The jump of the clique chromatic number for random graphs

Joint work with Dieter Mitsche and Lutz Warnke

Lyuben Lichev

Université Jean Monnet, Saint Etienne, France

7/09/2021

The setting

- The Erdős-Rényi random graph $G(n, p)$.
- Proper (vertex-)coloring - no two adjacent vertices have the same color \Rightarrow chromatic number, denoted $\chi(\cdot)$.
- Proper clique coloring - no maximal clique (with more than one vertex) contains vertices in only one color \Rightarrow clique chromatic number, denoted $\chi_{c}(\cdot)$.

Some examples

Some examples

Some examples

Some examples

For any triangle-free graph $G, \chi(G)=\chi_{c}(G)$.

Some examples

For any triangle-free graph $G, \chi(G)=\chi_{c}(G)$.
$\chi\left(K_{n}\right)=n$, while $\chi_{c}\left(K_{n}\right)=2$.

Some examples

For any triangle-free graph $G, \chi(G)=\chi_{c}(G)$.
$\chi\left(K_{n}\right)=n$, while $\chi_{c}\left(K_{n}\right)=2$.
In 2016, McDiarmid, Mitsche and Pralat establish that, for every $x \in$ $(0,1 / 2) \cup(1 / 2,1)$ and $n p=n^{x+o(1)}$, whp $\chi_{c}(G(n, p))=n^{f(x)+o(1)}$.

Intuition

Probability that an edge does not participate in a triangle (i.e. is not covered) : $\left(1-p^{2}\right)^{n-2} \approx \exp \left(-n p^{2}\right)$.

Intuition

Probability that an edge does not participate in a triangle (i.e. is not covered) : $\left(1-p^{2}\right)^{n-2} \approx \exp \left(-n p^{2}\right)$.

If $p=O\left(n^{-1 / 2}\right)$, then $\chi(G(n, p))$ and $\chi_{c}(G(n, p))$ cannot be far from each other.

Intuition

Probability that an edge does not participate in a triangle (i.e. is not covered) : $\left(1-p^{2}\right)^{n-2} \approx \exp \left(-n p^{2}\right)$.

If $p=O\left(n^{-1 / 2}\right)$, then $\chi(G(n, p))$ and $\chi_{c}(G(n, p))$ cannot be far from each other.

Lower bound on χ_{c} : Think of edges outside triangles being distrbuted \approx uniformly at random.

Proper clique coloring of $G(n, p) \Longrightarrow$ proper coloring of $G\left(n, p \exp \left(-n p^{2}\right)\right)$.

Intuition

Probability that an edge does not participate in a triangle (i.e. is not covered) : $\left(1-p^{2}\right)^{n-2} \approx \exp \left(-n p^{2}\right)$.

If $p=O\left(n^{-1 / 2}\right)$, then $\chi(G(n, p))$ and $\chi_{c}(G(n, p))$ cannot be far from each other.

Lower bound on χ_{c} : Think of edges outside triangles being distrbuted \approx uniformly at random.

Proper clique coloring of $G(n, p) \Longrightarrow$ proper coloring of $G\left(n, p \exp \left(-n p^{2}\right)\right)$.

Upper bound on $\chi_{c}: \chi_{c}(G) \leq \chi(G)$.

Intuition

Probability that an edge does not participate in a triangle (i.e. is not covered) : $\left(1-p^{2}\right)^{n-2} \approx \exp \left(-n p^{2}\right)$.

If $p \gg n^{-1 / 2}$, how large could be the largest monochromatic set in a proper clique coloring?

Intuition

Probability that an edge does not participate in a triangle (i.e. is not covered) : $\left(1-p^{2}\right)^{n-2} \approx \exp \left(-n p^{2}\right)$.

If $p \gg n^{-1 / 2}$, how large could be the largest monochromatic set in a proper clique coloring?

In a set of s vertices one expects $\approx s^{2} p / 2$ edges.

Intuition

Probability that an edge does not participate in a triangle (i.e. is not covered) : $\left(1-p^{2}\right)^{n-2} \approx \exp \left(-n p^{2}\right)$.

If $p \gg n^{-1 / 2}$, how large could be the largest monochromatic set in a proper clique coloring?

In a set of s vertices one expects $\approx s^{2} p / 2$ edges.
If covered independently, all edges would have been covered with probability $\approx\left(1-\exp \left(-n p^{2}\right)\right)^{s^{2} p / 2} \approx \exp \left(-s^{2} p \exp \left(-n p^{2}\right) / 2\right)$.

Intuition

Probability that an edge does not participate in a triangle (i.e. is not covered) : $\left(1-p^{2}\right)^{n-2} \approx \exp \left(-n p^{2}\right)$.

If $p \gg n^{-1 / 2}$, how large could be the largest monochromatic set in a proper clique coloring?

In a set of s vertices one expects $\approx s^{2} p / 2$ edges.
If covered independently, all edges would have been covered with probability $\approx\left(1-\exp \left(-n p^{2}\right)\right)^{s^{2} p / 2} \approx \exp \left(-s^{2} p \exp \left(-n p^{2}\right) / 2\right)$.

But there are $\binom{n}{s}$ vertex sets of size $s \Rightarrow$ look for s satisfying $\binom{n}{s} \exp \left(-s^{2} p \exp \left(-n p^{2}\right) / 2\right) \approx 1$ (later called $s_{\max }$).

The main result

Theorem (L., Mitsche, Warnke, 2021)

For every $p \in\left[n^{-1 / 2},(\log n)^{1 / 2} n^{-1 / 2} / 2\right]$, with high probability

$$
\chi_{c}(G(n, p))=\Theta\left(\frac{n p \exp \left(-n p^{2}\right)}{\log (n p)}\right) .
$$

Highlights of the proof - the upper bound

The upper bound relies on the following result :
Theorem (Joret, Micek, Reed, Smid, 2020)
For every $\varepsilon>0$ there is $\Delta_{\varepsilon}>0$ such that every graph G with maximum degree $\Delta \geq \Delta_{\varepsilon}$ has clique chromatic number at most $(1+\varepsilon) \Delta / \log \Delta$.

Highlights of the proof - the lower bound

The lower bound aims to formalize the above intuition.

Highlights of the proof - the lower bound

The lower bound aims to formalize the above intuition.
Fix a set S of size $(1+\varepsilon) s_{\text {max }}$. We analyze the number of pairs of vertices without a common neighbor outside S - function of the edges between S and $V(G(n, p)) \backslash S$.

Highlights of the proof - the lower bound

The lower bound aims to formalize the above intuition.
Fix a set S of size $(1+\varepsilon) s_{\text {max }}$. We analyze the number of pairs of vertices without a common neighbor outside S - function of the edges between S and $V(G(n, p)) \backslash S$.

Classical bounded difference inequality: "Coordinate-Lipschitz functions of a family of many i.i.d.r.v. are well concentrated."

Highlights of the proof - the lower bound

The lower bound aims to formalize the above intuition.
Fix a set S of size $(1+\varepsilon) s_{\text {max }}$. We analyze the number of pairs of vertices without a common neighbor outside S - function of the edges between S and $V(G(n, p)) \backslash S$.

Typical bounded difference inequality : "Functions of a family of many i.i.d.r.v. that admit large differences with very small probability are well concentrated."

An open problem

The correct whp order of $\chi_{c}(G(n, p))$ is still not known for all values of p. Our work reduced the gaps to $O(\log n)$ for all values of p.

In particular, what is the correct order for $\chi_{c}(G(n, p))$ for $(\log n)^{3 / 5} n^{-2 / 5} \ll p \ll(\log n)^{-1}$?

Thank you ! Any questions?

