Statistical and Computational limits for sparse graph alignment

Luca Ganassali
Junior Conference on Random networks and interacting particle systems
Joint work with Laurent Massoulié and Marc Lelarge
INRIA, DI/ENS, PSL Research University, Paris, France

ÉCOLE NORMALE
SUPERIEURE

Graph alignment

Question: Given two graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with $|V|=\left|V^{\prime}\right|$, what is the best way to match nodes of G with nodes of G^{\prime} ?

Graph alignment

Question: Given two graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with $|V|=\left|V^{\prime}\right|$, what is the best way to match nodes of G with nodes of G^{\prime} ?

Minimizing disagreements: Find a bijection $f: V \rightarrow V^{\prime}$ that minimizes

$$
\sum_{(i, j) \in V^{2}}\left(\mathbf{1}_{(i, j) \in E}-\mathbf{1}_{(f(i), f(j)) \in E^{\prime}}\right)^{2}
$$

or, equivalently solve

$$
\max _{\Pi} \operatorname{Tr}\left(G \Pi G^{\prime} \Pi^{\top}\right)
$$

where Π runs over all permutation matrices.

Graph alignment

Question: Given two graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with $|V|=\left|V^{\prime}\right|$, what is the best way to match nodes of G with nodes of G^{\prime} ?

Minimizing disagreements: Find a bijection $f: V \rightarrow V^{\prime}$ that minimizes

$$
\sum_{(i, j) \in V^{2}}\left(\mathbf{1}_{(i, j) \in E}-\mathbf{1}_{(f(i), f(j)) \in E^{\prime}}\right)^{2}
$$

or, equivalently solve

$$
\max _{\Pi} \operatorname{Tr}\left(G \Pi G^{\prime} \Pi^{\top}\right)
$$

where Π runs over all permutation matrices. $\longleftarrow N$-hard in the worst case

Planted graph alignment

Planted setting: we observe some random graphs \mathcal{G}, \mathcal{H} (n nodes) correlated with a planted alignment π^{*} (hidden). We want to 'recover' π^{*}, with high probability when $n \rightarrow \infty$.

Planted graph alignment

Planted setting: we observe some random graphs \mathcal{G}, \mathcal{H} (n nodes) correlated with a planted alignment π^{*} (hidden). We want to 'recover' π^{*}, with high probability when $n \rightarrow \infty$.

Another measure of performance: for any $[n]$-valued estimator $\hat{\pi}(\mathcal{G}, \mathcal{H})$, define its overlap with the planted permutation π^{*}

$$
\operatorname{ov}\left(\hat{\pi}, \pi^{*}\right):=\sum_{i=1}^{n} \mathbf{1}_{\hat{\pi}(i)=\pi^{*}(i)} .
$$

Planted graph alignment

Planted setting: we observe some random graphs \mathcal{G}, \mathcal{H} (n nodes) correlated with a planted alignment π^{*} (hidden). We want to 'recover' π^{*}, with high probability when $n \rightarrow \infty$.

Another measure of performance: for any [n]-valued estimator $\hat{\pi}(\mathcal{G}, \mathcal{H})$, define its overlap with the planted permutation π^{*}

$$
\operatorname{ov}\left(\hat{\pi}, \pi^{*}\right):=\sum_{i=1}^{n} \mathbf{1}_{\hat{\pi}(i)=\pi^{*}(i)}
$$

Definitions We say that $\hat{\pi}$ achieves:

- Exact recovery if

$$
\mathbb{P}\left(\hat{\pi}=\pi^{*}\right) \rightarrow 1
$$

- Partial recovery if

$$
\mathbb{P}\left(\operatorname{ov}\left(\hat{\pi}, \pi^{*}\right)>\alpha n\right) \rightarrow 1
$$

Planted graph alignment

Planted setting: we observe some random graphs \mathcal{G}, \mathcal{H} (n nodes) correlated with a planted alignment π^{*} (hidden). We want to 'recover' π^{*}, with high probability when $n \rightarrow \infty$.

Another measure of performance: for any $[n]$-valued estimator $\hat{\pi}(\mathcal{G}, \mathcal{H})$, define its overlap with the planted permutation π^{*}

$$
\operatorname{ov}\left(\hat{\pi}, \pi^{*}\right):=\sum_{i=1}^{n} \mathbf{1}_{\hat{\pi}(i)=\pi^{*}(i)}
$$

Definitions We say that $\hat{\pi}$ achieves:

- Exact recovery if

$$
\mathbb{P}\left(\hat{\pi}=\pi^{*}\right) \rightarrow 1
$$

- Partial recovery if

$$
\mathbb{P}\left(\operatorname{ov}\left(\hat{\pi}, \pi^{*}\right)>\alpha n\right) \rightarrow 1
$$

Remark: $\arg \max _{\Pi} \operatorname{Tr}\left(G \Pi G^{\prime} \Pi^{\top}\right)$ does not coincide with π^{*} in general.

