) correlated with a *planted* alignment π^* (hidden). We want to 'recover' π^* , with high probability when $n \to \infty$.

Another measure of performance: for any [n]-valued estimator $\hat{\pi}(\mathcal{G}, \mathcal{H})$, define its *overlap* with the planted permutation π^*

$$\operatorname{ov}(\hat{\pi}, \pi^*) := \sum_{i=1}^n \mathbf{1}_{\hat{\pi}(i) = \pi^*(i)}.$$

Planted setting: we observe some random graphs \mathcal{G}, \mathcal{H} (*n* nodes) correlated with a *planted* alignment π^* (hidden). We want to 'recover' π^* , with high probability when $n \to \infty$.

Another measure of performance: for any [n]-valued estimator $\hat{\pi}(\mathcal{G}, \mathcal{H})$, define its *overlap* with the planted permutation π^*

$$\operatorname{ov}(\hat{\pi}, \pi^*) := \sum_{i=1}^n \mathbf{1}_{\hat{\pi}(i) = \pi^*(i)}.$$

Definitions We say that $\hat{\pi}$ achieves:

• Exact recovery if

$$\mathbb{P}(\hat{\pi} = \pi^*) \to 1.$$

Partial recovery if

 $\mathbb{P}(\operatorname{ov}(\hat{\pi}, \pi^*) > \alpha n) \to \mathbf{1}.$

Planted setting: we observe some random graphs \mathcal{G}, \mathcal{H} (*n* nodes) correlated with a *planted* alignment π^* (hidden). We want to 'recover' π^* , with high probability when $n \to \infty$.

Another measure of performance: for any [n]-valued estimator $\hat{\pi}(\mathcal{G}, \mathcal{H})$, define its *overlap* with the planted permutation π^*

$$\operatorname{ov}(\hat{\pi}, \pi^*) := \sum_{i=1}^n \mathbf{1}_{\hat{\pi}(i) = \pi^*(i)}.$$

Definitions We say that $\hat{\pi}$ achieves:

• Exact recovery if

$$\mathbb{P}(\hat{\pi}=\pi^*)
ightarrow 1.$$

Partial recovery if

$$\mathbb{P}(\operatorname{ov}(\hat{\pi}, \pi^*) > \alpha n) \to 1.$$

Remark: arg max_{Π} Tr ($G\Pi G'\Pi^{\top}$) does not coincide with π^* in general.

Planted setting: we observe some random graphs \mathcal{G}, \mathcal{H} (*n* nodes) correlated with a *planted* alignment π^* (hidden). We want to 'recover' π^* , with high probability when $n \to \infty$.

Another measure of performance: for any [n]-valued estimator $\hat{\pi}(\mathcal{G}, \mathcal{H})$, define its *overlap* with the planted permutation π^*

$$\operatorname{ov}(\hat{\pi}, \pi^*) := \sum_{i=1}^n \mathbf{1}_{\hat{\pi}(i) = \pi^*(i)}.$$

Definitions We say that $\hat{\pi}$ achieves:

• Exact recovery if

$$\mathbb{P}(\hat{\pi}=\pi^*) \to 1.$$

Partial recovery if

$$\mathbb{P}(\operatorname{ov}(\hat{\pi}, \pi^*) > \alpha n) \to 1.$$

Remark: arg max_{Π} Tr ($G\Pi G'\Pi^{\top}$) does not coincide with π^* in general.

Some applications: de-anonymization of networks, protein classification in biology, image processing...

Correlated Erdős-Rényi model $\mathcal{G}(n, q, s)$:

• Draw two graphs $\mathcal{G}, \mathcal{G}'$ with same node set [n], s.t. for all $(i, j) \in {[n] \choose 2}$:

$$\left(\mathbf{1}_{i_{\widetilde{G}^{j}}},\mathbf{1}_{i_{\widetilde{G}^{j}}}\right) = \begin{cases} (1,1) & \text{w.p. } qs & \text{two-coloured edge} \\ (0,1), (1,0) & \text{w.p. } q(1-s) & \text{red or blue edge} \\ (0,0) & \text{w.p. } 1-q(2-s) & \text{non-edge} \end{cases}$$

Correlated Erdős-Rényi model $\mathcal{G}(n, q, s)$:

