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Graph alignment

Question: Given two graphs G = (V, E) and G′ = (V′, E′) with |V| = |V′|, what
is the best way to match nodes of G with nodes of G′?

Minimizing disagreements: Find a bijection f : V → V′ that minimizes∑
(i,j)∈V2

(
1(i,j)∈E − 1(f (i),f(j))∈E′

)2
,

or, equivalently solve
max

Π
Tr
(

GΠG′Π>
)
,

where Π runs over all permutation matrices. ←− NP-hard in the worst case
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Planted graph alignment

Planted setting: we observe some random graphs G,H (n nodes) correlated
with a planted alignment π∗ (hidden). We want to ’recover’ π∗, with high
probability when n→∞.

Another measure of performance: for any [n]-valued estimator π̂(G,H),
define its overlap with the planted permutation π∗

ov(π̂, π∗) :=
n∑

i=1

1π̂(i)=π∗(i).

Definitions We say that π̂ achieves:

• Exact recovery if
P(π̂ = π∗)→ 1.

• Partial recovery if
P(ov(π̂, π∗) > αn)→ 1.

Remark: arg maxΠ Tr
(
GΠG′Π>

)
does not coincide with π∗ in general.

Some applications: de-anonymization of networks, protein classification in
biology, image processing...
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Correlated Erdős-Rényi model G(n,q, s):

• Draw two graphs G,G′ with same node set [n], s.t. for all (i, j) ∈
(

[n]
2
)
:

(
1i∼
G

j, 1i∼
G′

j

)
=


(1, 1) w.p. qs two−coloured edge
(0, 1), (1,0) w.p. q(1− s) red or blue edge
(0,0) w.p. 1− q(2− s) non-edge
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• Relabel the vertices of G′ with a uniform independent permutation π∗:
H := G′ ◦ π∗.
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Planted graph alignment: general questions, state-of-the art

Goal: upon observing G and H, estimate π∗ with high probability.

Sparse regime: q = λ/n, constant mean degree λ. Even with s = 1, Θ(n)

isolated vertices←− only partial alignment may be reachable
[Cullina-Kiyavash ’16, ’17].

Questions:

• Can we hope for some π̂ s.t. ov(π̂, π∗) > αn w.h.p. with no
computational restrictions (i.e. when is there enough signal)?

• What is the maximal fraction α?
• Can we find e�cient (polynomial-time) algorithms for this task?

State-of-the art: in the sparse regime where λ > 0 and s ∈ [0, 1] are fixed
constants: partial recovery is IT-feasible if λs > 4 + ε [Wu-Xu-Yu ’21].

4



Planted graph alignment: general questions, state-of-the art

Goal: upon observing G and H, estimate π∗ with high probability.

Sparse regime: q = λ/n, constant mean degree λ. Even with s = 1, Θ(n)

isolated vertices←− only partial alignment may be reachable
[Cullina-Kiyavash ’16, ’17].

Questions:

• Can we hope for some π̂ s.t. ov(π̂, π∗) > αn w.h.p. with no
computational restrictions (i.e. when is there enough signal)?

• What is the maximal fraction α?
• Can we find e�cient (polynomial-time) algorithms for this task?

State-of-the art: in the sparse regime where λ > 0 and s ∈ [0, 1] are fixed
constants: partial recovery is IT-feasible if λs > 4 + ε [Wu-Xu-Yu ’21].

4



Planted graph alignment: general questions, state-of-the art

Goal: upon observing G and H, estimate π∗ with high probability.

Sparse regime: q = λ/n, constant mean degree λ. Even with s = 1, Θ(n)

isolated vertices←− only partial alignment may be reachable
[Cullina-Kiyavash ’16, ’17].

Questions:

• Can we hope for some π̂ s.t. ov(π̂, π∗) > αn w.h.p. with no
computational restrictions (i.e. when is there enough signal)?

• What is the maximal fraction α?
• Can we find e�cient (polynomial-time) algorithms for this task?

State-of-the art: in the sparse regime where λ > 0 and s ∈ [0, 1] are fixed
constants: partial recovery is IT-feasible if λs > 4 + ε [Wu-Xu-Yu ’21].

4



Planted graph alignment: general questions, state-of-the art

Goal: upon observing G and H, estimate π∗ with high probability.

Sparse regime: q = λ/n, constant mean degree λ. Even with s = 1, Θ(n)

isolated vertices←− only partial alignment may be reachable
[Cullina-Kiyavash ’16, ’17].

Questions:

• Can we hope for some π̂ s.t. ov(π̂, π∗) > αn w.h.p. with no
computational restrictions (i.e. when is there enough signal)?

• What is the maximal fraction α?
• Can we find e�cient (polynomial-time) algorithms for this task?

State-of-the art: in the sparse regime where λ > 0 and s ∈ [0, 1] are fixed
constants: partial recovery is IT-feasible if λs > 4 + ε [Wu-Xu-Yu ’21].

4



An impossibility result: upper bound on reachable overlap

Theorem
For λ > 0 and s ∈ [0, 1], we have for any α > 0, for any estimator π̂:

P (ov(π̂, π∗) > (c(λs) + α)n) −→
n→∞

0,

where c(µ) is the greatest non-negative solution to the equation
e−µx = 1− x.

Corollary: Partial recovery is IT-infeasible if λs ≤ 1.