Planted graph alignment

Planted setting: we observe some random graphs \mathcal{G}, \mathcal{H} (n nodes) correlated with a planted alignment π^{*} (hidden). We want to 'recover' π^{*}, with high probability when $n \rightarrow \infty$.

Another measure of performance: for any [n]-valued estimator $\hat{\pi}(\mathcal{G}, \mathcal{H})$, define its overlap with the planted permutation π^{*}

$$
\operatorname{ov}\left(\hat{\pi}, \pi^{*}\right):=\sum_{i=1}^{n} \mathbf{1}_{\hat{\pi}(i)=\pi^{*}(i)} .
$$

Definitions We say that $\hat{\pi}$ achieves:

- Exact recovery if

$$
\mathbb{P}\left(\hat{\pi}=\pi^{*}\right) \rightarrow 1 .
$$

- Partial recovery if

$$
\mathbb{P}\left(\operatorname{ov}\left(\hat{\pi}, \pi^{*}\right)>\alpha n\right) \rightarrow 1
$$

Remark: $\arg \max _{\Pi} \operatorname{Tr}\left(G \Pi G^{\prime} \Pi^{\top}\right)$ does not coincide with π^{*} in general.
Some applications: de-anonymization of networks, protein classification in biology, image processing...

Correlated Erdős-Rényi model $\mathcal{G}(n, q, s)$:

- Draw two graphs $\mathcal{G}, \mathcal{G}^{\prime}$ with same node set $[n]$, s.t. for all $(i, j) \in\binom{[n]}{2}$:

$$
\left(\mathbf{1}_{\underset{\mathcal{G}}{ }{ }^{j}} \mathbf{1}_{i \mathcal{G}^{\prime}}\right)=\left\{\begin{array}{lll}
(1,1) & \text { w.p. } q s & \text { two-coloured edge } \\
(0,1),(1,0) & \text { w.p. } q(1-s) & \text { red or blue edge } \\
(0,0) & \text { w.p. } 1-q(2-s) & \text { non-edge }
\end{array}\right.
$$

Correlated Erdős-Rényi model $\mathcal{G}(n, q, s)$:

- Draw two graphs $\mathcal{G}, \mathcal{G}^{\prime}$ with same node set $[n]$, s.t. for all $(i, j) \in\binom{[n]}{2}$:

$$
\left(\mathbf{1}_{\underset{\mathcal{G}}{ }{ }^{j}} \mathbf{1}_{i \mathcal{G}^{\prime}}\right)=\left\{\begin{array}{lll}
(1,1) & \text { w.p. } q s & \text { two-coloured edge } \\
(0,1),(1,0) & \text { w.p. } q(1-s) & \text { red or blue edge } \\
(0,0) & \text { w.p. } 1-q(2-s) & \text { non-edge }
\end{array}\right.
$$

Correlated Erdős-Rényi model $\mathcal{G}(n, q, s)$:

- Draw two graphs $\mathcal{G}, \mathcal{G}^{\prime}$ with same node set $[n]$, s.t. for all $(i, j) \in\binom{[n]}{2}$:

$$
\left(\mathbf{1}_{\underset{\mathcal{G}}{ }}, \mathbf{1}_{\substack{\mathcal{G}^{\prime}}}\right)=\left\{\begin{array}{lll}
(1,1) & \text { w.p. qs } & \text { two-coloured edge } \\
(0,1),(1,0) & \text { w.p. } q(1-s) & \text { red or blue edge } \\
(0,0) & \text { w.p. } 1-q(2-s) & \text { non-edge }
\end{array}\right.
$$

- Relabel the vertices of \mathcal{G}^{\prime} with a uniform independent permutation π^{*} : $\mathcal{H}:=\mathcal{G}^{\prime} \circ \pi^{*}$.

Planted graph alignment: general questions, state-of-the art

Goal: upon observing \mathcal{G} and \mathcal{H}, estimate π^{*} with high probability.

Planted graph alignment: general questions, state-of-the art

Goal: upon observing \mathcal{G} and \mathcal{H}, estimate π^{*} with high probability.
Sparse regime: $q=\lambda / n$, constant mean degree λ. Even with $s=1, \Theta(n)$ isolated vertices \longleftarrow only partial alignment may be reachable [Cullina-Kiyavash '16, '17].