• Draw two graphs $\mathcal{G}, \mathcal{G}'$ with same node set [n], s.t. for all $(i, j) \in {[n] \choose 2}$:

$$\begin{pmatrix} \mathbf{1}_{i_{\widetilde{G}^{j}}}, \mathbf{1}_{i_{\widetilde{G}^{j}}} \end{pmatrix} = \begin{cases} (1,1) & \text{w.p. } qs & \text{two-coloured edge} \\ (0,1), (1,0) & \text{w.p. } q(1-s) & \text{red or blue edge} \\ (0,0) & \text{w.p. } 1 - q(2-s) & \text{non-edge} \end{cases}$$

• Draw two graphs $\mathcal{G}, \mathcal{G}'$ with same node set [n], s.t. for all $(i, j) \in {[n] \choose 2}$:

$$\begin{pmatrix} \mathbf{1}_{i_{\widetilde{G}}j}, \mathbf{1}_{i_{\widetilde{G}}j} \end{pmatrix} = \begin{cases} (1,1) & \text{w.p. } qs & two-coloured edge \\ (0,1), (1,0) & \text{w.p. } q(1-s) & red \text{ or } blue edge \\ (0,0) & \text{w.p. } 1-q(2-s) & \text{non-edge} \end{cases}$$

• Relabel the vertices of \mathcal{G}' with a uniform independent permutation π^* : $\mathcal{H} := \mathcal{G}' \circ \pi^*$.

Goal: upon observing $\mathcal G$ and $\mathcal H$, estimate π^* with high probability.

Goal: upon observing \mathcal{G} and \mathcal{H} , estimate π^* with high probability.

Sparse regime: $q = \lambda/n$, constant mean degree λ . Even with s = 1, $\Theta(n)$ isolated vertices \leftarrow only partial alignment may be reachable [Cullina-Kiyavash '16, '17].

Goal: upon observing \mathcal{G} and \mathcal{H} , estimate π^* with high probability.

Sparse regime: $q = \lambda/n$, constant mean degree λ . Even with s = 1, $\Theta(n)$ isolated vertices \leftarrow only partial alignment may be reachable [Cullina-Kiyavash '16, '17].

Questions:

- Can we hope for some $\hat{\pi}$ s.t. $ov(\hat{\pi}, \pi^*) > \alpha n$ w.h.p. with no computational restrictions (i.e. when is there enough signal)?
- What is the maximal fraction α ?
- Can we find efficient (polynomial-time) algorithms for this task?

Goal: upon observing \mathcal{G} and \mathcal{H} , estimate π^* with high probability.

Sparse regime: $q = \lambda/n$, constant mean degree λ . Even with s = 1, $\Theta(n)$ isolated vertices \leftarrow only partial alignment may be reachable [Cullina-Kiyavash '16, '17].

Questions:

- Can we hope for some $\hat{\pi}$ s.t. $ov(\hat{\pi}, \pi^*) > \alpha n$ w.h.p. with no computational restrictions (i.e. when is there enough signal)?
- What is the maximal fraction α ?
- Can we find efficient (polynomial-time) algorithms for this task?

State-of-the art: in the sparse regime where $\lambda > 0$ and $s \in [0, 1]$ are fixed constants: partial recovery is IT-feasible if $\lambda s > 4 + \varepsilon$ [Wu-Xu-Yu '21].

Theorem

For $\lambda > 0$ and $s \in [0, 1]$, we have for any $\alpha > 0$, for any estimator $\hat{\pi}$:

$$\mathbb{P}\left(\operatorname{ov}(\hat{\pi},\pi^*)>(\boldsymbol{c}(\lambda\boldsymbol{s})+lpha)\boldsymbol{n}
ight) \underset{\boldsymbol{n}
ightarrow\infty}{\longrightarrow} \mathsf{O}_{\boldsymbol{s}}$$

where $c(\mu)$ is the greatest non-negative solution to the equation $e^{-\mu x} = 1 - x$.

Theorem For $\lambda > 0$ and $s \in [0, 1]$, we have for any $\alpha > 0$, for any estimator $\hat{\pi}$: $\mathbb{P}\left(\operatorname{ov}(\hat{\pi}, \pi^*) > (c(\lambda s) + \alpha)n\right) \xrightarrow[n \to \infty]{} 0,$ where $c(\mu)$ is the greatest non-negative solution to the equation $e^{-\mu x} = 1 - x.$

Corollary: Partial recovery is IT-infeasible if $\lambda s \leq 1$.

1. Information contained in the **intersection graph** $\mathcal{G} \wedge \mathcal{G}'$:

In our model $\mathcal{G} \wedge \mathcal{G}'$ is an Erdős-Rényi graph: $\mathcal{G} \wedge \mathcal{G}' \sim G(n, \lambda s/n)$.

