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Exponential last Passage Percolation on Z?

@ Have i.i.d. random variables
w;j ~ Exp(1) on the vertices.
The weight of a path is the sum
of the values of the traversed
vertices in Z2.

o T(u,v) is the maximum weight of
up-right paths going from u to v.

@ For convenience,
T(n) = T((0,0),(n, n)).
@ Satisfies the recursion
T(“? V) =
max{T(u,v —e1), T(u,v —e)} + w,.
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Kardar-Parisi-Zhang (KPZ)

@ General class of models of
random growth.

@ 3:2:1 scaling for time : space
. fluctuations.
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Connection to the TASEP

@ Totally Asymmetric Exclusion
Process.

@ Start with a configuration of
particles and holes on Z + %

@ Vertices have i.i.d. Exp(1)
clocks which signal the
respective particle to attempt a
jump to its right. A

@ A jump is successful if there is a 00000 0COO0
hole to the right of a particle.

o If a particle moves from / + % to
(i+1)+ 3, then flip the wedge M //\

on the line {x =i+ 1}.

@ Exponential LPP corresponds to
the TASEP started from the
step initial condition.
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Exponential LPP: Properties

e Limit shape: w — (Vm+/n)? as a — .

° T(;'l)/_34" converges in distribution to a multiple of the GUE
Tracy-Widom distribution, which has negative mean.

o [Ledoux, Rider '10], [Basu, Ganguly, Hegde, Krishnapur '19]: For all

y < 6n%/3 and for all large n,

C;le_cly3/2 <P(T(n)—4n> yn1/3) < C26_C2y3/2,

3

Cse™ Y < P(T(n) — 4n < —yn'/3) < Ge=’.
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Exponential LPP: Properties

e Limit shape: M — (Vm+/n)? as a — .

T(;'l)/_34" converges in distribution to a multiple of the GUE

Tracy-Widom distribution, which has negative mean.
o [Ledoux, Rider '10], [Basu, Ganguly, Hegde, Krishnapur '19]: For all
y < 6n%/3 and for all large n,

Cre— o < P(T(n) —4n > yn'/3) < Coe ™,

3

Cse™’ < P(T(n) —4n < —yn/3) < Cpe= =’

@ Optimal in the exponent.
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Geodesics in Exponential LPP

@ The almost surely unique path
attaining T (u, v) is called the
geodesic.

@ Semi-infinite geodesics are
related to the trajectory of a
second class particle in the
TASEP starting from the
stationary initial condition.

— ¥ % o
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Exponential LPP: Transversal Fluctuations

o Let A, be the event that the geodesic for T(n) stays in a strip of
width a about the line {x = y}.

o [Johansson '99] P(A,2/3:c) — 1 and P(A,2/5-c) — 0 as n — oo.
e [Basu, Sidoravicius, Sly '16], [Basu, Ganguly, Zhang '19],

3

P((A,2/3)¢) < Gie= ",
o [Hammond, Sarkar 18] P((A,,2/5)¢) > Coe=@"

o [Balasz, Cator Seppalainen '06], [Busani, Ferrari '20] Similar estimates
for P((A,2/3)°).
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Exponential LPP: Transversal Fluctuations
@ How far does the geodesic for T(n) venture from the line {x = y}7.
@ By the limit shape result, for p, = (n/2 — x,n/2 + x),

2
ET ((0,0), px) + ET (px, (n, n)) ~ 4n — c%.

: . . 2

@ For typical transversal fluctutations, heuristically - ~ n'/3 and thus
2/3

X ~ n</>.

(nm)

N .
N
Pz ®

(n/2,n/2)
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Small ball probabilities for the geodesic

e Estimates for P(Ag,/3) for small 67 R L1

@ The geodesic takes values in the same
state spaces as the SRW bridge.

@ For Brownian bridge:
log IP <supt€[071] |Bt| < 6) ~ —%25—2.

Theorem ([Basu, B. '20])

e 5-3/2 A~ 5—3/2
Cle et / SP(A5n2/3)§ C2€ 2 /
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Why e~ **? Sketch for the upper bound
o Let V; = SUPeR. VR, T(u,v)
o Y~ 45%2n + Z;61/2n'/3 with
EZ < —2c.
o Let S=3527/63/2
o > Vi~ 4n+ S5 1nt/3.
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Why e~9"*? Sketch for the upper bound
o Let V; = SUPeR. VR, T(u,v)
o Y ~ 463204 Z:6Y/2n1/3 with

EZ < —2c.

Let S =3.27;/63/2,

S Vi~ 4n+ S5 1nt/3,

P (T(n) < 4n—c6~1n'/3) ~

e—ad™?

P(S > —c)~ e 207,

The proof of the lower bound

involves forcing the geodesic to
stay inside by making the
environment in the central 6n?/3  sn?/3 /
strip favorable and putting 6¥2n
unfavorable barriers straddling

the strip.
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One point estimates

@ Let &, denote the event that the
geodesic passes through a
transversal segment of length
§n?/3 about the point (n, n)/2.

Theorem ([Basu, B. '20])
Co <P(E,) < Cod
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One point estimates

@ Let &, denote the event that the
geodesic passes through a
transversal segment of length
§n?/3 about the point (n, n)/2.

Theorem ([Basu, B. '20])
C16 < P(E,) < God

e In fact, can take § = n=%/3 and
obtain that the probability that
the geodesic passes through a
particular point ~ n=2/3.
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Coalescence of geodesics

e [Basu, Hoffman, Sly '18]
Consider a n x n?/3 rectangle
and look at the geodesics
between the two short sides.
Denoting the number of distinct
geodesic traces in the middle
third by N,, we have
P(N,>{) < Ce .
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Coalescence of geodesics

e [Basu, Hoffman, Sly '18]
Consider a n x n?/3 rectangle
and look at the geodesics
between the two short sides.
Denoting the number of distinct
geodesic traces in the middle
third by N,, we have
P(N,>{) < Ce .

@ Denoting the number of
intersections of the geodesics
with the mid-line by L,, we have
EL, < C.
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One point estimate— upper bound proof sketch

e Divide a n x n?/3 rectangle into
61 many n x 8n?/3 rectangles
and consider the geodesics
between the midpoints of their
short sides.

@ With M, denoting the number
of small rectangles satisfying the *
one-point condition, we have
M, < L,.

o By translational invariance and

coalescence,
EM, = 6~1P(&,) <EL, < C.
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One point estimate— upper bound proof sketch

/,4 \\ Sn2/3
N

e Divide a n x n?/3 rectangle into
61 many n x 8n?/3 rectangles
and consider the geodesics
between the midpoints of their
short sides.

@ With M, denoting the number
of small rectangles satisfying the *
one-point condition, we have >
M, < L,. ’
o By translational invariance and

coalescence,
EM, = 6~1P(&,) <EL, < C.
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Passing through the scaling limit

@ Analogous to the convergence of SRW bridge to Brownian bridge,
geodesics in exponential LPP converge to geodesics in the directed
landscape constructed in [Dauvergne, Ortmann, Virdg '18].

o [Dauvergne, Sarkar, Virdg '20] Geodesics in the directed landscape
have finite 3/2 variation.

@ The small ball and one point estimates pass to the limit and give
corresponding results for the directed landscape geodesics.
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Questions?
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