Planted graph alignment: general questions, state-of-the art

Goal: upon observing \mathcal{G} and \mathcal{H}, estimate π^{*} with high probability.
Sparse regime: $q=\lambda / n$, constant mean degree λ. Even with $s=1, \Theta(n)$ isolated vertices \longleftarrow only partial alignment may be reachable [Cullina-Kiyavash '16, '17].

Questions:

- Can we hope for some $\hat{\pi}$ s.t. $\operatorname{ov}\left(\hat{\pi}, \pi^{*}\right)>\alpha n$ w.h.p. with no computational restrictions (i.e. when is there enough signal)?
- What is the maximal fraction α ?
- Can we find efficient (polynomial-time) algorithms for this task?

Planted graph alignment: general questions, state-of-the art

Goal: upon observing \mathcal{G} and \mathcal{H}, estimate π^{*} with high probability.
Sparse regime: $q=\lambda / n$, constant mean degree λ. Even with $s=1, \Theta(n)$ isolated vertices \longleftarrow only partial alignment may be reachable [Cullina-Kiyavash '16, '17].

Questions:

- Can we hope for some $\hat{\pi}$ s.t. ov $\left(\hat{\pi}, \pi^{*}\right)>\alpha n$ w.h.p. with no computational restrictions (i.e. when is there enough signal)?
- What is the maximal fraction α ?
- Can we find efficient (polynomial-time) algorithms for this task?

State-of-the art: in the sparse regime where $\lambda>0$ and $s \in[0,1]$ are fixed constants: partial recovery is IT-feasible if $\lambda s>4+\varepsilon$ [Wu-Xu-Yu '21].

An impossibility result: upper bound on reachable overlap

Theorem

For $\lambda>0$ and $s \in[0,1]$, we have for any $\alpha>0$, for any estimator $\hat{\pi}$:

$$
\mathbb{P}\left(\operatorname{ov}\left(\hat{\pi}, \pi^{*}\right)>(c(\lambda s)+\alpha) n\right) \underset{n \rightarrow \infty}{\longrightarrow} 0,
$$

where $c(\mu)$ is the greatest non-negative solution to the equation $e^{-\mu x}=1-x$.

An impossibility result: upper bound on reachable overlap

Theorem

For $\lambda>0$ and $s \in[0,1]$, we have for any $\alpha>0$, for any estimator $\hat{\pi}$:

$$
\mathbb{P}\left(\operatorname{ov}\left(\hat{\pi}, \pi^{*}\right)>(c(\lambda s)+\alpha) n\right) \underset{n \rightarrow \infty}{\longrightarrow} \mathbf{o},
$$

where $c(\mu)$ is the greatest non-negative solution to the equation $e^{-\mu x}=1-x$.

Corollary: Partial recovery is IT-infeasible if $\lambda s \leq 1$.

1. Information contained in the intersection graph $\mathcal{G} \wedge \mathcal{G}^{\prime}$:

In our model $\mathcal{G} \wedge \mathcal{G}^{\prime}$ is an Erdős-Rényi graph: $\mathcal{G} \wedge \mathcal{G}^{\prime} \sim \mathcal{G}(n, \lambda s / n)$.

1. Information contained in the intersection graph $\mathcal{G} \wedge \mathcal{G}^{\prime}$:

In our model $\mathcal{G} \wedge \mathcal{G}^{\prime}$ is an Erdős-Rényi graph: $\mathcal{G} \wedge \mathcal{G}^{\prime} \sim G(n, \lambda s / n)$.
2. [Erdős, Rényi, Bollobás] typical fraction $c(\lambda s)$ of nodes in the giant component of $\mathcal{G} \wedge \mathcal{G}^{\prime} \rightarrow$ the remaining $(1-c(\lambda s)) n$ nodes are almost all on small tree components.

1. Information contained in the intersection graph $\mathcal{G} \wedge \mathcal{G}^{\prime}$:

In our model $\mathcal{G} \wedge \mathcal{G}^{\prime}$ is an Erdős-Rényi graph: $\mathcal{G} \wedge \mathcal{G}^{\prime} \sim \mathcal{G}(n, \lambda s / n)$.
2. [Erdős, Rényi, Bollobás] typical fraction $c(\lambda s)$ of nodes in the giant component of $\mathcal{G} \wedge \mathcal{G}^{\prime} \rightarrow$ the remaining $(1-c(\lambda s)) n$ nodes are almost all on small tree components.
3. For any small tree \mathbf{T}, a large number of copies of \mathbf{T} will appear in $\mathcal{G} \wedge \mathcal{G}^{\prime}$. Reshuffle them at random in $\mathcal{G} \rightarrow$ a lot of 'unnoticed' corrupted candidates for $\hat{\pi}$ that are far from π^{*}.