1. Information contained in the **intersection graph** $\mathcal{G} \wedge \mathcal{G}'$:

In our model $\mathcal{G} \wedge \mathcal{G}'$ is an Erdős-Rényi graph: $\mathcal{G} \wedge \mathcal{G}' \sim G(n, \lambda s/n)$.

2. [Erdős, Rényi, Bollobás] typical fraction $c(\lambda s)$ of nodes in the giant component of $\mathcal{G} \wedge \mathcal{G}' \rightarrow$ the remaining $(1 - c(\lambda s))n$ nodes are almost all on **small tree components**.

1. Information contained in the **intersection graph** $\mathcal{G} \wedge \mathcal{G}'$:

In our model $\mathcal{G} \wedge \mathcal{G}'$ is an Erdős-Rényi graph: $\mathcal{G} \wedge \mathcal{G}' \sim G(n, \lambda s/n)$.

- 2. [Erdős, Rényi, Bollobás] typical fraction $c(\lambda s)$ of nodes in the giant component of $\mathcal{G} \wedge \mathcal{G}' \rightarrow$ the remaining $(1 c(\lambda s))n$ nodes are almost all on **small tree components**.
- 3. For any small tree **T**, a large number of copies of **T** will appear in $\mathcal{G} \wedge \mathcal{G}'$. **Reshuffle them at random in** $\mathcal{G} \rightarrow a$ lot of 'unnoticed' corrupted candidates for $\hat{\pi}$ that are far from π^* .

Recall that $(\mathcal{G}, \mathcal{H}) \sim \mathcal{G}(n, q = \lambda/n, s)$ with planted permutation π^* . Then, locally:

• if $u = \pi^*(i)$, the neighborhoods at depth d, $\mathcal{N}_{\mathcal{G}}(i)$ and $\mathcal{N}_{\mathcal{H}}(u) \simeq$ Galton-Waston trees of offspring $\mathcal{P}(\lambda)$, with intersection of offspring $\mathcal{P}(\lambda s)$.

Recall that $(\mathcal{G}, \mathcal{H}) \sim \mathcal{G}(n, q = \lambda/n, s)$ with planted permutation π^* . Then, locally:

- if $u = \pi^*(i)$, the neighborhoods at depth d, $\mathcal{N}_{\mathcal{G}}(i)$ and $\mathcal{N}_{\mathcal{H}}(u) \simeq$ Galton-Waston trees of offspring $\mathcal{P}(\lambda)$, with intersection of offspring $\mathcal{P}(\lambda s)$.
- if $u \neq \pi^*(i)$, $\mathcal{N}_{\mathcal{G}}(i)$ and $\mathcal{N}_{\mathcal{H}}(u) \simeq$ independent Galton-Waston trees of offspring $\mathcal{P}(\lambda)$.

Recall that $(\mathcal{G}, \mathcal{H}) \sim \mathcal{G}(n, q = \lambda/n, s)$ with planted permutation π^* . Then, locally:

- if $u = \pi^*(i)$, the neighborhoods at depth d, $\mathcal{N}_{\mathcal{G}}(i)$ and $\mathcal{N}_{\mathcal{H}}(u) \simeq$ Galton-Waston trees of offspring $\mathcal{P}(\lambda)$, with intersection of offspring $\mathcal{P}(\lambda s)$.
- if $u \neq \pi^*(i)$, $\mathcal{N}_{\mathcal{G}}(i)$ and $\mathcal{N}_{\mathcal{H}}(u) \simeq$ independent Galton-Waston trees of offspring $\mathcal{P}(\lambda)$.

New problem on trees: upon observing two unlabeled, rooted trees t, t' up to depth d, we want to be able to test:

$$(t,t')\sim \mathbb{P}_{1}$$
 vs $(t,t')\sim \mathbb{P}_{0}$

with $\mathbb{P}_1 := s - \text{correlated } GW_{\lambda,d} \text{ trees and } \mathbb{P}_0 := GW_{\lambda,d} \otimes GW_{\lambda,d}.$

Positive result: testing tree correlation

One sided test: test $\mathcal{T}_d : \mathcal{X}_d \times \mathcal{X}_d \to \{0, 1\}$ such that

 $\mathbb{P}_o(\mathcal{T}_d=0) \to 1 \quad \text{and} \quad \liminf_{d \to \infty} \mathbb{P}_1(\mathcal{T}_d=1) > 0.$

