Small deviation estimates and small ball probabilities for geodesics in last passage percolation

Manan Bhatia

Massachusetts Institute of Technology

$$
\text { September 6, } 2021
$$

Exponential last Passage Percolation on \mathbb{Z}^{2}

- Have i.i.d. random variables $w_{i, j} \sim \operatorname{Exp}(1)$ on the vertices. The weight of a path is the sum of the values of the traversed vertices in \mathbb{Z}^{2}.
- $T(u, v)$ is the maximum weight of up-right paths going from u to v.

- For convenience, $T(n)=T((0,0),(n, n))$.
- Satisfies the recursion
$T(u, v)=$ $\max \left\{T\left(u, v-e_{1}\right), T\left(u, v-e_{2}\right)\right\}+w_{v}$.

Kardar-Parisi-Zhang (KPZ)

- General class of models of random growth.
- 3 : 2 : 1 scaling for time: space
: fluctuations.

Connection to the TASEP

- Totally Asymmetric Exclusion Process.
- Start with a configuration of particles and holes on $\mathbb{Z}+\frac{1}{2}$.
- Vertices have i.i.d. $\operatorname{Exp}(1)$ clocks which signal the respective particle to attempt a jump to its right.
- A jump is successful if there is a hole to the right of a particle.
- If a particle moves from $i+\frac{1}{2}$ to $(i+1)+\frac{1}{2}$, then flip the wedge on the line $\{x=i+1\}$.
- Exponential LPP corresponds to
 the TASEP started from the step initial condition.

Exponential LPP: Properties

- Limit shape: $\frac{\mathbb{E} T(0, \alpha(m, n))}{\alpha} \rightarrow(\sqrt{m}+\sqrt{n})^{2}$ as $\alpha \rightarrow \infty$.
- $\frac{T(n)-4 n}{n^{1 / 3}}$ converges in distribution to a multiple of the GUE Tracy-Widom distribution, which has negative mean.
- [Ledoux, Rider '10], [Basu, Ganguly, Hegde, Krishnapur '19]: For all $y<\delta n^{2 / 3}$ and for all large n,

$$
\begin{aligned}
& C_{1} e^{-c_{1} y^{3 / 2}} \leq \mathbb{P}\left(T(n)-4 n>y n^{1 / 3}\right) \leq C_{2} e^{-c_{2} y^{3 / 2}} \\
& C_{3} e^{-c_{3} y^{3}} \leq \mathbb{P}\left(T(n)-4 n<-y n^{1 / 3}\right) \leq C_{4} e^{-c_{4} y^{3}}
\end{aligned}
$$

Exponential LPP: Properties

- Limit shape: $\frac{\mathbb{E} T(0, \alpha(m, n))}{\alpha} \rightarrow(\sqrt{m}+\sqrt{n})^{2}$ as $\alpha \rightarrow \infty$.
- $\frac{T(n)-4 n}{n^{1 / 3}}$ converges in distribution to a multiple of the GUE Tracy-Widom distribution, which has negative mean.
- [Ledoux, Rider '10], [Basu, Ganguly, Hegde, Krishnapur '19]: For all $y<\delta n^{2 / 3}$ and for all large n,

$$
\begin{aligned}
& C_{1} e^{-c_{1} y^{3 / 2}} \leq \mathbb{P}\left(T(n)-4 n>y n^{1 / 3}\right) \leq C_{2} e^{-c_{2} y^{3 / 2}} \\
& C_{3} e^{-c_{3} y^{3}} \leq \mathbb{P}\left(T(n)-4 n<-y n^{1 / 3}\right) \leq C_{4} e^{-c_{4} y^{3}}
\end{aligned}
$$

- Optimal in the exponent.

Geodesics in Exponential LPP

- The almost surely unique path attaining $T(u, v)$ is called the geodesic.
- Semi-infinite geodesics are related to the trajectory of a second class particle in the TASEP starting from the
 stationary initial condition.