Positive result: testing tree correlation

Crucial remark: in the sparse regime, \mathcal{G}, \mathcal{H} are locally tree-like.

Positive result: testing tree correlation

Crucial remark: in the sparse regime, \mathcal{G}, \mathcal{H} are locally tree-like.
Recall that $(\mathcal{G}, \mathcal{H}) \sim \mathcal{G}(n, q=\lambda / n, s)$ with planted permutation π^{*}. Then, locally:

- if $u=\pi^{*}(i)$, the neighborhoods at depth $d, \mathcal{N}_{\mathcal{G}}(i)$ and $\mathcal{N}_{\mathcal{H}}(u) \simeq$ Galton-Waston trees of offspring $\mathcal{P}(\lambda)$, with intersection of offspring $\mathcal{P}(\lambda s)$.

Positive result: testing tree correlation

Crucial remark: in the sparse regime, \mathcal{G}, \mathcal{H} are locally tree-like.
Recall that $(\mathcal{G}, \mathcal{H}) \sim \mathcal{G}(n, q=\lambda / n, s)$ with planted permutation π^{*}. Then, locally:

- if $u=\pi^{*}(i)$, the neighborhoods at depth $d, \mathcal{N}_{\mathcal{G}}(i)$ and $\mathcal{N}_{\mathcal{H}}(u) \simeq$ Galton-Waston trees of offspring $\mathcal{P}(\lambda)$, with intersection of offspring $\mathcal{P}(\lambda s)$.
- if $u \neq \pi^{*}(i), \mathcal{N}_{\mathcal{G}}(i)$ and $\mathcal{N}_{\mathcal{H}}(u) \simeq$ independent Galton-Waston trees of offspring $\mathcal{P}(\lambda)$.

Positive result: testing tree correlation

Crucial remark: in the sparse regime, \mathcal{G}, \mathcal{H} are locally tree-like.
Recall that $(\mathcal{G}, \mathcal{H}) \sim \mathcal{G}(n, q=\lambda / n, s)$ with planted permutation π^{*}. Then, locally:

- if $u=\pi^{*}(i)$, the neighborhoods at depth $d, \mathcal{N}_{\mathcal{G}}(i)$ and $\mathcal{N}_{\mathcal{H}}(u) \simeq$ Galton-Waston trees of offspring $\mathcal{P}(\lambda)$, with intersection of offspring $\mathcal{P}(\lambda s)$.
- if $u \neq \pi^{*}(i), \mathcal{N}_{\mathcal{G}}(i)$ and $\mathcal{N}_{\mathcal{H}}(u) \simeq$ independent Galton-Waston trees of offspring $\mathcal{P}(\lambda)$.

New problem on trees: upon observing two unlabeled, rooted trees t, t^{\prime} up to depth d, we want to be able to test:

$$
\left(t, t^{\prime}\right) \sim \mathbb{P}_{1} \quad \text { vs } \quad\left(t, t^{\prime}\right) \sim \mathbb{P}_{0}
$$

with $\mathbb{P}_{1}:=s$ - correlated $G W_{\lambda, d}$ trees and $\mathbb{P}_{0}:=G W_{\lambda, d} \otimes G W_{\lambda, d}$.

Positive result: testing tree correlation

One sided test: test $\mathcal{T}_{d}: \mathcal{X}_{d} \times \mathcal{X}_{d} \rightarrow\{\mathrm{O}, 1\}$ such that

$$
\mathbb{P}_{\mathrm{o}}\left(\mathcal{T}_{d}=0\right) \rightarrow 1 \quad \text { and } \quad \liminf _{d \rightarrow \infty} \mathbb{P}_{1}\left(\mathcal{T}_{d}=1\right)>0
$$

Positive result: testing tree correlation

One sided test: test $\mathcal{T}_{d}: \mathcal{X}_{d} \times \mathcal{X}_{d} \rightarrow\{\mathrm{O}, 1\}$ such that

$$
\mathbb{P}_{\mathrm{o}}\left(\mathcal{T}_{d}=0\right) \rightarrow 1 \quad \text { and } \quad \liminf _{d \rightarrow \infty} \mathbb{P}_{1}\left(\mathcal{T}_{d}=1\right)>0
$$

Likelihood ratio: For $t, t^{\prime} \in \mathcal{X}_{d}$,

$$
L_{d}\left(t, t^{\prime}\right):=\frac{\mathbb{P}_{1, d}\left(t, t^{\prime}\right)}{\mathbb{P}_{0, d}\left(t, t^{\prime}\right)}
$$

