The jump of the clique chromatic number for random graphs

Joint work with Dieter Mitsche and Lutz Warnke

Lyuben Lichev

Université Jean Monnet, Saint Etienne, France

7/09/2021

Lyuben Lichev

The jump of the clique chromatic number for random graphs

Lyon, 7/09/2021 1 / 11

The setting

- The Erdős-Rényi random graph *G*(*n*, *p*).
- Proper (vertex-)coloring no two adjacent vertices have the same color ⇒ chromatic number, denoted χ(·).
- Proper clique coloring no maximal clique (with more than one vertex) contains vertices in only one color ⇒ clique chromatic number, denoted χ_c(·).

Lyuben Lichev

The jump of the clique chromatic number for random graphs

Lyon, 7/09/2021 3 / 11

2

Lyuben Lichev

The jump of the clique chromatic number for random graphs

Lyon, 7/09/2021 3 / 11

2

The jump of the clique chromatic number for random graphs

Lyon, 7/09/2021 3 / 11

2

For any triangle-free graph G, $\chi(G) = \chi_c(G)$.

For any triangle-free graph G, $\chi(G) = \chi_c(G)$.

 $\chi(K_n) = n$, while $\chi_c(K_n) = 2$.

э

For any triangle-free graph G, $\chi(G) = \chi_c(G)$.

- $\chi(K_n) = n$, while $\chi_c(K_n) = 2$.
- In 2016, McDiarmid, Mitsche and Pralat establish that, for every $x \in (0, 1/2) \cup (1/2, 1)$ and $np = n^{x+o(1)}$, whp $\chi_c(G(n, p)) = n^{f(x)+o(1)}$.

Probability that an edge does not participate in a triangle (i.e. is not covered) : $(1 - p^2)^{n-2} \approx \exp(-np^2)$.

- (E

Probability that an edge does not participate in a triangle (i.e. is not covered) : $(1 - p^2)^{n-2} \approx \exp(-np^2)$.

If $p = O(n^{-1/2})$, then $\chi(G(n, p))$ and $\chi_c(G(n, p))$ cannot be far from each other.

< ロ > < 同 > < 回 > < 回 > < 回 >

Probability that an edge does not participate in a triangle (i.e. is not covered) : $(1 - p^2)^{n-2} \approx \exp(-np^2)$.

If $p = O(n^{-1/2})$, then $\chi(G(n, p))$ and $\chi_c(G(n, p))$ cannot be far from each other.

Lower bound on $\chi_{\rm c}$: Think of edges outside triangles being distrbuted \approx uniformly at random.

Proper clique coloring of $G(n, p) \implies$ proper coloring of $G(n, p \exp(-np^2))$.

Probability that an edge does not participate in a triangle (i.e. is not covered) : $(1 - p^2)^{n-2} \approx \exp(-np^2)$.

If $p = O(n^{-1/2})$, then $\chi(G(n, p))$ and $\chi_c(G(n, p))$ cannot be far from each other.

Lower bound on $\chi_{\rm C}$: Think of edges outside triangles being distrbuted \approx uniformly at random.

Proper clique coloring of $G(n, p) \implies$ proper coloring of $G(n, p \exp(-np^2))$.

Upper bound on $\chi_c : \chi_c(G) \leq \chi(G)$.

Probability that an edge does not participate in a triangle (i.e. is not covered) : $(1 - p^2)^{n-2} \approx \exp(-np^2)$.

If $p \gg n^{-1/2}$, how large could be the largest monochromatic set in a proper clique coloring?

< ロ > < 同 > < 回 > < 回 > < 回 >

Probability that an edge does not participate in a triangle (i.e. is not covered) : $(1 - p^2)^{n-2} \approx \exp(-np^2)$.

If $p \gg n^{-1/2}$, how large could be the largest monochromatic set in a proper clique coloring?

In a set of *s* vertices one expects $\approx s^2 p/2$ edges.

Probability that an edge does not participate in a triangle (i.e. is not covered) : $(1 - p^2)^{n-2} \approx \exp(-np^2)$.

If $p \gg n^{-1/2}$, how large could be the largest monochromatic set in a proper clique coloring?

In a set of *s* vertices one expects $\approx s^2 p/2$ edges.

If covered independently, all edges would have been covered with probability $\approx (1 - \exp(-np^2))^{s^2p/2} \approx \exp(-s^2p \exp(-np^2)/2)$.

Probability that an edge does not participate in a triangle (i.e. is not covered) : $(1 - p^2)^{n-2} \approx \exp(-np^2)$.

If $p \gg n^{-1/2}$, how large could be the largest monochromatic set in a proper clique coloring?

In a set of *s* vertices one expects $\approx s^2 p/2$ edges.

If covered independently, all edges would have been covered with probability $\approx (1 - \exp(-np^2))^{s^2p/2} \approx \exp(-s^2p \exp(-np^2)/2)$.

But there are $\binom{n}{s}$ vertex sets of size $s \Rightarrow \text{look}$ for s satisfying $\binom{n}{s} \exp(-s^2 p \exp(-np^2)/2) \approx 1$ (later called s_{max}).

6/11

The main result

Theorem (L., Mitsche, Warnke, 2021)

For every $p \in [n^{-1/2}, (\log n)^{1/2}n^{-1/2}/2]$, with high probability

$$\chi_c(G(n,p)) = \Theta\left(\frac{np\exp(-np^2)}{\log(np)}\right)$$

Lyuben Lichev The ju

The jump of the clique chromatic number for random graphs

< ロ > < 同 > < 回 > < 回 >

The upper bound relies on the following result :

Theorem (Joret, Micek, Reed, Smid, 2020)

For every $\varepsilon > 0$ there is $\Delta_{\varepsilon} > 0$ such that every graph G with maximum degree $\Delta \ge \Delta_{\varepsilon}$ has clique chromatic number at most $(1 + \varepsilon)\Delta/\log \Delta$.

A D b 4 A b

The lower bound aims to formalize the above intuition.

The lower bound aims to formalize the above intuition.

Fix a set *S* of size $(1+\varepsilon)s_{max}$. We analyze the number of pairs of vertices without a common neighbor outside *S* - function of the edges between *S* and $V(G(n, p)) \setminus S$.

The lower bound aims to formalize the above intuition.

Fix a set *S* of size $(1+\varepsilon)s_{max}$. We analyze the number of pairs of vertices without a common neighbor outside *S* - function of the edges between *S* and $V(G(n, p)) \setminus S$.

Classical bounded difference inequality : "Coordinate-Lipschitz functions of a family of many i.i.d.r.v. are well concentrated."

The lower bound aims to formalize the above intuition.

Fix a set *S* of size $(1+\varepsilon)s_{max}$. We analyze the number of pairs of vertices without a common neighbor outside *S* - function of the edges between *S* and $V(G(n, p)) \setminus S$.

Typical bounded difference inequality : "Functions of a family of many i.i.d.r.v. that admit large differences with very small probability are well concentrated."

9/11

An open problem

- The correct whp order of $\chi_c(G(n, p))$ is still not known for all values of p. Our work reduced the gaps to $O(\log n)$ for all values of p.
- In particular, what is the correct order for $\chi_c(G(n, p))$ for $(\log n)^{3/5}n^{-2/5} \ll p \ll (\log n)^{-1}$?

< ロ > < 同 > < 回 > < 回 >

Thank you ! Any questions ?

Lyon, 7/09/2021