Positive result: testing tree correlation

One sided test: test $\mathcal{T}_d : \mathcal{X}_d \times \mathcal{X}_d \to \{0, 1\}$ such that

 $\mathbb{P}_{o}(\mathcal{T}_{d}=0) \rightarrow 1 \quad \text{and} \quad \liminf_{d \rightarrow \infty} \mathbb{P}_{1}(\mathcal{T}_{d}=1) > 0.$

Likelihood ratio: For $t, t' \in \mathcal{X}_d$,

$$\mathbb{L}_d(t,t') := rac{\mathbb{P}_{\mathsf{1},d}(t,t')}{\mathbb{P}_{\mathsf{o},d}(t,t')}.$$

Recursive computation: if *c* (resp. *c*') is the root degree in T (resp. T')

$$L_d(\mathbf{t},\mathbf{t}') = \sum_{k=0}^{c \wedge c'} \psi(k,c,c') \sum_{\substack{\sigma \in \mathcal{S}(k,c) \\ \sigma' \in \mathcal{S}(k,c')}} \prod_{i=1}^k L_{d-1}(\mathbf{t}_{\sigma(i)},\mathbf{t}'_{\sigma'(i)}),$$

where $S(k, \ell)$ is the set of injective mappings from [k] to $[\ell]$, and

$$\begin{split} \psi(k,c,c') &:= \frac{\pi_{\lambda s}(k)\pi_{\lambda \bar{s}}(c-k)\pi_{\lambda \bar{s}}(c'-k)}{\pi_{\lambda}(c)\pi_{\lambda}(c')} \times \frac{(c-k)! \times (c-k')!}{c! \times c'!} \\ &= e^{\lambda s} \times \frac{s^k \bar{s}^{d+d'-2k}}{\lambda^k k!}. \end{split}$$

8

Martingale properties: under \mathbb{P}_0 , $(L_d)_d$ is a martingale w.r.t. to $\mathcal{F}_d := \sigma(t_{|d}, t'_{|d})$, and converges a.s. to L_∞ .

Martingale properties: under \mathbb{P}_o , $(L_d)_d$ is a martingale w.r.t. to $\mathcal{F}_d := \sigma(t_{|d}, t'_{|d})$, and converges a.s. to L_∞ .

Sufficient condition: There exists a one sided test as soon as

 $\exists \varepsilon > \mathsf{O}, \; \forall a > \mathsf{O}, \; \liminf_{d \to \infty} \mathbb{P}_1(L_d > a) \geq \varepsilon > \mathsf{O}.$

Martingale properties: under \mathbb{P}_o , $(L_d)_d$ is a martingale w.r.t. to $\mathcal{F}_d := \sigma(t_{|d}, t'_{|d})$, and converges a.s. to L_∞ .

Sufficient condition: There exists a one sided test as soon as

 $\exists \varepsilon > 0, \ \forall a > 0, \ \liminf_{d \to \infty} \mathbb{P}_1(L_d > a) \ge \varepsilon > 0.$

KL - divergence:

$$KL_d := KL(\mathbb{P}_{1,d} || \mathbb{P}_{0,d}) = \mathbb{E}_1 \left[\log(L_d) \right].$$

 $KL_d \rightarrow \infty \text{ and } \lambda s > 1 \implies \text{ one-sided test exists } \implies KL_d \rightarrow \infty$

Positive result: testing tree correlation

10

Theorem (positive results, ongoing work) Assume that one of the following holds: (i) $\lambda s > 1$ and $KL_1 > \frac{1}{\lambda s - 1} \left[\lambda s (\log(\lambda/s) - 1) - 2\lambda(1 - s) \log(1 - s) \right]$ (ii) $\lambda s > r_o$ (r_o large constant) and $1-s \leq \frac{1}{3+n}\sqrt{\frac{\log(\lambda s)}{\lambda^3 s}}$ then one-sided testability holds.

 $\limsup_d KL_d < \infty,$

so that one-sided testability fails.

Conclusion: diagram for partial recovery

- Sparse graph alignment can be locally rephrased as an hypothesis testing problem: detecting correlation in (unlabeled, rooted) trees.
- The recursion computation of the likelihood ratio gives a natural belief-propagation method, running in polynomial-time.
- Future work:
 - + $\lambda s = 1$ seems to be the sharp IT threshold.
 - Hard phase tight characterization still open.
 - Other random graph models, labeled version.

Thank you!