Exponential LPP: Transversal Fluctuations

- Let \mathcal{A}_{α} be the event that the geodesic for $T(n)$ stays in a strip of width α about the line $\{x=y\}$.
- [Johansson '99] $\mathbb{P}\left(\mathcal{A}_{n^{2 / 3+\epsilon}}\right) \rightarrow 1$ and $\mathbb{P}\left(\mathcal{A}_{n^{2 / 3-\epsilon}}\right) \rightarrow 0$ as $n \rightarrow \infty$.
- [Basu, Sidoravicius, Sly '16], [Basu, Ganguly, Zhang '19], $\mathbb{P}\left(\left(\mathcal{A}_{r n^{2 / 3}}\right)^{c}\right) \leq C_{1} e^{-c_{1} r^{3}}$.
- [Hammond, Sarkar '18] $\mathbb{P}\left(\left(\mathcal{A}_{r n^{2} / 3}\right)^{c}\right) \geq C_{2} e^{-c_{2} r^{3}}$.
- [Balász, Cator Seppäläinen '06], [Busani, Ferrari '20] Similar estimates for $\mathbb{P}\left(\left(\mathcal{A}_{r n^{2 / 3}}\right)^{c}\right)$.

Exponential LPP: Transversal Fluctuations

- How far does the geodesic for $T(n)$ venture from the line $\{x=y\}$?.
- By the limit shape result, for $p_{x}=(n / 2-x, n / 2+x)$,

$$
\mathbb{E} T\left((0,0), p_{x}\right)+\mathbb{E} T\left(p_{x},(n, n)\right) \sim 4 n-C \frac{x^{2}}{n}
$$

- For typical transversal fluctutations, heuristically $\frac{x^{2}}{n} \sim n^{1 / 3}$ and thus $x \sim n^{2 / 3}$.

Small ball probabilities for the geodesic

- Estimates for $\mathbb{P}\left(\mathcal{A}_{\delta n^{2 / 3}}\right)$ for small δ ?
- The geodesic takes values in the same state spaces as the SRW bridge.
- For Brownian bridge:
$\log \mathbb{P}\left(\sup _{t \in[0,1]}\left|B_{t}\right| \leq \delta\right) \sim-\frac{\pi^{2}}{8} \delta^{-2}$.
Theorem ([Basu, B. '20])

$$
C_{1} e^{-c_{1} \delta^{-3 / 2}} \leq \mathbb{P}\left(\mathcal{A}_{\delta n^{2} / 3}\right) \leq C_{2} e^{-c_{2} \delta^{-3 / 2}}
$$

Why $e^{-\delta^{-3 / 2}}$? Sketch for the upper bound

- Let $Y_{i}=\sup _{u \in \mathcal{R}_{i}, v \in \overline{\mathcal{R}}_{i}} T(u, v)$
- $Y_{i} \sim 4 \delta^{3 / 2} n+Z_{i} \delta^{1 / 2} n^{1 / 3}$ with $\mathbb{E} Z_{i}<-2 c$.
- Let $S=\sum Z_{i} / \delta^{-3 / 2}$.
- $\sum Y_{i} \sim 4 n+S \delta^{-1} n^{1 / 3}$.

Why $e^{-\delta^{-3 / 2}}$? Sketch for the upper bound

- Let $Y_{i}=\sup _{u \in \mathcal{R}_{i}, v \in \overline{\mathcal{R}}_{i}} T(u, v)$
- $Y_{i} \sim 4 \delta^{3 / 2} n+Z_{i} \delta^{1 / 2} n^{1 / 3}$ with $\mathbb{E} Z_{i}<-2 c$.
- Let $S=\sum Z_{i} / \delta^{-3 / 2}$.
- $\sum Y_{i} \sim 4 n+S \delta^{-1} n^{1 / 3}$.
- $\mathbb{P}\left(T(n)<4 n-c \delta^{-1} n^{1 / 3}\right) \sim$ $e^{-c_{1} \delta^{-3}}$.
- $\mathbb{P}(S \geq-c) \sim e^{-c_{2} \delta^{-3 / 2}}$.