Recursive computation: if $c\left(\right.$ resp. $\left.c^{\prime}\right)$ is the root degree in \mathcal{T} (resp. \mathcal{T}^{\prime})

$$
L_{d}\left(t, t^{\prime}\right)=\sum_{k=0}^{c \wedge c^{\prime}} \psi\left(k, c, c^{\prime}\right) \sum_{\substack{\sigma \in \mathcal{S}(k, c) \\ \sigma^{\prime} \in \mathcal{S}\left(k, c^{\prime}\right)}} \prod_{i=1}^{k} L_{d-1}\left(t_{\sigma(i)}, t_{\sigma^{\prime}(i)}^{\prime}\right),
$$

where $\mathcal{S}(k, \ell)$ is the set of injective mappings from $[k]$ to $[\ell]$, and

$$
\begin{aligned}
\psi\left(k, c, c^{\prime}\right) & :=\frac{\pi_{\lambda s}(k) \pi_{\lambda \bar{s}}(c-k) \pi_{\lambda \bar{s}}\left(c^{\prime}-k\right)}{\pi_{\lambda}(c) \pi_{\lambda}\left(c^{\prime}\right)} \times \frac{(c-k)!\times\left(c-k^{\prime}\right)!}{c!\times c^{\prime}!} \\
& =e^{\lambda s} \times \frac{s^{k} \bar{s}^{d+d^{\prime}-2 k}}{\lambda^{k} k!} .
\end{aligned}
$$

Positive result: testing tree correlation

Martingale properties: under $\mathbb{P}_{0},\left(L_{d}\right)_{d}$ is a martingale w.r.t. to $\mathcal{F}_{d}:=\sigma\left(t_{\mid d}, t_{\mid d}^{\prime}\right)$, and converges a.s. to L_{∞}.

Positive result: testing tree correlation

Martingale properties: under $\mathbb{P}_{o},\left(L_{d}\right)_{d}$ is a martingale w.r.t. to $\mathcal{F}_{d}:=\sigma\left(t_{\mid d}, t_{d d}^{\prime}\right)$, and converges a.s. to L_{∞}.
Sufficient condition: There exists a one sided test as soon as

$$
\exists \varepsilon>0, \forall a>0, \liminf _{d \rightarrow \infty} \mathbb{P}_{1}\left(L_{d}>a\right) \geq \varepsilon>0
$$

Positive result: testing tree correlation

Martingale properties: under $\mathbb{P}_{0},\left(L_{d}\right)_{d}$ is a martingale w.r.t. to $\mathcal{F}_{d}:=\sigma\left(t_{\mid d}, t_{\mid d}^{\prime}\right)$, and converges a.s. to L_{∞}.
Sufficient condition: There exists a one sided test as soon as

$$
\exists \varepsilon>0, \forall a>0, \liminf _{d \rightarrow \infty} \mathbb{P}_{1}\left(L_{d}>a\right) \geq \varepsilon>0
$$

KL - divergence:

$$
K L_{d}:=K L\left(\mathbb{P}_{1, d} \| \mathbb{P}_{0, d}\right)=\mathbb{E}_{1}\left[\log \left(L_{d}\right)\right]
$$

$$
K L_{d} \rightarrow \infty \text { and } \lambda s>1 \Longrightarrow \text { one-sided test exists } \Longrightarrow K L_{d} \rightarrow \infty
$$

Positive result: testing tree correlation

Positive result: testing tree correlation

Theorem (positive results, ongoing work) Assume that one of the following holds:
(i) $\lambda s>1$ and

$$
K L_{1}>\frac{1}{\lambda s-1}[\lambda s(\log (\lambda / s)-1)-2 \lambda(1-s) \log (1-s)]
$$

(ii) $\lambda s>r_{0}$ (r_{0} large constant) and

$$
1-s \leq \frac{1}{3+\eta} \sqrt{\frac{\log (\lambda s)}{\lambda^{3} s}}
$$

then one-sided testability holds.

Positive result: testing tree correlation

Theorem (negative results, ongoing work) If $\lambda s^{2}<1$, then for sufficiently large λ,

$$
\limsup _{d} K L_{d}<\infty
$$

so that one-sided testability fails.

Conclusion: diagram for partial recovery

Concluding remarks

- Sparse graph alignment can be locally rephrased as an hypothesis testing problem: detecting correlation in (unlabeled, rooted) trees.
- The recursion computation of the likelihood ratio gives a natural belief-propagation method, running in polynomial-time.
- Future work:
- $\lambda s=1$ seems to be the sharp IT threshold.
- Hard phase tight characterization still open.
- Other random graph models, labeled version.

Thank you!

