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(i,j)ev?

or, equivalently solve
max Tr (GI‘IG’I‘IT> :
n

where I runs over all permutation matrices. +— NP-hard in the worst case
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Planted setting: we observe some random graphs G, H (n nodes) correlated
with a planted alignment 7* (hidden). We want to 'recover’ 7*, with high
probability when n — oc.

Another measure of performance: for any [n]-valued estimator #(G, 1),
define its overlap with the planted permutation *

ov(#, " 21 — (i)

Definitions We say that # achieves:

* Exact recovery if
P(r=7")—>1.
« Partial recovery if
Pov(#,7") > an) — 1.
Remark: arg maxy Tr (GMG'M ") does not coincide with 7* in general.

Some applications: de-anonymization of networks, protein classification in
biology, image processing...



Correlated Erdés-Rényi model G(n, g, s):

« Draw two graphs G, G’ with same node set [n], s.t. for all (i,)) € ([’2’]):

1o, 1o —
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(0,0)
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non-edge
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Correlated Erdés-Rényi model G(n, g, s):

« Draw two graphs G, G’ with same node set [n], s.t. for all (i,)) € ([’2’]):

(1,1) w.p. gs two—coloured edge
(1,~Nj,1,»Nlj) =< (0,1),(1,0) w.p.qg(1-5) red or blue edge
(0,0) w.p. 1—q(2—s) non-edge

+ Relabel the vertices of G’ with a uniform independent permutation =*:

H =G or*.
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Goal: upon observing G and H, estimate 7* with high probability.

Sparse regime: g = \/n, constant mean degree \. Even with s = 1, ©(n)
isolated vertices +— only partial alignment may be reachable
[Cullina-Kiyavash "16, "17].

Questions:
« Can we hope for some # s.t. ov(#, 7*) > an w.h.p. with no
computational restrictions (i.e. when is there enough signal)?
« What is the maximal fraction a?
- Can we find efficient (polynomial-time) algorithms for this task?

State-of-the art: in the sparse regime where A > 0 and s € [0, 1] are fixed
constants: partial recovery is IT-feasible if As > 4 + ¢ [Wu-Xu-Yu "21].



An impossibility result: upper bound on reachable overlap
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Theorem )
For A > o ands € [0, 1], we have for any « > 0, for any estimator #:

P (ov(f,7") > (c(As) + a)n) — O,
n—oo
where c(u1) is the greatest non-negative solution to the equation

e M =1-x
|\ J




An impossibility result: upper bound on reachable overlap

( )

Theorem )
For A > o ands € [0, 1], we have for any « > 0, for any estimator #:

P (ov(f,7") > (c(As) + a)n) — O,
n—oo
where c(u1) is the greatest non-negative solution to the equation

e M =1-x
|\ J

Corollary: Partial recovery is IT-infeasible if \s < 1.
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1. Information contained in the intersection graph G A G':

o

In our model G A G’ is an Erdés-Rényi graph: G A G’ ~ G(n, As/n).

2. [Erdés, Rényi, Bollobas] typical fraction c(\s) of nodes in the giant
component of G A G’ — the remaining (1 — c(As))n nodes are almost all
on small tree components.

3. Forany small tree T, a large number of copies of T will appearin G A G'.
Reshuffle them at random in G — a lot of 'unnoticed’ corrupted
candidates for # that are far from =*.
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Positive result: testing tree correlation

Crucial remark: in the sparse regime, G, H are locally tree-like.
Recall that (G, H) ~ G(n,q = A/n,s) with planted permutation 7*. Then,
locally:

« if u = 7*(i), the neighborhoods at depth d, NVg (i) and Ny (u) ~
Galton-Waston trees of offspring (), with intersection of offspring
P(As).

« if u # 7 (i), Ng(i) and N3 (u) ~ independent Galton-Waston trees of
offspring P(\).

New problem on trees: upon observing two unlabeled, rooted trees t,t’ up
to depth d, we want to be able to test:

(t,tY~P, vs (tt)~Po

with P; := s — correlated GW, 4 trees and Py := GW,, ¢ @ GW, 4.
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One sided test: test 75 : Xy x Xy — {0, 1} such that

Po(7g =0) -1 and Iidm inf P4(74 =1) > 0.

Likelihood ratio: For t,t' € A},
_ Pt t)
Poﬁd(t, t’)'
Recursive computation: if ¢ (resp. c’) is the root degree in 7 (resp. 77)

La(t, ') :

cnd’ k
Ld(t, t/) = Zi/)(k,q C/) Z HLd71(tU(i),t;/(,~)),
k=0 oceS(k,c) i=1
o’ eS(k,c")

where S(k, ¢) is the set of injective mappings from [R] to [¢], and
71'>\5(I?)7T>\§(C — I’(’)TMg(C/ — k) % (C — k)! X (C — k/)!
ma(C)ma(c’) ¢! x !

- /_
s Sksd+d 2k .
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Martingale properties: under P, (Ly)q is @ martingale w.r.t. to
Fa := o(tg, t]g), and converges a.s. to L.

Sufficient condition: There exists a one sided test as soon as

Je > 0, Va > 0, liminfP4(Ly > a) > e > 0.
d— o0

KL - divergence:
KLd = KL(]P)dePo’d) E [log(Ld)] .

[ KLy — oo and As > 1 = one-sided test exists = KLy — oo ]




Positive result: testing tree correlation

estimated P;(Ly > 1€9), ford=6
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Positive result: testing tree correlation

-

|

Theorem (positive results, ongoing work)
Assume that one of the following holds:

(i) As >1and

KLy > —— )\ [As(log(A/s) —1) —2X(1—5)log(1—5)]

(ii) As > ro (ro large constant) and

1-s< 1 log(As)
3+m A3s

then one-sided testability holds.




Positive result: testing tree correlation

' A

Theorem (negative results, ongoing work)
If A\s> < 1, then for sufficiently large ),

limsup KLy < o0,
d

so that one-sided testability fails.

| J
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Conclusion: diagram for partial recovery

. [GM20,GLM21]
e : [WXY21]
E \‘:~ ~~~ haC
©O[GLM21] b e,
el Tl As=4
' ' Tl ~
: e, As=1
0 i {
1 4 A
Impossible phase IT-feasible phase Easy phase



Concluding remarks

+ Sparse graph alignment can be locally rephrased as an hypothesis
testing problem: detecting correlation in (unlabeled, rooted) trees.

« The recursion computation of the likelihood ratio gives a natural
belief-propagation method, running in polynomial-time.
* Future work:

« \s = 1seems to be the sharp IT threshold.
+ Hard phase tight characterization still open.
« Other random graph models, labeled version.

%



Thank you!
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