Why $e^{-\delta^{-3 / 2}}$? Sketch for the upper bound

- Let $Y_{i}=\sup _{u \in \mathcal{R}_{i}, v \in \overline{\mathcal{R}}_{i}} T(u, v)$
- $Y_{i} \sim 4 \delta^{3 / 2} n+Z_{i} \delta^{1 / 2} n^{1 / 3}$ with $\mathbb{E} Z_{i}<-2 c$.
- Let $S=\sum Z_{i} / \delta^{-3 / 2}$.
- $\sum Y_{i} \sim 4 n+S \delta^{-1} n^{1 / 3}$.
- $\mathbb{P}\left(T(n)<4 n-c \delta^{-1} n^{1 / 3}\right) \sim$ $e^{-c_{1} \delta^{-3}}$.
- $\mathbb{P}(S \geq-c) \sim e^{-c_{2} \delta^{-3 / 2}}$.
- The proof of the lower bound involves forcing the geodesic to stay inside by making the environment in the central $\delta n^{2 / 3}$ strip favorable and putting
 unfavorable barriers straddling the strip.

One point estimates

- Let \mathcal{E}_{n} denote the event that the geodesic passes through a transversal segment of length $\delta n^{2 / 3}$ about the point $(n, n) / 2$.

Theorem ([Basu, B. '20])

$$
C_{1} \delta \leq \mathbb{P}\left(\mathcal{E}_{n}\right) \leq C_{2} \delta
$$

One point estimates

- Let \mathcal{E}_{n} denote the event that the geodesic passes through a transversal segment of length $\delta n^{2 / 3}$ about the point $(n, n) / 2$.

Theorem ([Basu, B. '20])

$$
C_{1} \delta \leq \mathbb{P}\left(\mathcal{E}_{n}\right) \leq C_{2} \delta
$$

- In fact, can take $\delta=n^{-2 / 3}$ and obtain that the probability that the geodesic passes through a particular point $\sim n^{-2 / 3}$.

Coalescence of geodesics

- [Basu, Hoffman, Sly '18]

Consider a $n \times n^{2 / 3}$ rectangle and look at the geodesics between the two short sides.
Denoting the number of distinct geodesic traces in the middle third by N_{n}, we have $\mathbb{P}\left(N_{n} \geq \ell\right) \leq C e^{-c \ell^{\epsilon}}$.

Coalescence of geodesics

- [Basu, Hoffman, Sly '18] Consider a $n \times n^{2 / 3}$ rectangle and look at the geodesics between the two short sides.
Denoting the number of distinct geodesic traces in the middle third by N_{n}, we have $\mathbb{P}\left(N_{n} \geq \ell\right) \leq C e^{-c \ell^{\epsilon}}$.
- Denoting the number of intersections of the geodesics with the mid-line by L_{n}, we have $\mathbb{E} L_{n} \leq C$.

One point estimate- upper bound proof sketch

- Divide a $n \times n^{2 / 3}$ rectangle into δ^{-1} many $n \times \delta n^{2 / 3}$ rectangles and consider the geodesics between the midpoints of their short sides.
- With M_{n} denoting the number of small rectangles satisfying the one-point condition, we have $M_{n} \leq L_{n}$.
- By translational invariance and coalescence, $\mathbb{E} M_{n}=\delta^{-1} \mathbb{P}\left(\mathcal{E}_{n}\right) \leq \mathbb{E} L_{n} \leq C$.

One point estimate- upper bound proof sketch

- Divide a $n \times n^{2 / 3}$ rectangle into δ^{-1} many $n \times \delta n^{2 / 3}$ rectangles and consider the geodesics between the midpoints of their short sides.
- With M_{n} denoting the number of small rectangles satisfying the one-point condition, we have $M_{n} \leq L_{n}$.
- By translational invariance and coalescence, $\mathbb{E} M_{n}=\delta^{-1} \mathbb{P}\left(\mathcal{E}_{n}\right) \leq \mathbb{E} L_{n} \leq C$.

Passing through the scaling limit

- Analogous to the convergence of SRW bridge to Brownian bridge, geodesics in exponential LPP converge to geodesics in the directed landscape constructed in [Dauvergne, Ortmann, Virág '18].
- [Dauvergne, Sarkar, Virág '20] Geodesics in the directed landscape have finite $3 / 2$ variation.
- The small ball and one point estimates pass to the limit and give corresponding results for the directed landscape geodesics.

Questions?