5



An impossibility result: upper bound on reachable overlap

Theorem
For λ > 0 and s ∈ [0, 1], we have for any α > 0, for any estimator π̂:

P (ov(π̂, π∗) > (c(λs) + α)n) −→
n→∞

0,

where c(µ) is the greatest non-negative solution to the equation
e−µx = 1− x.

Corollary: Partial recovery is IT-infeasible if λs ≤ 1.

5



Intuition for impossibility result: exchanging small tree components

1. Information contained in the intersection graph G ∧ G′:
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In our model G ∧ G′ is an Erdős-Rényi graph: G ∧ G′ ∼ G(n, λs/n).

2. [Erdős, Rényi, Bollobás] typical fraction c(λs) of nodes in the giant
component of G ∧ G′ → the remaining (1− c(λs))n nodes are almost all
on small tree components.

3. For any small tree T, a large number of copies of T will appear in G ∧ G′.
Reshu�e them at random in G → a lot of ’unnoticed’ corrupted
candidates for π̂ that are far from π∗.
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Positive result: testing tree correlation

Crucial remark: in the sparse regime, G,H are locally tree-like.

Recall that (G,H) ∼ G(n,q = λ/n, s) with planted permutation π∗. Then,
locally:

• if u = π∗(i), the neighborhoods at depth d, NG(i) and NH(u) '
Galton-Waston trees of o�spring P(λ), with intersection of o�spring
P(λs).

• if u 6= π∗(i), NG(i) and NH(u) ' independent Galton-Waston trees of
o�spring P(λ).

New problem on trees: upon observing two unlabeled, rooted trees t, t′ up
to depth d, we want to be able to test:

(t, t′) ∼ P1 vs (t, t′) ∼ P0

with P1 := s− correlated GWλ,d trees and P0 := GWλ,d ⊗ GWλ,d.
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Positive result: testing tree correlation

One sided test: test Td : Xd ×Xd → {0, 1} such that

P0(Td = 0)→ 1 and lim inf
d→∞

P1(Td = 1) > 0.

Likelihood ratio: For t, t′ ∈ Xd,

Ld(t, t′) :=
P1,d(t, t′)
P0,d(t, t′) .

Recursive computation: if c (resp. c′) is the root degree in T (resp. T ′)

Ld(t, t′) =
c∧c′∑
k=0

ψ(k, c, c′)
∑

σ∈S(k,c)

σ′∈S(k,c′)

k∏
i=1

Ld−1(tσ(i), t′σ′(i)),

where S(k, `) is the set of injective mappings from [k] to [`], and

ψ(k, c, c′) :=
πλs(k)πλs̄(c− k)πλs̄(c′ − k)

πλ(c)πλ(c′) × (c− k)!× (c− k′)!

c!× c′!

= eλs × sks̄d+d′−2k

λkk!
.
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Positive result: testing tree correlation

Martingale properties: under P0, (Ld)d is a martingale w.r.t. to
Fd := σ(t|d, t′|d), and converges a.s. to L∞.

Su�cient condition: There exists a one sided test as soon as

∃ε > 0, ∀a > 0, lim inf
d→∞

P1(Ld > a) ≥ ε > 0.

KL - divergence:
KLd := KL(P1,d‖P0,d) = E1 [log(Ld)] .

KLd →∞ and λs > 1 =⇒ one-sided test exists =⇒ KLd →∞
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Positive result: testing tree correlation

0.
3

0.
32

9
0.

35
8

0.
38

6
0.

41
5

0.
44

4
0.

47
2

0.
50

1
0.

53
0.

55
9

0.
58

7
0.

61
6

0.
64

5
0.

67
4

0.
70

2
0.

73
1

0.
76

0.
78

9
0.

81
7

0.
84

6
0.

87
5

0.
90

4
0.

93
2

0.
96

1
0.

99
s

2.0
1.948
1.896
1.844
1.792
1.74

1.688
1.635
1.583
1.531
1.479
1.427
1.375
1.323
1.271
1.219
1.167
1.115
1.062
1.01

0.958
0.906
0.854
0.802
0.75

estimated P1(Ld > 1e9), for d = 6

0.00

0.15

0.30

0.45

0.60

0.75

10



Positive result: testing tree correlation

Theorem (positive results, ongoing work)
Assume that one of the following holds:

(i) λs > 1 and

KL1 >
1

λs− 1 [λs(log(λ/s)− 1)− 2λ(1− s) log(1− s)]

(ii) λs > r0 (r0 large constant) and

1− s ≤ 1
3 + η

√
log(λs)

λ3s

then one-sided testability holds.
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Positive result: testing tree correlation

Theorem (negative results, ongoing work)
If λs2 < 1, then for su�ciently large λ,

lim sup
d

KLd <∞,

so that one-sided testability fails.
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Conclusion: diagram for partial recovery

[WXY21]

λs = 4

[GLM21]

λs = 1

[GM20,GLM21]

λ

s

0

1

1 4 λ

Impossible phase IT-feasible phase Easy phase

1
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Concluding remarks

• Sparse graph alignment can be locally rephrased as an hypothesis
testing problem: detecting correlation in (unlabeled, rooted) trees.

• The recursion computation of the likelihood ratio gives a natural
belief-propagation method, running in polynomial-time.

• Future work:
• λs = 1 seems to be the sharp IT threshold.
• Hard phase tight characterization still open.
• Other random graph models, labeled version.
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Thank you!
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